Assignment due 15 September 1999

1. How many years will it take for an investment to grow by a factor of k if the interest rate is $r\%$ compounded (a) annually, (b) semianually, (c) quarterly, (d) monthly, (e) weekly, (f) daily, and (g) continuously?

2. Solve problem 1 for $k = 2$, and $r\% = 12\%$, and for $k = 10$, and $r = 10.5\%$.

5. Parts (a), (b), and (c) of Problem 2.14 in Textbook.

Assignment due 22 September 1999

1. Suppose that B dollars, borrowed at time zero, are to be paid in payments of equal size over N periods and the interest rate per period is i_t. Then $A = B(A/P, i_t, N)$ is the amount to be paid at the end of periods 1, 2, . . . , N. Find A if $B = 100,000$, $i_t = .5\%$, and $N = 360$. A is the monthly payment on a 30 year $100,000 mortgage at a 6\% interest rate compounded monthly.

2. Each payment A can be decomposed into two parts: interest and principal. If B_n is the balance owed at the beginning of period $n = 0, 1, . . . , N + 1$, then $i_t B_n$ is the interest paid in period n, and $D_n = A - i_t B_n$ is the principal paid in period n. Consequently,

$$B_{n+1} = B_n - D_n = B_n(1 + i_t) - A,$$

so the balance B_{n+1} owed at the beginning of period $n + 1$ is the balance B_n owed at the beginning of period n, plus the interest $i_t B_n$ on that balance, minus the payment A. Find B_{17} and D_{32} using the data of Problem 1. Notice that $B_0 = B$.

3. The interest payments $I_n = i_t B_n, n = 1, . . . , N$ are tax deductible, so it is important to compute the present value of interest payments. Develop a formula to compute

$$PV(i) = \sum_{n=1}^{N} I_n (1 + i)^{-n}$$

where i is the interest per period and i need not be equal to i_t. Use this formula to compute $PV(i)$ for the data of Problem 1 when $i = 1\%$, and for $i = i_t = .5\%$.

5. Problem 2.19 in Textbook.