Basics of Algorithm Analysis

• We measure running time as a function of \(n \), the size of the input (in bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” operations take “1” unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)
• Average case (used if we understand the average)
• Worst case (used most often)

We measure as a function of \(n \), and ignore low order terms.

• \(5n^3 + n - 6 \) becomes \(n^3 \)
• \(8n \log n - 60n \) becomes \(n \log n \)
• \(2^n + 3n^4 \) becomes \(2^n \)
Asymptotic notation

big-O

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Alternatively, we say

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \]

Informally, \(f(n) = O(g(n)) \) means that \(f(n) \) is asymptotically less than or equal to \(g(n) \).

big-Ω

\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \]

Alternatively, we say

\[f(n) = \Omega(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \]

Informally, \(f(n) = \Omega(g(n)) \) means that \(f(n) \) is asymptotically greater than or equal to \(g(n) \).
\textbf{big-Θ}

\(f(n) = \Theta(g(n)) \) if and only if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).

Informally, \(f(n) = \Theta(g(n)) \) means that \(f(n) \) is asymptotically equal to \(g(n) \).

\textbf{INFORMAL summary}

- \(f(n) = O(g(n)) \) roughly means \(f(n) \leq g(n) \)
- \(f(n) = \Omega(g(n)) \) roughly means \(f(n) \geq g(n) \)
- \(f(n) = \Theta(g(n)) \) roughly means \(f(n) = g(n) \)
- \(f(n) = o(g(n)) \) roughly means \(f(n) < g(n) \)
- \(f(n) = \omega(g(n)) \) roughly means \(f(n) > g(n) \)

We use these to classify algorithms into classes, e.g. \(n, n^2, n \log n, 2^n \).

See chart for justification
Polynomial Time

The size of a problem instance typically is described by parameters such as:

- number of nodes n or V
- number of edges m or E
- largest capacity U
- largest cost (in absolute value) C

Input size: The size of the input, which consists of a list of nodes and edges and their capacities and costs is typically

\[\Theta(n + m + m \log U + m \log C) \]

- A **polynomial algorithm** is one whose running time is polynomial in the input, i.e. is polynomial in n, m, $\log U$, $\log C$.
- A **strongly polynomial algorithm** is one whose running time is polynomial in the size of the graph and independent of the size of the numbers, i.e. is polynomial in n, m.
- A **pseudo-polynomial algorithm** is one whose running time is polynomial in the size of the graph and the magnitude of the numbers, i.e. is polynomial in n, m, U, C.
Commentary (with trivial interpretations excluded)

• Strongly polynomial and polynomial algorithms are polynomial algorithms. Pseudo-polynomial algorithms are not polynomial algorithms.

• Strongly polynomial algorithms are mainly a theoretical concept and do not tend to get used in practice.

We will typically shoot for polynomial algorithms.
Some Graph terminology

- node, vertex
- edge, arc
- directed undirected
- head tail
- path
- cycle
- acyclic
- bipartite graph
- tree
- forest
- cut
- s-t cut
- connectivity
- strong connectivity
- bipartite graph
Easily Solved Graph Problems

- Connectivity
- Strong Connectivity
- Spanning trees
- Bipartiteness
- Topological Search
- Depth-first Search
- Breadth-first Search
Basic Data Structures

- Arrays
- Linked Lists
- Stack - LIFO
- Queue - FIFO
- Binary tree
- Hash table
Dictionary Operations on ordered set

- Insert
- Delete
- Find
- Min, Max
- Successor, Predecessor
- IncreaseKey, DecreaseKey

Comments

- Some form of a balanced binary tree supports all dictionary operations in $O(\log n)$ time
- A hash table supports Insert, Delete and Find in $O(1)$ expected time
Graph Storage

- An adjacency matrix is an n by n matrix in which $A[i, j]$ stores values related to edge (i, j).

- An adjacency list is a length n array L of linked lists, where entry $L[i]$ is a list of all edges adjacent to vertex i.