1. (20 points) **Two Fund Theorem and Corner Portfolios** Suppose x_p and x_h are two portfolios in the efficient frontier of risky portfolios. Let r_p and r_h denote respectively the expected returns of portfolios x_p and x_h and let σ^2_p, σ^2_h, and σ_{ph} denote respectively the variance of portfolio x_p, the variance of portfolio x_h and the covariance between portfolios x_p and x_h. Suppose you invest α in portfolio x_p and $(1 - \alpha)$ in portfolio x_h.

(a) Find the expected return of the combined portfolio.

(b) Find the variance of returns of the combined portfolio.

(c) True or False: The two fund theorem states that if there are no bounds on holdings then the combined portfolio will be efficient for all values of α.

(d) True or False: If there are bounds on holdings, but portfolios x_p and x_h have active positions in the same securities (they both have the same ‘in’ variables) then the combined portfolio will be efficient for all values of $\alpha \in [0, 1]$.
2. (15 points) **Constant Correlations** Assume the constant correlation model

\[\sigma_{ij} = \rho \sigma_i \sigma_j \quad \text{for all} \quad i \neq j. \]

We know (problem 2 assignment 3) that security \(i \) is held long in the tangent portfolio if and only if

\[S_i \geq \frac{\rho \sum_{j=1}^{n} S_j}{n \rho + 1 - \rho}, \]

where \(S_i = q_i / \sigma_i \) denotes the Sharpe ratio of security \(i \).

(a) Show that all securities are held long in the tangent portfolio if

\[\min_i S_i \geq \left(\frac{n \rho}{n \rho + 1 - \rho} \right) \overline{S} \]

where \(\overline{S} \) is the average Sharpe-ratio over all the securities.

(b) Recall (problem 2 assignment 2) that \(S_i = \rho_{iq} S_q \) where \(\rho_{iq} \) is the correlation between security \(i \) and the tangency portfolio. Assume that \(\rho_{iq} = \sqrt{\rho} \) for all \(i \). Show that all securities are held long in the tangent portfolio.

(c) Show that security \(i \) is held long in the *minimum variance portfolio* if

\[\frac{1}{\sigma_i} \geq \left(\frac{n \rho}{n \rho + 1 - \rho} \right) \frac{1}{n} \sum_{j=1}^{n} \frac{1}{\sigma_j}. \]

Hint: Use what we known for \(x_q \) to obtain the desired results for \(x_i \).
3. (15 points) **Residual Variance Under CAPM** Recall that under the CAPM
\[
\sigma_i^2 = \beta_i \sigma_m^2 + \tau_i^2.
\]

(a) Show that \(\beta_i = \rho_{im} \frac{\sigma_i}{\sigma_m}\).

(b) Use part (a) to show that \(\beta_i^2 \sigma_m^2 = \rho_{im}^2 \sigma_i^2\).

(c) Use part (b) and the formula for \(\sigma_i^2\) to conclude that \(\tau_i^2 = (1 - \rho_{im}^2) \sigma_i^2\).
4. (25 points) **Active Portfolio Management** Consider the utility function

\[u(x) = q'x - \frac{1}{\tau}x'\Sigma x. \]

We know (problem 3 assignment 2) that \(u(x) \) is maximized at

\[x_e + \tau z \]

where \(x_e \) is the minimum variance portfolio and

\[z = \frac{\epsilon'\Sigma^{-1}q}{2}(x_q - x_e). \]

(a) Find \(\tau^* \) such that

\[x_e + \tau^* z = x_q. \]

Fact: \(\tau^* \) can also be written as

\[\tau^* = 2 \frac{\sigma_q^2}{q \epsilon}. \]

This choice of \(\tau^* \) specifies the utility function to be used in part (d) below.

(b) Suppose that you disagree with the consensus estimate, \(q \), of excess expected returns and assume your forecast of excess expected returns is \(g \). Then the tangency portfolio based on \(g \) is \(x_g = \Sigma^{-1}g / \epsilon'\Sigma^{-1}g \). Argue that

\[g_q = g' x_q = \frac{\epsilon'\Sigma x_g}{\sigma_g^2} g' x_g = \frac{\epsilon'\Sigma x_g}{\sigma_g^2} g. \]

Hint: This is not difficult but you may want to solve the other parts first.
(c) Let $\beta = \frac{V_p}{\sigma_g^2}$. Use part (b) and $\beta_g = \beta' x_g$ to show that

$$g_q = \beta_g \frac{\sigma_g^2}{\sigma_g^2 g_q}.$$

Hint: This is not difficult but you may want to solve the other parts first.

(d) The combination of the risk-free rate and portfolio x_g that maximizes

$$u(x) = g' x - \frac{1}{\tau^*} x' V x$$

invests fraction

$$a = \frac{\tau^* g_g}{2 \sigma_g^2}$$

on portfolio x_g. Let $x_p = ax_g$. Use parts (a), (b), and (c) to show the second equality in

$$\beta_p = a \beta_g = \frac{g_q}{g_q}.$$

Note: Although investing fraction a on x_g is optimal for an investor with risk tolerance τ^*, β_p may be significantly different from $\beta_q = 1$ exposing active portfolio managers to significant residual risk relative to the benchmark x_q. Active managers loath taking the risk of significantly under performing the benchmark (they may get fired).
(e) Assume \(g = q + \alpha \), and that \(\alpha' x_q = 0 \), indicating that the benchmark portfolio is alpha-neutral. Rather than investing in portfolio \(x_q \) let us consider taking active positions in the portfolio that maximizes the ratio of active return \(\alpha' x \) to active risk \(\sqrt{\alpha' V \alpha} \). Following the same logic used to determine the portfolio with the maximum Sharpe ratio it can be shown that the this portfolio is given by

\[
x_{\alpha} = \frac{V^{-\frac{1}{2}} \alpha}{\sqrt{\alpha' V^{-1} \alpha}}.
\]

Show that \(\beta_\alpha = \beta' x_{\alpha} = 0 \).

Note: Portfolios of the form \(a x_q + (1 - a)x_{\alpha} \) have the advantage of being beta-neutral (they have the same beta as the benchmark). This reduces the business risk exposure of the active portfolio manager, but gives rise to a principal-agent problem where the agent (the manager) is not necessarily doing what is best for the principal (the investor).
5. (25 points) **Log Optimal Pricing** Your objective is to allocate current wealth W_0 among n securities to maximize the expected utility $EU(W_1) = E \ln(W_1)$ of wealth W_1 a period later. Let P_i be the known current price of security i, and let F_i be the (possibly) random price of security i at the end of period 1. You want to select X_i the number of shares of security i to maximize

$$E \ln \left(\sum_{i=1}^{n} X_i F_i \right)$$

subject to

$$\sum_{i=1}^{n} X_i P_i = W_0.$$

As usual we proceed by studying the Lagrangian

$$L(X_1, \ldots, X_n, \lambda) = E \ln \left(\sum_{i=1}^{n} X_i F_i \right) - \lambda \left(\sum_{i=1}^{n} X_i P_i - W_0 \right).$$

(a) Show that the first order conditions of optimality are:

$$E \left[\frac{F_i}{W_1^*} \right] - \lambda P_i = 0 \quad \text{for all } i = 1, \ldots, n$$

and

$$\sum_{i=1}^{n} X_i^* P_i = W_0,$$

where

$$W_1^* = \sum_{j=1}^{n} X_j^* F_j.$$

Hint: $\frac{d}{dx} \ln(x) = u'(x)/u(x)$.

(b) Suppose there is a risk-free asset such that $P_j = 1$ and $F_j = 1 + R_f$ with probability one. Use the conditions obtained in part (a) to conclude that

$$\lambda = (1 + R_f)E \left[\frac{1}{W_1^*} \right].$$

(c) Use the fact that

$$\lambda W_0 = \lambda \sum_{i=1}^{n} P_i X_i^*$$

and part (a) to show that $\lambda = \frac{1}{W_0}$ and conclude that

$$E \left[\frac{1}{W_1^*} \right] = \frac{1}{W_0(1 + R_f)}.$$
(d) Use parts (a) and (c) to argue that if \(F_i \) is deterministic then

\[
P_i = \frac{F_i}{1 + R_f}
\]

and interpret this result.

(e) Suppose there are only two securities with \((P_1, P_2) = (1,1) \) and future payoffs \(F_1, F_2 \) having joint distribution \((F_1, F_2) = (1,2) \) with probability 0.5 and \((F_1, F_2) = (1,0.8) \) with probability 0.5. Write down the first order conditions for \(W_0 = 1 \), and verify that \((X_1^*, X_2^*) = (-1, 2) \) is the optimal allocation.