1. Find the present value under continuous compounding of the discrete cash flow \(F_n = A, \)
\(n = h, h+1, \ldots, h+k \) if the nominal interest rate per period is \(r \). Compute the present value for \(A = 25,000, h = 18, k = 4 \), and \(r = 8\% \).

2. Find the present value under continuous compounding of the discrete cash flow \(F_n = Ae^{g(n-h)}, \)
\(n = h, h+1, \ldots, h+k \) if the nominal interest rate per period is \(r \neq g \)? If \(r = g \)? Compute the present value for \(A = 25,000, h = 18, k = 4 \), \(r = 8\% \), and \(g = 6\% \).

3. Find the present value under continuous compounding of the continuous cash flow \(F_t = Ae^{g(t-t_0)} \) over \(t \in [t_0, t_1] \) if the nominal interest rate per period is \(r \neq g \). If \(r = g \)? Compute the present value for \(A = 25,000, t_0 = 18, \) and \(t_1 = 22, r = 8\% \), and \(g = 6\% \).

4. What is the average inflation over two years if \(f_1 = 10\% \), \(f_2 = -10\% \)?

5. The inflation over four consecutive quarters is \(f_1 = 1\% \), \(f_2 = 0.5\% \), \(f_3 = -0.5\% \), \(f_4 = 1\% \). What is the inflation for the entire year?

6. What is the effective real interest rate per year if the nominal monthly interest rate is \(r = 1\% \) and the monthly inflation rate is \(f = 0.5\% \)?