Arbitrage through Linear Programming

We are given:

- Two securities: 1 and 2, and three scenarios: 1, 2, 3. Prices:

<table>
<thead>
<tr>
<th></th>
<th>today</th>
<th>Scen. 1</th>
<th>Scen. 2</th>
<th>Scen. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>-7</td>
<td>19</td>
<td>-9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>-8</td>
<td>8</td>
</tr>
</tbody>
</table>

Is arbitrage possible?

- We **take a position** today, we **close it tomorrow**
- What is today’s value?
 The sum of the position values, using today’s data!
- What is tomorrow’s value?
 The sum of the position values, using tomorrow’s data!
- **Arbitrage**: < 0 today, and ≥ 0 tomorrow in *every* scenario
- (But we need a riskless security to make this notion more complete)
<table>
<thead>
<tr>
<th></th>
<th>today</th>
<th>Scen. 1</th>
<th>Scen. 2</th>
<th>Scen. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>−7</td>
<td>19</td>
<td>−9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>−8</td>
<td>8</td>
</tr>
</tbody>
</table>

Example: **Short 1** security 1, and **Short 1** security 2

Today: value −18

Tomorrow’s values:
<table>
<thead>
<tr>
<th></th>
<th>today</th>
<th>Scen. 1</th>
<th>Scen. 2</th>
<th>Scen. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>-7</td>
<td>19</td>
<td>-9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>-8</td>
<td>8</td>
</tr>
</tbody>
</table>

Example: Short 1 security 1, and Short 1 security 2

Today: value -18

Tomorrow’s values:

<table>
<thead>
<tr>
<th>Scen. 1</th>
<th>Scen. 2</th>
<th>Scen. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>today</td>
<td>Scen. 1</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>−7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Example: **Long** 1 security 1, and **Short** 2 security 2

So we will have:

<table>
<thead>
<tr>
<th>Today</th>
<th>Scen. 1</th>
<th>Scen. 2</th>
<th>Scen. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>−6</td>
<td>−19</td>
<td>35</td>
<td>−25</td>
</tr>
<tr>
<td></td>
<td>today</td>
<td>Scen. 1</td>
<td>Scen. 2</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>−7</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>−8</td>
</tr>
</tbody>
</table>

We also have **cash**: interest rate = 8% in every scenario
We also have **cash**: interest rate = 8% in every scenario

How about **+5.5** cash, **−2** security 1, **1** security 2?
We also have **cash**: interest rate = 8% in every scenario

How about **+5.5** cash, **−2** security 1, **1** security 2?

```
<table>
<thead>
<tr>
<th></th>
<th>today</th>
<th>Scen. 1</th>
<th>Scen. 2</th>
<th>Scen. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>−7</td>
<td>19</td>
<td>−9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>−8</td>
<td>8</td>
</tr>
</tbody>
</table>
```

E.g. (Scen. 1): 5.5 * 1.08 + (−7) * (−2) + 6 * 1 = 25.94
General case

We are given:

- \(n \) securities: \(S_1, \ldots, S_n \), plus cash: this is security \(S_0 \)
- A collection of \(K \) scenarios for what the price of each security will be tomorrow (or next month, etc.):

 In scenario \(i \), the price of security \(j \) will be \(\pi_{ij} \). \((1 \leq i \leq K, 1 \leq j \leq n)\)

Security 0: be \(\pi_{i0} = 1 + r \), where \(r \) = risk-free interest rate \((1 \leq i \leq K)\)

Scenario 0: today’s prices (for cash, price = 1)

- How do we investigate the existence of arbitrage?
Use Linear Programming

- Use variables $x_j = \text{position we take in security } j$ (incl. cash)

So today’s value of our positions is:

$$x_0 + \sum_{j=1}^{n} \pi_{0j} x_j$$

And in scenario i, tomorrow’s value of our positions will be:

$$(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j$$

Two kinds of arbitrage:

Type A. Today’s position < 0, and in tomorrow’s ≥ 0 in every scenario

Type B. Zero cash flow today, tomorrow’s position ≤ 0 in every scenario and < 0 in at least one scenario
Use Linear Programming

- Use variables $x_j = \text{position we take in security } j \text{ (incl. cash)}$

So today’s value of our positions is:

$$x_0 + \sum_{j=1}^{n} \pi_{0j} x_j$$

And in scenario i, tomorrow’s value of our positions will be:

$$(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j$$

Two kinds of arbitrage:

Type A. Today’s position < 0, and in tomorrow’s ≥ 0 in every scenario

Type B. Zero cash flow today, tomorrow’s position ≤ 0 in every scenario and < 0 in at least one scenario

Exercise. Convince yourself that (because of the riskless security, cash) this is equivalent to the standard notion of arbitrage
\[x_j = \text{position in security } j \]

Today’s value: \(x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \)

Tomorrow’s in scenario \(i \): \((1 + r) x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \)

Consider the linear program

\[\mathbf{V}^* = \text{Minimize} \quad x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Subject to:

\[(1 + r) x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1 \]

\(x_j \) unrestricted in sign, for every \(j \)
\[x_j = \text{position in security } j \]

Today’s value: \[x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Tomorrow’s in scenario \(i \): \[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \]

Consider the linear program

\[V^* = \text{Minimize } x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Subject to:

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1 \]

\[x_j \text{ unrestricted in sign, for every } j \]

Type A: Today’s cash flow} > 0, and in tomorrow’s} \leq 0 \text{ in every scenario}

This happens if, and only if, \(V^* < 0 \)

Why?
\[x_j = \text{position in security } j \]

Today’s value: \[x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Tomorrow’s in scenario \(i \): \[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \]

\[V^* = \text{Minimize } x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Subject to:

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1 \]

\(x_j \) unrestricted in sign, for every \(j \)

What if \(V^* = 0 \) ?
\(x_j = \text{position in security } j \)

Today’s value: \(x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \)

Tomorrow’s in scenario \(i \): \((1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \)

\[V^* = \text{Minimize } x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Subject to:

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1 \]

\(x_j \) unrestricted in sign, for every \(j \)

What if \(V^* = 0 \) ?

Type B: can we find a vector \(x \), such that

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1 \]

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j > 0 \quad \text{for at least one scenario } i \geq 1 \]

\[x_0 + \sum_{j=1}^{n} \pi_{0j} x_j = 0 \]
\(V^* = \text{Minimize } x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \)

Subject to:

\[
(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1
\]

\(x_j \) unrestricted in sign, for every \(j \)

If no Type A or Type B arbitrage exist, then \(V^* = 0 \) and every optimal solution to the LP satisfies:

\[
(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j = 0 \quad \text{for every scenario } i \geq 1
\]
\[V^* = \text{Minimize } x_0 + \sum_{j=1}^{n} \pi_{0j} x_j \]

Subject to:

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0 \quad \text{for every scenario } i \geq 1 \]

\[x_j \text{ unrestricted in sign, for every } j \]

If no Type A or Type B arbitrage exist, then ... \(V^* = 0 \) and every optimal solution to the LP satisfies:

\[(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j = 0 \quad \text{for every scenario } i \geq 1 \]

Dual LP:

\[V^* = \text{Maximize } \sum_{i=1}^{K} P_i \]

Subject to:

\[(1 + r)\sum_{i=1}^{K} P_i = 1 \]

\[\sum_{i=1}^{K} \pi_{ij} P_i = \pi_{0j} \quad \text{for every security } j \geq 1 \]

\[P_i \geq 0 \quad \text{for every scenario } i \geq 1 \]
$V^* \text{=Minimize } x_0 + \sum_{j=1}^{\pi_0} x_j$

Subject to:

$(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j \geq 0$ \text{ for every scenario } i \geq 1

x_j unrestricted in sign, for every j

If no Type A or Type B arbitrage exist, then ... \text{ } V^* = 0 and every optimal solution to the LP satisfies:

$(1 + r)x_0 + \sum_{j=1}^{n} \pi_{ij} x_j = 0$ \text{ for every scenario } i \geq 1

dual: $V^* \text{=Maximize } \sum_{i=1}^{K} P_i$

Subject to:

$(1 + r)\sum_{i=1}^{K} P_i = 1$

$\sum_{i=1}^{K} \pi_{ij} P_i = \pi_{0j}$ \text{ for every security } j \geq 1

$P_i \geq 0$ \text{ for every scenario } i \geq 1

...And an appropriate optimal dual solution gives us risk-neutral probabilities