Assignment due 13 October 1999

1. A company has an outstanding bond with face value $F = \$1,000$, bond interest rate $r = 8\%$, with $m = 1$ payment per year, that matures in $N = 8$ years. Suppose the bond is now selling for $P = \$837.50$.

 (a) Find the bond’s yield to maturity i.
 (b) Suppose the company has excess cash, describe an investment the company can make that earns interest rate i.
 (c) Suppose the company is considering raising new capital by issuing new bonds that will mature in eight years. Argue why the company cannot expect to sell these bonds at par value unless the interest rate is at least equal to the yield i found in part (a).
 (d) Suppose the company sells new bonds that mature in eight years, with $F = \$1,000$, $m = 1$, and bond interest rate $r = i$. Suppose further that the bonds sell at par value, and that the unit cost of issuing these new bonds is $S = \$75.50$. Find the yield of of the new bonds taking into account the issuing costs.

2. Recall that under the growth model
 \[i_e = \frac{DPS_1}{P_0} + g, \]
 where DPS_1 is the dividend per share at the end of year 1, and P_0 is the ex-post current price of the stock.

 (a) Find an expression for P_0 in terms of DPS_1, i_e, and g. We will be using this formula to study the sensitivity of the price P_0 to changes in DPS_1, i_e, and g.
 (b) Suppose that your current estimates of DPS_1, and g are $\$1$, and $g = 10\%$ respectively. What is the value of P_0 if $i_e = 15\%$?
 (c) Now assume that you revise your estimates of DPS_1 and g to $\$0.90$, and $g = 8\%$ respectively. At the same time, investors perceive the company to be more risky and demand $i_e = 17\%$. Find the new value of P_0.
 (d) Find the ratio of the P_0’s obtain in parts (a) and (b).

3. Consider a variation of the growth model for valuating common stocks. Under this model, the analyst forecasts dividends per share DPS_n for $n = 1, \ldots, T$, after which he or she assumes that $DPS_k = DPS_T (1 + g)^{k-T}$ for $k = T + 1, \ldots, \infty$. That is, dividends are expected to grow at a constant rate g after period K. Let $S^{-}(i_e)$ be the present value of the dividends up to time T, and let $S^{+}(i_e)$ be the present value of the dividends after time T.

 (a) Find a formula for $S(i_e) = S^{-}(i_e) + S^{+}(i_e)$.
 (b) Let P_0 denote the ex-post price of the stock at time zero. The value i_e that makes $S(i_e) = P_0$ is then the cost of equity capital. Find i_e for $P_0 = \$55$, $DPS_1 = \$2$, $DPS_2 = \$3$, $T = 2$, and $g = 10\%$.

4. Consider a company that uses half debt and half equity as its capital structure. Assume that lenders require a return of $i_b = 10\%$ and equity investors require a return of $i_e = 14\%$, and that the company pays no taxes (so $k_e = i_b$).

 (a) Find the WACC.
 (b) An investment costing $\$1,000$ generates cash flow of $\$700$ a year for two years, so the cash flow is $F_0 = -\$1,000$, $F_1 = F_2 = \$700$. Find the present value of this cash at the WACC.
(c) Find the equity cash flow assuming that debt and equity are kept in the same proportion every year. Thus at any time, debt should be equal to one half the present value of the remaining cash inflows discounted at the WACC.

(d) Find the present value of the equity cash flow at rate i_c.

(e) Compare parts (b) and (d). Is this a coincidence?

5. (Extra Credit Problem) Suppose you can borrow money at $i = 25\%$ per year. Currently you have no cash, but you anticipate that you can earn $j = 5\%$ per year on cash holdings. You want to determine whether or not it is profitable for you to borrow money to invest it in a project with the following cash flow: $F_0 = -$1,000, $F_1 = $1,300, $F_2 = -$1,000, $F_3 = $1,250.

(a) Suppose you borrow $1,000 and invest this money in the project. What is your balance at the end of year 1? Is it positive?

(b) How much do you need to borrow at the end of year 2?

(c) What is your balance at the end of year 3? Is it positive?

(d) Interpret the meaning of the balance at the end of year 3.

(e) Should you borrow to invest in this project?

(e) What is the meaning of a positive balance at the end of year 3 if you are borrowing from yourself at rate $i = 25\%$?