Johnson’s Algorithm for All-Pairs Shortest Paths

• Input is Graph $G = (V, E)$ with arbitrary edge weights c.
• Assume strongly connected.
• Assume no negative cycle.
• Can run Bellman Ford n times for $O(n^2m)$.
• Can run Floyd-Warshall in $O(n^3)$ time.
• If all edge weights are non-negative, can run Dijkstra n times for a running time of $O(nm + n^2 \log n)$. Can we match that for general weights?
• Johnson Algorithm
 – Run single source shortest paths from one arbitrary node s. (Bellman Ford)
 – Use results of previous step to “reweight edges” so that all edges have non-negative weights
 – Run single source shortest paths from the other $n-1$ vertices. (Dijkstra)
• Running Time is $O(nm + n(m + n \log n)) = O(nm + n^2 \log n)$, better than $O(n^3)$ for non-dense graphs.
How to Reweight

• Let \(p(v) \) be some prices that we put on vertices.
• Consider **reduced cost** of edge \(vw \), \(c_p(vw) = c(vw) - p(v) + p(w) \).
• For a \(P \), what is the relationship between \(c(P) \) and \(c_p(P) \)?
• For a cycle \(X \), what is the relationship between \(c(X) \) and \(c_p(X) \)?
How to Reweight

• Let $p(v)$ be some prices that we put on vertices.

• Consider reduced cost of edge vw, $c_p(vw) = c(vw) - p(v) + p(w)$.

• For a P, what is the relationship between $c(P)$ and $c_p(P)$?

• For a cycle X, what is the relationship between $c(X)$ and $c_p(X)$?

Path $P = v_1v_2\ldots v_k$

\[
c_p(P) = c_p(v_1v_2) + c_p(v_2v_3) + \cdots + c_p(v_{k-1}v_k)
= c(v_1v_2) - p(v_1) + p(v_2) + c(v_2v_3) - p(v_2) + p(v_3) + \cdots + c(v_{k-1}v_k) - p(v_{k-1}) + p(v_k)
= c(P) - p(v_1) + p(v_k)
\]

• The length of each path from v_1 to v_k is increased by the same amount, $p(v_k) - p(v_1)$.

• Therefore, the shortest path is still the shortest path

• For a cycle $p(v_1) = p(v_k)$, so the distance does not change at all.
Reweighting for Shortest Paths

• We will set \(p(v) \) to the negative of the shortest path length \(d(v) \) from \(s \) to \(v \).

• We now have that \(c_p(vw) = c(vw) - p(v) + p(w) = c(vw) + d(v) - d(w) \).

• But we know that, by the optimality condition for shortest paths:

\[
d(w) \leq d(v) + c(vw) \Rightarrow c(vw) + d(v) - d(w) \geq 0 \Rightarrow c_p(vw) \geq 0
\]

• So we have non-negative edge weights, still no negative cycles, and can use Dijkstra’s algorithm.