1. (10 pts. 5 min.) What yearly rate do you need to earn to double the after tax purchasing power of your money in 10 years if the annual inflation rate is 3%, and your marginal tax rate is 35%?

2. (15 pts. 10 min.) You earn $7,000 per month and have $50,000 available for the down payment on a house. At the bank you are told that the interest rate on a 30 year mortgage is 8% compounded monthly. What is the largest mortgage that you can secure if the bank will lend you the smallest of (i) 80% of the price of the house and (ii) the present value at 8% of 360 payments, each equal to 30% of your current monthly income.

3. (15 pts. 5 min.) Find the equivalent uniform cash flow \(F_n = A, n = 0, 1, \ldots, N - 1 \), that is equivalent to a present sum \(P \), at interest rate \(i \).

4. (15 pts. 5 min.) A firm is considering an investment with cash flow \(F_0 = -\$1,000, F_1 = \$2,400 \) and \(F_2 = -\$1,430 \). The roots of \(PV(i) = 0 \) are \(i = 10\% \) and \(i = 30\% \). Is the investment mixed? What is the largest rate at which you can borrow money to invest in the project and still break even if over-recovered balances can be invested at \(j = 20\% \).

5. (10 pts. 5 min.) Suppose that you are free to decide the depreciation schedule of a certain amount, say \(P - F \), over the next 5 years. Give the schedule that maximizes the discounted tax savings if the MARR is 10% and the marginal tax rates for the five years are \(t_1 = 30\%, t_2 = t_3 = t_4 = t_5 = 35\% \).

6. (10 pts. 5 min.) (True or False) In a capital budgeting problem in which you can borrow and lend unlimited amounts at rate \(i \), all projects with positive present value (discounted at rate \(i \)) should be selected regardless of the budget constraint(s).

7. (15 pts. 10 min.) Let \(\rho_n, n = 0, \ldots, N \) be the dual variables of a horizon LP model. A new project, say \(J + 1 \), with post-horizon value \(\hat{a}_{J+1} \) (discounted to time \(N \)) and cash flow \(a_n, J+1, n = 0, 1, \ldots, N \) needs to be considered. When can you reject project \(J + 1 \) without re-solving the linear program? Apply the criterion when \(N = 2, J = 2, \hat{a}_3 = 100, a_{03} = -100, a_{13} = -20, a_{23} = 70, \rho_0 = 1.5, \rho_1 = 1.25, \rho_2 = 1. \)