Consider n risky securities with expected returns $\mathbf{R}_1, \ldots, \mathbf{R}_n$. Let \mathbf{r} be the column vector of expected returns. Let \mathbf{R}_f be the risk-free rate, let \mathbf{e} be an $n \times 1$ vector of ones, and $q = \mathbf{r} - \mathbf{R}_f e$ be the vector of expected excess returns. Let V denote the variance-covariance matrix. For any portfolio x_p let $q_p = q^T x_p$ denote the expected excess return of portfolio x_p, let $\sigma^2_p = x_p^T V x_p$ denote the variance of the return of portfolio x_p, and let $S_p = q_p / \sigma_p$ denote the Sharpe ratio of portfolio x_p. Finally, for any two portfolios x_p and x_s, let $\sigma_{ps} = x_p^T V x_s$ denote the covariance between the returns of these portfolios.

1. Let

$$x_e = \frac{V^{-1} e}{e^T V^{-1} e}$$

and

$$x_q = \frac{V^{-1} q}{e^T V^{-1} q}.$$

You should recognize, from your class notes, that x_e is the minimum variance portfolio, and x_q is the portfolio with maximum Sharpe ratio. Assume, in what follows that $q \neq e$.

(a) Find q_e and q_q. Assume in what follows that $q_e > 0$.

(b) The Two-Fund Theorem states that we can express any efficient portfolio of risky securities as a convex combination of two efficient portfolios. Consider the portfolio

$$x_p = \frac{q_q - q_p}{q_q - q_e} x_e + \frac{q_p - q_e}{q_q - q_e} x_q.$$

Verify that the expected excess return of x_p is q_p, and notice that portfolio x_p is indeed a convex combination of portfolios x_e and x_q.

(c) Find σ_{eq}.

(d) Find $\sigma^2_q = \sigma_{e e}$ and $\sigma^2_q = \sigma_{q q}$.

(e) Use parts (c) and (d) to find σ^2_p for portfolio x_p of part (b).

(f) Let $\kappa = \frac{\sigma^2_q - \sigma^2_e}{(q_q - q_e)^2}$. Show that

$$\sigma^2_p = \sigma^2_e + \kappa (q_p - q_e)^2.$$

Notice that this formula gives us the variance of a portfolio with expected excess return q_p.

2. For any portfolio x_p, let $\beta_p = \frac{\sigma_{e p}}{\sigma_{e e}}$. This is the beta of portfolio x_p relative to portfolio x_q.

(a) Show that $\beta_p = \frac{q_p}{q_q}$, and conclude that

$$q_p = \beta_p q_q. \tag{1}$$

Interpret equation (1). What happens if $\beta_p > 1$? What if $\beta_p < 1$?

(b) Show that

$$\beta_e = \frac{\sigma_e}{\sigma_q}.$$

(c) Show that

$$\frac{S_e}{S_q} = \frac{\sigma_e}{\sigma_q} \leq 1.$$
(d) Show that for any portfolio x_p

$$\frac{S_p}{S_q} = \rho_p$$

where

$$\rho_p = \frac{\sigma_{pq}}{\sigma_p \sigma_q}$$

is the correlation coefficient between the returns of portfolios x_p and x_q. Use this to compute ρ_c.

(e) Suppose that $S_q = 0.5$, and that for some portfolio x_p, you know that $\overline{R}_p = 15\%$, and $\sigma_p = 20\%$. Furthermore, you know that $\overline{R}_f = 5\%$. Compute S_p. What is the correlation of portfolios x_p and x_q?

3. Consider the utility function

$$u(x) = r'x - \frac{1}{\tau}x'Vx$$

where $\tau \geq 0$ is a risk tolerance measure, i.e., the larger τ the more risk you are willing to tolerate. The objective is to maximize $u(x)$ subject to $e'x = 1$ and $\underline{x} \leq x \leq \overline{x}$ where \underline{x} and \overline{x} are lower and upper bounds on portfolio holdings.

(a) Show that the marginal utility is given by $r - \frac{2}{\tau}Vx$.

(b) Assume that the initial portfolio satisfies $e'x = 1$ and security i (resp., j) has the largest (resp., smallest) marginal utility among securities whose current allocation is not at their upper (resp., lower) bound. Let $s = e_i - e_j$. Find the value of α, say α^*, that maximizes $u(x + \alpha s)$.

(c) What might prevent you from taking a step of size α^* in the direction of s in part (b)?

(d) What is the optimal step size taking into account your answer to parts (b) and (c)?

(e) We say that asset i is “down” if $x_i = \underline{x}_i$, is “in” if $\underline{x}_i < x_i < \overline{x}_i$ and is “up” if $x_i = \overline{x}_i$. What can you say about the marginal utility of “down”, “in”, and “up” assets at the optimal solution?

(f) What is the optimal portfolio if there are no lower and upper bound on portfolio holdings? Hint: All assets must be “in”.

(g) Show that you can write the solution to part (f) as $x = x_e + \tau z$ where x_e is the minimum variance portfolio and z is a swap vector. Find z and verify that $e'z = 0$.

(h) Find the expected return of portfolio $x_e + \tau z$.

(i) Assume that x_a and x_b are optimal portfolios for $\tau = a$ and $\tau = b$ with $a \neq b$. Assume that x_a and x_b are the portfolios offered by two mutual funds. How might an investor with risk tolerance τ us such funds optimally?

(j) How might an investor use these funds optimally to obtain expected return \overline{R}?