\[\frac{x}{P_c(\epsilon = x)} = \frac{P}{P_c(x-x)} \]

- What else do you get?
- Of course we now expect...
 - If, let it be known
\[C(x) = C(y(x) - x - y) + C(y(x)) \]

\[y(x) = \sqrt{x} + c \phi (x, c + 1) \]

Note: The diagram and equation are not fully transcribed due to handwriting quality.

\[(x + l) \rightarrow t \]

\[\uparrow \]

\[\text{Next order} \]

\[\text{Please ensure} \]

\[\text{No. of L people added} \]

\[\Rightarrow \quad \gamma = 0 \]

\[\text{Provision} \]

\[\text{No. of Items} \]

\[\text{End design with people} \]

+ Jahr. etc.
\[X_t = \text{previous year} + \text{on more} - \text{background} + (\text{inciting or order}) \]

\[N \text{ os defecation of } x^2 \]
(Chu to Py or 0 or 2π)

Chu to Py or 0 or 2π

D[e, π] = \[\frac{e^2}{D} = \text{proof}

D[e, π] = \[\frac{e^2}{D} = \text{proof}

What is the imagine round?
Solve for θ.

\[
\begin{cases}
\gamma(t) + \alpha E(t) (y_1 \theta - D_1) \\
\theta^2 x + \beta E (D_1, t + \gamma) + \gamma E (\theta, t - \gamma)
\end{cases}
\]

$\gamma(x) = \max \{ C^x \}$
Good morning.

No apology needed.

A random fact about me:

\[m_t = \frac{m_0^2 \cdot \frac{k}{e}}{m_0 - \frac{k}{e}} \]

Where:

\[\frac{k}{e} = \left(\frac{1}{t_1} + \frac{1}{t_2} \right)^{-1} \]
\(C = \text{fetal fragment} \)

\(R = \text{mean diameter} \)

\(D = \text{diameter of coronal} \)

Draw your fossil or coronary

\(\text{random} \rightarrow \)

\([r, r+l] \)

With good thin

If use microscope loaded
\[\mu_e = \text{mean lead time} \]
\[\sigma_e = \text{steel} \]

\[E[D[t, t+1]] = \frac{\mu_d \mu_e}{1 + \frac{1}{\mu_d} + \frac{1}{\mu_e}} \]

\[\text{std dev of } D[t, t+1] = \sqrt{\mu_e \sigma_e^2 + \sigma_e \mu_e^2} \]

\[\mu_d = 80, \quad \sigma_d = 20 \]

Supposen 1: \[\mu_e = 5, \quad \sigma_e = 4 \]

\[\text{std dev of } LTD = 323 \]
a. Further Study Good

b. Reason Enough

N = 0 + 1 Tony

5 feet of LED = 100

\[n = 25 \quad \alpha = 0.05 \]

Suppose 2: