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Abstract

Bäıou and Balinski (2000) characterized the stable admissions polytope using a system of linear

inequalities. The structure of feasible solutions to this system of inequalities —fractional stable

matchings—is the focus of this paper. The main result associates a geometric structure with

each fractional stable matching. This insight appears to be interesting in its own right, and can

be viewed as a generalization of the lattice structure (for integral stable matchings) to fractional

stable matchings. In addition to obtaining simple proofs of many known results, the geometric

structure is used to prove the following two results: first, it is shown that assigning each agent their

“median” choice among all stable partners results in a stable matching, which can be viewed as a

“fair” compromise; second, sufficient conditions are identified under which stable matchings exist

in a problem with externalities, in particular, in the stable matching problem with couples.

1 Introduction

The stable marriage problem and its variants have been studied extensively over the last few decades.

Beginning with the pioneering work of Gale and Shapley [17], this problem has captured the attention

of researchers and practitioners in several disciplines such as computer science, economics, mathemat-

ics, and operations research. The multidisciplinary nature of these problems has led to a thorough

understanding of many aspects such as the design of efficient algorithms to find a stable matching, the

structure of all solutions to a given stable matching instance, etc. In fact, by now there are several

well-developed approaches to the stable matching problems: the combinatorial/algorithmic approach

as summarized in the books of Knuth [25] and Gusfield & Irving [18]; the linear programming ap-

proach initiated by Vande Vate [40], and further developed by Rothblum [37], Roth, Rothblum &

Vande Vate [35], Teo & Sethuraman [39], Bäıou & Balinski [6] and Fleiner [16]; the fixed-point ap-

proach of Subramanian [38] and Feder [12, 13]; an alternative fixed-point approach of Adachi [1]; yet
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another fixed-point approach due to Fleiner [14]; and a graph-theoretic approach due to Balinski &

Ratier [7, 8] and Bäıou & Balinski [5].

In addition to its elegant theory, a particularly appealing feature of the stable matching model is

its applicability. In fact, starting with the work of Roth [29], applications to the National Resident

Matching Program (NRMP) and related labor markets have given rise to interesting questions, result-

ing in a better understanding of the theory. Moreover, insights from this theory have been useful in

the redesign of the stable matching algorithm used by the NRMP [32]. An introduction to the theory

of stable matchings with particular emphasis on applications to labor markets is elegantly summarized

in Roth & Sotomayor [33]; recent work in this direction include Roth & Peranson [31, 32], Cantala [11],

and Klaus & Klijn [22].

This close interaction between applications and theory continues to this day, and is an inspiration

for the questions we study, described next.

Problem description, Motivation, and Results. It has long been recognized that the (natural)

stable matching mechanisms suggested by the “proposal” algorithm of Gale & Shapley are biased, i.e.,

they compute the best stable matching for one side of the market, which incidentally is also the worst

stable matching for the other side of the market. From its inception until 1997, the NRMP used the

hospital-optimal matching mechanism as the basis of its allocation. However, increasing pressure from

student bodies and others1 led to the redesign of the matching mechanism in 1998 [31, 32].

The inequitable treatment of the participants on different sides of the market persists in most

known matching mechanisms. This has motivated the need for the design of fair stable matching

mechanisms, which do not overtly favor one side of the market over the other. Considerable efforts

have been devoted to finding “fair” stable matchings, including the egalitarian solution (minimize the

sum of the ranks of the participants) and the minimum-regret solution (maximize the welfare of the

participant worst-off in the matching) [18]. Nevertheless, these approaches are not satisfactory as they

focus on socially optimal solutions, and ignore the issue of fairness at the individual level.

Motivated by “procedural” fairness considerations, Klaus and Klijn [22] analyze three probabilistic

stable matching mechanisms: employment by lotto, proposed by Aldershof et al. [3]; the random order

mechanism, proposed by Roth and Vande Vate [36] and Ma [26]; and the equitable random order

mechanism, proposed by Romero-Medina [28]. Their analysis shows that the three mechanisms may

give completely different outcomes. They also note that the associated probability distribution for each

of these mechanisms need not be uniform on the set of stable matchings; in fact, not all stable matchings

can arise from these random matching mechanisms. Klaus and Klijn [22] construct an example and

showed that a stable matching that constitutes a perfect compromise between contrary preferences

on both sides of the market may never result from random matching mechanisms. Curiously, the

1This took its clearest form in an exchange in the June 1995 issue of Academic Medicine, followed by position papers

put out by the American Medical Students Association and others. Much of that discussion was oriented around results

concerning “two-sided matching markets,” of which the NRMP is a special case.
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perfect compromise solution identified there is the median solution (where the agents are assigned

to their median stable partners), whose existence had in fact been established earlier in Teo and

Sethuraman [39] for the one-to-one stable matching problem. The existence of such a solution is

not obvious: consider the assignment obtained by pairing each agent with his or her median stable

partner; that such an assignment should be a matching is itself surprising, so it is quite amazing

that the resulting solution is not only a matching, but is also stable! In this paper, we establish the

existence of such a median solution concept for the many-to-one model, thus proposing a new approach

to address the asymmetry often observed in the stable matching problem. This result as well as the

earlier result in [39] can be viewed as a generalization of an observation first made by Conway [18] on

the lattice structure of stable matchings2

Several generalizations and extensions of the stable matching problem have been studied in the

past because of potential applications to NRMP and other labor markets. Of particular interest is

the one in which certain pairs of students (“couples”) would like to be assigned to universities that

are geographically close together. We identify natural conditions on the preferences under which the

couples problem can be handled effectively. Note that in this case, a stable matching solution may not

even exist. Furthermore, Klaus et al. [24] show that in the presence of couples, the current NRMP

algorithm may fail to converge to a stable matching!

The common theme underlying our results is a refined understanding of the structure of “fractional”

stable matchings. Bäıou and Balinski [6] characterize the convex hull of all stable admissions solutions

using linear inequalities in the natural assignment variables. We use the Bäıou-Balinski formulation

to show that the fractional stable admission solutions can be decomposed into convex combination of

(integral) stable admission solutions in a simple way. As a by-product, our approach gives a simple

visual proof of the integrality of the Bäıou-Balinski formulation.

The main results in this paper are derived using a “bin-packing” theorem, obtained by packing

the fractional solutions in suitable chosen order. Interestingly, this may be viewed as a continuous

analogue of the bin-packing theorem used by Fleiner [14] to describe the polytope of the more general

many-to-many stable matchings. However, the approach used by Fleiner depends on a clever fixed

point argument, but the underlying inequalities are obtained through an iterative algorithm. The

description of the polytope is thus implicit. The Bäıou-Balinski formulation is explicit and is thus a

2Since the first version of this manuscript, Fleiner [15] and Klaus & Klijn [23] (independently of each other) have

provided (similar) proofs of the existence of the median stable matching, using the lattice structure. We deduce the

existence of a median solution by working with fractional solutions, whereas they work directly with the set of (integral)

many-to-one stable matchings. Their proof can be viewed as a “discrete” analog of ours. An anonymous referee observed

the following simple proof of existence: construct the natural expanded one-to-one instance obtained by making qu copies

of university u, each copy of u having the same preferences as u itself; To break ties, we allow the students to rank the

copies in an arbitrary but fixed manner. The stable matchings for the expanded one-to-one instance can be shown to be

shown to be in one-one correspondence with the stable matchings for the many-to-one problem. This allows us to use

the results derived in [39], on top of Theorem 7, to derive a simple proof for the existence of the median stable matching

solution.
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more convenient and natural approach for our goal.

Organization of the paper. We introduce the stable admissions polytope in section 2. In section 3,

we provide a geometric structure to the fractional stable admissions solutions. Section 4 uses this

structure to design a fair stable matching mechanism to the many-to-one stable admission problem.

We also describe how the stable matching problem with couples can be addressed using this approach.

We end with a brief summary.

2 The stable admissions model

An instance of the stable admissions problem consists of two sets of agents, the set U = {u1, u2,

. . ., u|U |} of “universities” and the set A = {a1, a2, . . . , a|A|} of “students.” Each agent has a strict,

transitive, preference ordering of the acceptable agents on the other side of the market, i.e., those agents

on the other side of the market that it prefers to remaining unmatched. We assume without loss of

generality that (i) u finds a acceptable if and only if a finds u acceptable, and in this case, we say that

(u, a) is an acceptable pair; and (ii) university u finds at least qu students acceptable, and each student

finds at least one university acceptable. Let Γ ⊆ U × A denote the set of acceptable pairs. Finally,

associated with university u is a positive integer qu representing its quota, the interpretation being

university u is allowed to admit up to qu students. Note that we consider the somewhat restrictive

model of responsive preferences in which the universities have preferences over individual students,

not over groups of students. We refer the reader to Roth & Sotomayor [33, Chapter 6] for interesting

discussions on this issue3.

A matching µ for a stable admissions problem is a subset of Γ such that each university u appears

in at most qu pairs and each student a appears at most once in µ. For convenience, we let µ(a)

represent the university that student a is assigned to, and µ(u) represent the set of students assigned

to university u. We let µ(a) = {a} if student a is unmatched in µ.

A matching µ is stable if there is no incentive for any pair (u, a) to deviate from µ. That is, there

is no pair (u, a) ∈ Γ such that student (i) student a prefers university u to µ(a) and (ii) university

u prefers to add student a to its set of students, possibly at the expense of another (less-preferred)

student. (If a is unmatched in µ, then (i) is trivially satisfied.)

By the classical result of Gale and Shapley [17], every instance of the stable admissions problem

admits a stable matching. The stable admissions problem with qu = 1 for all u ∈ U is called the stable

marriage problem.

3It is conceivable that the results in this paper remain valid for more general and realistic classes of preferences over

groups of students (cf. Abdulkadiroǧlu [4]). The proof techniques needed for the extension, however, will be entirely

different, as our argument relies on a characterization of the convex hull of the set of stable solutions.
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2.1 Definitions and Notation

The symbols >u and >a will indicate the preference orderings of university u and student a respectively;

in particular, a >u b iff university u prefers student a to student b, and a ≥u b iff a >u b or a = b. The

shaft, S(u, a), is defined for every (u, a) ∈ Γ as

S(u, a) = {(u, b) ∈ Γ : b ≥u a}.

The tooth, T (u, a), is defined for every (u, a) ∈ Γ as

T (u, a) = {(v, a) ∈ Γ : v ≥a u}.

For any set of qu students {a, a1, . . . , aqu−1} with ai >u a for all i, the comb C(u, a, a1, . . . , aqu−1) is

the union of the shaft S(u, a), the tooth T (u, a), and the teeth T (u, ai), i = 1, ..., qu − 1. Such a comb

is said to be based at (u, a). Let Cu be the collection of all combs based at (u, a), for some a ∈ A,

and let C = ∪u∈UCu. To any stable admissions solution µ, we can associate a |Γ|-vector xµ (or x, if

the stable matching µ is clear from the context) by letting xµ(u, a) = 1, if (u, a) ∈ µ, and xµ(u, a) = 0

otherwise. For any Γ̂ ⊆ Γ, we let x(Γ̂) =
∑

(u,a)∈Γ̂ x(u, a). A pair (u, a) ∈ Γ blocks µ if (i) u prefers

a to at least one of its assigned students in µ, or if u is assigned fewer than qu students; and (ii) a

prefers u to its assigned university in µ, or if a is unmatched. We can express this condition using the

notions of shaft and tooth defined earlier:

(u, a) blocks µ iff xµ(S(u, a)) ≤ qu − 1 and xµ(T (u, a)) = 0. (1)

The convex hull of the incidence vectors of all stable admissions solutions is the stable admissions

polytope (of that instance), discussed next.

2.2 The stable admissions polytope

Let C(u, a, a1, . . . , aqu−1) be a comb in Cu. Every stable admissions solution x must satisfy the comb

inequality

x(C(u, a, a1, . . . , aqu−1)) ≡ x(S(u, a))+x(T (u, a)\{(u, a)})+
qu−1
∑

i=1

x(T (u, ai)\{(u, ai)}) ≥ qu, (2)

first described by Bäıou and Balinski [6]. Otherwise, x(S(u, a)) < qu, and x(T (u, a′)) = 0 for some

a′ ∈ {a, a1, a2, . . . , aqu−1}. As a′ ≥u a, x(S(u, a′)) ≤ x(S(u, a)) ≤ qu − 1; By (1), the pair (u, a′) is

a blocking pair in x. It is a simple matter to verify that for any unstable matching µ, one can find

a violated comb inequality: let (u, a) be a blocking pair, and â be the student who is ranked quth

in u’s preference list. If u prefers â to a, any comb based on (u, a) that includes the teeth T (u, a ′)
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for all (u, a′) ∈ µ, a′ >u a is violated; otherwise, the (only) comb based on (u, â) is violated. These

considerations show that the integer programming problem (see [6])

∑

u:(u,a)∈Γ

xu,a ≤ 1, ∀a ∈ A, (3)

∑

a::(u,a)∈Γ

xu,a ≤ qu, ∀u ∈ U, (4)

x(C) =
∑

(u,a)∈C

xu,a ≥ qu, ∀C ∈ Cu, u ∈ U. (5)

xu,a ∈ {0, 1}, ∀(u, a) ∈ Γ (6)

is an exact formulation of the stable admissions problem. Let PFSA denote the set of all solutions to

the associated (fractional) linear programming relaxation in which the constraints xu,a ∈ {0, 1} are

replaced by xu,a ≥ 0. Let PSA be the convex hull of all stable matchings to the stable admissions

problem. Clearly, PSA ⊆ PFSA. The main result of Bäıou and Balinski [6] is that, in fact, PSA = PFSA.

In the next section we study the structure of fractional solutions of the stable admissions polytope;

we exploit this structure in the following sections to derive a host of interesting results, including a

simple proof that PSA = PFSA.

3 Geometry of fractional stable admissions

3.1 Decomposition

To motivate our main result, it is useful to think of each university u as owning qu “bins,” each of size

(= height) 1; each bin represents a seat and is indexed by the pair (i, u). Each xua > 0 will be treated

as an “item” to be packed into one of the bins owned by university u. Bins are filled in the usual way

(bottom-to-top); all items are packed in decreasing preference order of the university, following the

procedure described next.

In phase 0, each university u packts its (at most) qu best items, (at most) one in each of its bins.

(If u is fractionally matched with fewer than qu students, then some of its bins will remain unfilled.)

Bins that are completely empty at the end of this phase are excluded from the rest of the packing

process. Phase t (for t = 1, 2, . . .) of the procedure consists of (a) identifying the set, Lt, of bins with

the maximum available space; and (b) assigning one item to each of the bins in Lt. The assignment of

the items to the bins within a phase proceeds in a sequence of steps, indexed by l = 1, 2, . . . , |Lt|. By

our assumption, if bin (i, u) ∈ Lt is considered in step l, university u’s best remaining item is packed

into it. We have not specified the order in which the bins are examined within each phase. As it turns

out, the order does not matter.

At the end of any step of the packing procedure, let Mi,u be the set of students assigned to bin i of

university u; and let ai,u be university u’s least preferred student in Mi,u. In terms of our bin-packing
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analogy, ai,u is the student occupying the top-most position in bin (i, u). Our main result is the

following.

Theorem 1 Consider any x ∈ PFSA. Let Mi,u be the set of students assigned to bin i of university

u at the end of any step of the packing procedure. Let ai,u be university u’s least preferred student in

Mi,u. Then,

(a) For all (i, u) with Mi,u 6= ∅,

x(Mi,u \ ai,u) + x(T (u, ai,u)) = x(Mi,u) + x(T (u, ai,u) \ ai,u) = 1;

(b) If item (v, a) is packed but (u, a) is not, then a prefers u to v.

(c) At the end of any phase, the ai,u are all distinct. In particular, for each a ∈ A with
∑

v∈U xva > 0,

there is some (i, u) such that a ≡ ai,u.

Theorem 1(a) plays a similar role to the stability constraints in the one-to-one stable marriage problem.

Interestingly, the packing procedure decomposes the qu positions for university u implicitly into qu

copies, each of quota 1, and identifies the set of students used to fill the ith position in university u.

This essentially reduces the stable admission problem to a one-to-one stable-marriage like problem.

Note that the universities pack the students into the bins in decreasing preference order, but Theorem

1(b) states that the packing process assigns universities to students in increasing preference order.

Theorem 1(c) states that at the end of each phase, the items at the top of each bin forms a valid

assignment.

Before proving the theorem, it will be useful to consider an illustrative example.

3.2 Example

Consider the following example, adapted from Section 1.6.5 of Gusfield and Irving [18]. There are 5

universities and 11 students, with the preference lists and the quotas given in Tables 1 and 2. There

are a total of 7 stable matchings for this particular problem instance, and these are listed in Table 3.

Let xMi
be the (integral) stable matching corresponding to Mi in the stable admission polytope,

and let x = (
∑7

i=1 xMi
)/7 be a fractional solution in the stable matching polytope. We illustrate the

packing procedure for this solution x.

Phase 0. Initially all the bins are empty, so L1 consists of all the bins; each of these bins will have an

item in it at the end of the first phase. Recall that items are packed by the universities in decreasing

preference order.

Consider university u1, which owns four bins. Its four best students in x are a9, a11, a5, and a4,

with the corresponding “values” being 3/7, 1/7, 1, and 2/7 respectively. Thus, the four bins owned
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a1 u3 u1 u5 u4

a2 u1 u3 u4 u2 u5

a3 u4 u5 u3 u1 u2

a4 u3 u4 u1 u5

a5 u1 u4 u2

a6 u4 u3 u2 u1 u5

a7 u2 u5 u1 u3

a8 u1 u3 u2 u5 u4

a9 u4 u1 u5

a10 u3 u1 u5 u2 u4

a11 u5 u4 u1 u3 u2

Table 1: Preference lists for the students

capacity

(4) u1 a3 a7 a9 a11 a5 a4 a10 a8 a6 a1 a2

(1) u2 a5 a7 a10 a6 a8 a2 a3 a11

(3) u3 a11 a6 a8 a3 a2 a4 a7 a1 a10

(2) u4 a10 a1 a2 a11 a4 a9 a5 a3 a6 a8

(1) u5 a2 a4 a10 a7 a6 a1 a8 a3 a11 a9

Table 2: Quotas and preference lists for the universities

Matching a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

M1 u3 u1 u4 u3 u1 u3 u2 u1 u4 u1 u5

M2 u1 u3 u4 u3 u1 u3 u2 u1 u4 u1 u5

M3 u3 u1 u5 u3 u1 u3 u2 u1 u4 u1 u4

M4 u1 u3 u5 u3 u1 u3 u2 u1 u4 u1 u4

M5 u5 u3 u3 u4 u1 u3 u2 u1 u1 u1 u4

M6 u5 u4 u3 u1 u1 u3 u2 u3 u1 u1 u4

M7 u4 u4 u3 u1 u1 u3 u2 u3 u1 u5 u1

Table 3: List of all Stable Matchings
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Figure 1: Bins at the end of Phase 0

by u1 contain these four items as shown in Figure 1. For convenience, we may also assume that each

student also owns a bin in which items are packed: whenever item (u, a) is packed into bin (i, u), we

may also assume that item (u, a) is packed into the bin owned by student a. Thus, students a9, a11,

a5, and a4 each pack an item into their bins. In terms of this picture, it is easy to interpret the three

statements of Theorem 1: part (b) simply says that this packing, when viewed from the point of view

of the students, proceeds in increasing preference order; given this, part (a) says that the occupied

space in any bin with student a on top plus the available space in student a’s bin is exactly 1; and

part (c) says that at the end of any phase, the students on top of the bins owned by the universities

are all distinct. All of these properties are easily verified from Figure 1, which shows the state of the

bins at the end of phase 0.

Phase 1. The set L2 will consist of all the bins that have the maximum available space; from

Figure 1, it is clear that L2 consists of bin 2 of u1, bin 1 of u4 and the bin owned by u5. During

phase 1, each of these three bins will have an item assigned to it. In fact, the top students in these

bins will rearrange themselves, so that part (c) continues to hold. University u1 will pack its most

preferred remaining items, which happens to be student a10 (value 6/7); similarly, universities u4 and

u5 will pack respectively items involving students a11 (value 4/7) and a1 (value 2/7) respectively. The

state of the bins at the end of phase 1 is shown in Figure 2; it is easy to verify that parts (a)-(c) of

Theorem 1 continue to hold.

End of packing process. By repeating the above packing procedure, the final state of the bins

(after Phase 4) is shown in Figure 3.
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3.3 Proof of Theorem 1

Let x ∈ PFSA. We say that a particular university-student pair (u, a) is matched (under x) if xua > 0;

we say that they are fractionally matched, if 0 < xua < 1.

It will be useful to understand the conditions under which a particular university-student pair is

fractionally matched.

Lemma 2 Suppose (k, l) is fractionally matched under x, i.e. xkl ∈ (0, 1). Then,

∑

j∈A

xkj = qk, and
∑

i∈U

xil = 1.

Proof. The necessary ingredients to prove this already appear in Bäıou and Balinski [6]. Let Bu(x)

be u’s qu most preferred students among the students it is matched to under x; if u is matched with

fewer than qu students, we let Bu(x) be the set of all students that u is matched to. Let Au(x) be the

set of all students for whom u is the most preferred university they are matched to under x.

Two simple facts will be useful in the proof:

x(T (u, a)) = 1, ∀a ∈ Bu(x), (7)

and

x(T (u, a)) = xua, ∀a ∈ Au(x). (8)

The latter is immediate by definition. To see the former, consider the comb C involving u and the

set of students Bu(x), supplemented, if necessary, with additional students not matched to u to get

qu “teeth.” Let a1, a2, . . . , aqu be these qu students. By definition,

x(C) =
qu
∑

i=1

x(T (u, ai)). (9)

The LHS of Eq. (9) is at least qu by the comb inequality; whereas the RHS of Eq. (9) is at most qu

by aggregating the appropriate student assignment constraints. Therefore,

x(T (u, ai)) = 1. (10)

In particular, x(T (u, a)) = 1 for each a ∈ Bu(x).

We prove next that |Au(x)| = |Bu(x)| for all u ∈ U : Clearly Bu(x)∩Bv(x) = ∅ for u 6= v, otherwise

there will be some a ∈ Bu(x) ∩Bv(x) with x(T (u, a)) = 1 and x(T (v, a)) = 1. Hence

∑

u∈U

|Au(x)| ≥
∑

u∈U

|Bu(x)|.

Therefore, to prove |Au(x)| = |Bu(x)|, it is enough to show that |Au(x)| ≤ |Bu(x)| for all u ∈ U .
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If |Bu(x)| < qu, then Bu(x) contains all the students who are matched to u. It is thus clear that

|Au(x)| ≤ |Bu(x)|. Let |Bu(x)| = qu, and suppose |Au(x)| > |Bu(x)|. Consider the comb C with the

teeth chosen from u’s qu best students from Au(x). By Eq. (8), all the positive x components of comb

C involve university u; moreover, since some member of Au(x) is excluded from comb C, x(C) < qu

by the university assignment constraint, which violates the comb-inequality for comb C. Therefore

|Au(x)| ≤ |Bu(x)|.

Based on the preceding discussion, |Au(x)| = |Bu(x)| for each u ∈ U . The Lemma now follows

from the following reasoning:

(a) If |Bu(x)| < qu, then |Au(x)| = |Bu(x)| and Eqs. (7) and (8) imply xua = 1 for all a ∈ Bu(x).

So any u with |Bu(x)| < qu cannot have any fractionally matched students under x.

(b) Any fractionally-matched student a belongs to some Au(x). Since the Au(x) are all disjoint and

the Bv(x) are all disjoint, and since
∑

u |Au(x)| =
∑

v |Bv(x)|, a must also appear in Bv(x) for

some v ∈ V . By Eq. (7), x(T (v, a)) = 1; in particular,
∑

i∈U xia = 1.

(c) If xua ∈ (0, 1), then |Bu(x)| = |Au(x)| = qu. The comb-inequality constraint on the comb

C(u,Au(x)) and the university assignment constraint for u show that u must meet its quota

exactly.

Lemma 2 ensures that any university u with unfilled bins is only integrally matched to its students;

In our packing procedure, such universities and the students they are matched to pack their items only

at phase 0, after which they play no role in the packing process. The residual instance now consists

of all the universities that fill their quota, and the students they are matched with.

In the rest of this section, we can thus assume that every agent is “completely” matched: that is,
∑

u∈U xua = 1 for each a ∈ A, and
∑

a∈A xua = qu for each u ∈ U .

Proof of Main Theorem: Our proof proceeds by induction on t. First, consider the case t = 0.

Since we start with a set of empty bins, all of the bins will be in L0; at the end of the phase, it is clear

that university u will have (fractionally) packed its qu most preferred items, one in each of its bins.

Let Bu(x) be university u’s qu most preferred students it is matched to under x.

Part (a) of the theorem now follows from observing that Mi,u = ai,u. Part (b) is true because

x(T (u, ai,u)) = 1, and xu,ai,u
> 0 for all (i, u), and preferences are strict. Moreover, if ai,u = aj,v = a,

then either x(T (u, a)) < 1 or x(T (v, a)) < 1, depending on whether v >a u or u >a v; so, the ai,u

are all distinct at the end of phase 0, establishing the first statement of part (c). Since the number of

students is the same as the total number of bins, the second statement of part (c) follows.

Suppose the theorem is true up to the end of phase t. We now establish the theorem for phase

t + 1. Let α be the maximum space available in any bin during phase t + 1. Consider any item (u, a)
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that has not yet been packed. From part (c), a ≡ aj,v for some bin (j, v); from parts (a) and (b), we

have

x(T (u, a)) ≤ x(T (v, a)) − xv,a = 1− x(Mj,v) ≤ α, (11)

where the last inequality follows because each bin has at most α available space. Moreover,

x(T (u, a)) = α implies (j, v) ∈ Lt+1. (12)

Suppose (i, u) ∈ Lt+1 is chosen in any step of phase t + 1, and item xua is to be packed into bin

(i, u) next. Consider the comb

Cu,a ≡ C(u, a, a1,u, a2,u, . . . , ai−1,u, ai+1,u, . . . , aqu,u),

which contains

• the teeth T (u, a), T (u, aj,u) for j = 1, 2, . . . , i− 1, i + 1, . . . qu; and

• the shaft S(u, a) = {(u, a)} ∪M1,u ∪M2,u ∪ . . . ∪Mqu,u.

By the comb inequality, we have

qu ≤ x(Cu,a) =
∑

j:j 6=i

x(T (u, aj,u)) + x(T (u, a)) + x(Mi,u) +
∑

j:j 6=i

x(Mj,u \ {aj,u}).

By induction, for j 6= i,

x(T (u, aj,u)) + x(Mj,u \ {aj,u}) = 1,

which reduces the comb inequality to

x(T (u, a)) + x(Mi,u) ≥ 1. (13)

Since (i, u) ∈ Lt+1 and has not been packed earlier, x(Mi,u) = 1−α; from Eq. (11), x(T (u, a)) ≤ α.

So the (reduced) comb inequality (13) must be satisfied as an equality. We next pack (u, a) in bin

(i, u), and update Mi,u and ai,u, and observe that the reduced comb equality can be written as

x(T (u, ai,u)) + x(Mi,u \ ai,u) = 1,

establishing part (a). Part (b) follows since if item (u, a) is not packed but item (v, a) is packed, then

from Eq. (11),

x(T (u, a)) ≤ α ≤ x(T (v, a)).

Hence a prefers u to v.

Observe that x(T (u, a)) = α for every item (u, a) packed in phase t + 1, and these are the least

preferred items in their respective bins; this implies the least preferred items in the newly packed bins

are all distinct. From (12), if a bin (i, u) was not selected in phase t + 1, its least preferred student

could not have been part of any item packed in phase t + 1. So the {ai,u} remain distinct at the end

of phase t + 1.
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3.4 Consequences

We begin this section by noting that the “rural hospitals” theorem is an easy consequence of Lemma 2.

Theorem 3 The set of universities that fill their position is the same in all stable matchings, as is

the set of students assigned to some university; moreover, any university that does not fill its quota is

assigned the same set of students in every stable matching.

Proof. Let x be the average of all the stable matchings to the given stable admissions problem.

Clearly, x ∈ PFSA. Let u be a university that does not fill its quota in some stable matching. Then,
∑

a∈A xua < qu. By case (c) in the proof of Lemma 2, |Bu(x)| < qu, for otherwise, u must meet its

quota exactly. Applying Lemma 2, part (a) to x, we see that xua = 1 for all a ∈ Bu(x), so u must be

matched to the same set of students in all stable matchings. Case (b) of Lemma 2 shows that the set

of students assigned to a university is the same in all stable matchings.

Let x ∈ PFSA. Because our goal is to highlight the structure of fractional solutions in PFSA, we

ignore universities that do not fill their quotas. As the proof of Lemma 2 and Theorem 3 show, such

universities are assigned to the same set of students in every x ∈ PFSA, and so can be safely ignored.

For any α ∈ [0, 1), let

Iα
u (x) = {a : 1− x(T (u, a)) ≤ α < 1− x(T (u, a)) + xua} (14)

and Iα(x) = ∪u∈UIα
u (x). By part (a) of Theorem 1, Iα

u (x) consists of those students whose assignment

to their “bin” in university u changes the occupied space in that bin from at most α to some quantity

strictly greater than α4 . Since each university fills all its bins, the following corollary of Theorem 1

is immediate.

Corollary 1 For any x ∈ PFSA and any α ∈ [0, 1), |Iα
u (x)| = qu.

Remark. Bäıou and Balinski [6] observed that I 0
u(x) = I1−

u (x) = qu for any stable admissions solution

x; Corollary 1 generalizes these observations.

Roth, Rothblum and Vande Vate [35] proved the following result for the stable marriage polytope

using a primal-dual argument.

Lemma 4 Let qu = 1 for all u ∈ U . For any x ∈ PFSA, xu,a > 0 implies

xu,a + x(S(u, a) \ (u, a)) + x(T (u, a) \ (u, a)) = 1.

This result was crucial in proving that PFSA is exactly the convex hull of all stable marriage

solutions [35, 39]. The following result generalizes Lemma 4 to the stable admissions setting; its proof

is implicit in the proof of Theorem 1 and is therefore omitted.

4Geometrically, if we layout the items using our bin packing approach, to obtain a figure resembling Figure 3, then

Iα(x) consists of those items in the layout which intersect with a horizontal line at y = α.
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Lemma 5 For any x ∈ PFSA, and any α ∈ [0, 1), let Cα,u denote the comb obtained by using the qu

students in Iα
u (x) as the bases for the teeth in the comb. Then, x(Cα,u) = qu.

We next show how the main result of Bäıou and Balinski [6] follows as an immediate consequence

of Theorem 1.

Theorem 6 The inequalities (3)-(6) determine the stable admissions polytope PSA.

Proof. Given any x ∈ PFSA, generate a number α ∈ (0, 1] uniformly at random; for each university

u, assign the qu students in Iα
u (x) to university u to get an assignment µα. By part (c) of Theorem 1,

no student is assigned to two different universities under µα, so that µα is a matching. Let v = µα(b).

We show next that µα is stable.

Consider any student b whom u strictly prefers to at least one of its assigned students (say a)

under µα. It is possible that x(u, b) = 0. Consider the set S∗ = {c : x(u, c) > 0, c <u b}, and let b′ be

the most preferred student in S∗, according to u. Since a ∈ S∗, we have a ≤u b′.

The item (u, b′) would have been packed not later than item (u, a) by the packing procedure;

moreover, at the beginning of the phase, say t, in which (u, b′) was packed, the space available in the

bin occupied by student b′ at university u, say 1 − β, must not be smaller than 1 − α, otherwise u

cannot prefer b′ to a.

If item (u, b′) is packed in phase t > 0, then by Theorem 1, we can always pick a comb C based at

(u, b′) which is tight: x(C) = qu. C can be obtained by choosing the least preferred student in each

bin, at the moment when item (u, b′) is packed. We can form a new comb C ′ by shifting the base from

(u, b′) to (u, b). Note that x(S(u, b)) = x(S(u, b′)) − x(u, b′). Using the comb inequality x(C ′) ≥ qu,

and the fact that x(C) = qu, we have

x(T (u, b)) ≥ x(T (u, b′)) = 1− β ≥ 1− α.

Hence v ≥b u.

If item (u, b′) is packed in phase t = 0, then b′ ∈ Bu(x), i.e., (u, b′) is one of the qu most preferred

items according to u. Note that the comb C formed by the students in Bu(x) is tight: x(C) = qu. We

can replace the most preferred student in Bu(x) by b, to obtain a new comb C ′, with x(C ′) ≥ qu. Since

x(C ′) is simply the sum of the length of the qu teeth, we have x(T (u, b)) ≥ 1. Hence again v ≥b u.

The matching µα obtained is thus stable. By construction, the expected value of µα(u, a) is xu,a.

Hence any x ∈ PFSA can be written as E(µα), i.e., convex combination of stable matching solutions.

Integrality of the polytope is now immediate [39].

4 Applications

In the rest of this section, we use the geometry of fractional solutions of the stable admissions problem

to address two natural applications: the design of a fair stable assignment mechanism, and the problem

of assigning couples to “universities.”
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4.1 Fairness

It has long been recognized in the economics literature that there are subtle differences between

“procedurally-fair” and “outcome-fair” solution concepts (cf. Bolton et al. [9]). A procedurally-fair

mechanism is useful in instances when the fairness of the process is viewed as more important than the

fairness of the outcome. People feel affirmed if the adopted procedures treat them with respect and

dignity, making it easier to accept outcomes, even the ones they do not like. However, in a matching

market like the NRMP, it is not clear whether a procedurally-fair mechanism will be acceptable to all

participants.

On the other hand, studies in which subjects divide resources between themselves and others have

shown that most people preferred equality to either advantageous or disadvantageous inequality, see,

for instance, Camerer and Thaler [10]. An important debate in this literature concerns which outcome-

fair solution concept is most appropriate for a particular situation, or whether any fair solution concept

exists at all. The existence of a median stable matching in the one-to-one case, suggests that outcome-

fair resolution of the stable marriage problem may be possible. We will not attempt to formally

justify the median stable marriage solution as an outcome-fair solution, but we note that in many

experimental tests of bargaining solution concepts in the ultimatum game, Guth et al. [19]) show

that “equal splitting” is the dominant behavior observed amongst the participants. Interestingly, the

median solution proposed in this section shares many characteristics with the equal-split option in

the bargaining problem—with a proper geometric layout of all the stable marriage solutions along a

line, the median solution is obtained by splitting at the middle, with universities (men) and students

(women) at opposite ends. A formal description now follows.

Suppose there are exactly N stable matchings in an instance of the stable admissions problem,

and let x1, . . . , xN be the stable solutions. For convenience, we assume N is odd. Is there a way to

choose a solution which treats all the participants in a fair manner? The starting point for the results

described in this subsection is the following result due to Roth and Sotomayor [34] (see also Gusfield

and Irving [18, Theorem 1.6.4, pp. 46] or Roth and Sotomayor [33, Theorem 5.27, pp. 161]). We

include a simple proof here based on Theorem 1.

Theorem 7 Given 2 stable matchings µ and µ′, suppose university u is assigned non-identical sets of

students in µ and µ′. If u prefers its least preferred student in µ \ µ′ to its least preferred student in

µ′ \ µ, then, u prefers all the students in µ to any student in µ′ \ µ.

Proof. Let xµ and xµ′ denote the (integral) stable admission solutions corresponding to the matchings

µ and µ′ respectively. Let x = (xµ + xµ′)/2, and consider the packing procedure on the fractional

solution x. Note that if student a is assigned to u in µ∩µ′, then xua = 1. Hence (u, a) must be among

the qu most preferred items packed at the initial phase, otherwise condition (a) of Theorem 1 will be

violated.
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Let s and s′ be university u’s least preferred students in µ\µ′ and µ′\µ respectively. By assumption,

u prefers s to s′. Suppose u prefers a student in µ′ \ µ to some student in µ. Then, s cannot be one

of u’s qu most preferred students. From condition (c) of Theorem 1, the student s must be among the

qu′ most preferred students of some university u′ in the matching µ′. Since x(T (u′, s)) = 1, s prefers

u to u′. Now, since u prefers s to s′, (u, s) forms a blocking pair for the stable assignment µ′. This is

a contradiction.

The key conclusion emerging from Theorem 7 is that any university either prefers all of its µ-

partners to any of its µ′-partners who are not also µ-partners, or prefers all of its µ′-partners to any

of its µ-partners who are not also µ′-partners. In the former case, we say that university u prefers µ

to µ′, and in the latter, that it prefers µ′ to µ. In particular, the worst student for university u in

its different stable assignments should all be different. Thus, each university can rank order all of its

stable assignments in decreasing order of its worst student.

Consider the set of student assignments university u receives under all stable solutions x1, . . . , xN .

By Theorem 7, u can rearrange these solutions such that its worst student in each of the solutions

appears in decreasing preference order, that is xi appears before xj if u prefers its worst student in xi

to its worst student in xj. This induces a natural linear order on the set of solutions assigned to each

university. We can thus define the median choice of each university: it is simply the median solution

in the linear ordering of all stable solutions by the university5. Similarly, each student could rank

order x1, x2, . . . , xN in decreasing preference order based on the university she is assigned to. In this

case, her median choice will be the median university in this linear ordering. A natural question then

is: if each university and student is given their median choice, do we get a stable matching? In fact, it

is not even obvious that assigning the median choice to each agent gives a valid assignment: there is

no reason why the same student should not be the median choice of two different universities, or why

two students should not have the same university as their median choice. Remarkably, the median

choices of each agent results in a stable matching!

In the rest of this section, we assume that the given instance satisfies the conditions that all

universities filled their quota, and all students are matched to a university. This is without loss of

generality: universities that do not fill their quotas have only one set of students in all stable matchings,

so such universities and the students they are matched to are not particularly interesting in studying

fairness issues in stable matchings. Let

xf (u, a) =

∑N
j=1 xj(u, a)

N
,

where x1, . . . , xN are the set of all stable matchings to the given instance of the stable admissions

problem.

5If N is even, the median choice is not unique, but consists of two candidate solutions. Fortunately, the argument in

this section can be easily modified to handle this case.
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Theorem 8 Let M f
i,u be the set of students assigned to bin i of university u by the packing procedure

applied to the fractional stable matching xf . Then, each stable matching contains exactly one student

from each M f
i,u.

Proof. The result is obviously true for all universities that do not fill their quota: such universities

are matched to the same set of students in all stable matchings, and hence in xf as well. Let u be a

university that admits qu students in some (and hence all) stable matching. Clearly,
∑

a:a∈A xf (u, a) =

qu. Let µ1 >u µ2 >u . . . >u µK be the distinct sets of students that are assigned to university u in

some stable matching. Note that |µi| = qu for all i.

We examine how the packing procedure packs u’s bins starting with the fractional solution xf . As

before, the proof is by induction on the number of phases, the only change being we focus only on

those phases that pack at least one of u’s bins. (Our numbering of the phases also reflects this: phase

i is the ith time university u’s bins are packed by the packing procedure.) By Theorem 7, all the items

associated with µ1 are packed in phase 1, and each such item occupies a distinct bin. So the result is

true at the end of phase 1. Which items are packed during phase 2? Clearly, u’s most preferred items

that have not yet been packed are those in µ2 \µ1, and these will be packed in phase 2. It is also clear

that the bins into which these items are packed each contain one item of µ1 \ µ2: the remaining bins

must contain items that are in both µ1 and µ2, so their values in xf will be strictly larger than the

values of the items in µ1 \ µ2. Thus, at the end of phase 2, the items of µ2 \ µ1 will each occupy a bin

that now contain the items in µ1 \ µ2; note that the stable assignments µ1 and µ2 contain exactly one

item from each bin.

In phase 3, the items in S = µ3 \ (µ1 ∪ µ2) will be packed. We claim that, in fact, S = µ3 \ µ2.

For otherwise, there must be a student a such that a ∈ µ1, a ∈ µ3, but a 6∈ µ2. Since u prefers µ1 to

µ2, u must prefer a to any student in a′ ∈ µ2 \ µ1; and since u prefers µ2 to µ3, u must prefer a′ to

any student in µ3 \ µ2. In particular, u must prefer a′ to a, which is a contradiction. The bins with

maximum available space are clearly those containing the items in T = µ2 \µ3. Because S and T have

the same cardinality, and because each element of T already appears in a distinct bin, each item in

S is assigned, by the packing procedure, to a bin containing an item of T . Now, each of µ1, µ2 and

µ3 contains exactly one item from each bin. (This is because only the items in S are newly assigned,

none of which can be present in µ1 ∪ µ2.)

We are now ready to do an inductive proof: at phase i, let S = µi \ µi−1, T = µi−1 \ µi; clearly,

S = µi \ {µ1 ∪ µ2 ∪ . . . ∪ µi−1}.

Also, S and T are non-empty, have the same cardinality; all items in T are in distinct bins, so the

items in S are assigned to distinct bins by the packing procedure, each containing a distinct item in T .

Moreover, we have now ensured that the stable assignments µ1, µ2, . . . µi all contain exactly one item

from each bin; this is because only the items in S are newly assigned, none of which can be present in

any of the assignments µ1, µ2, . . . , µi−1.
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Remarks: Theorem 8 has also been derived independently by Fleiner [16] using somewhat similar

methods. In the proof of Theorem 1, we showed how all the fractional partners of any university u

in a solution x ∈ PFSA can be partitioned into qu sets. Theorem 8 shows something stronger: that

one can in fact construct a single partition of the students that works for all (fractional) solutions.

Moreover, we can construct an associated stable marriage instance whose stable solutions will be in

a one-to-one correspondence with the set of all stable admissions solutions of the original instance.

The advantage of such a construction is clear: all of the results on the stable admissions problem can

thus be reduced to that of the stable marriage problem by appealing to this transformation. Indeed,

given this decomposition, it is a simple matter to find a compact linear formulation to express the

convex hull of all stable matchings. The disadvantage is that constructing such a decomposition entails

knowing the entire set of stable assignments for each university u.

The geometric structure of xf is extremely useful, as we can now immediately read off many

possible stable admission solutions from the layout.

• University-optimal solution: Match u to the qu students in I0+(u). The solution obtained

is university-optimal (best qu possible students are assigned) but each student is assigned her

worst possible stable university. In the example in Figure 3, this corresponds to choosing all

items touching the bottom of every bins in the figure.

• Student-optimal solution: Match u to the qu students in I1(u). The students are assigned to

their best possible stable university (i.e., student-optimal), and the universities are assigned to

their worst possible set of students under any stable solution. In the example in Figure 3, this

corresponds to choosing all items touching the top of every bin in the figure.

• Median solution: If N is odd, we can define the median stable admission solution as follows:

Match u to the qu students in I0.5(u). The students are thus matched to their median stable

university (counting multiplicity). By the packing procedure of section 3.1 and Theorem 8,

it is easy to see that the assignment corresponding to I0.5(u) is exactly the assignment where

each university is matched with its median set of students. If N is even, using the packing

decomposition it is straightforward to get a similar result for markets with an even number of

players: just set α = 0.5+ ε or α = 0.5− ε, and each agent will be assigned to one of two median

sets of partners. In the example in Figure 3, this corresponds to choosing all items crossed by

the line α = 0.5, i.e., occupying the halfway mark of every bin. The matching obtained: u1 ←

{1, 5, 8, 10}, u2 ← {7}; u3 ← {2, 4, 6}; u4 ← {9, 11}; u5 ← {3}. This corresponds to the solution

M4, which is stable. M4 is thus the median stable solution.

This discussion can be summarized into the following result:

Theorem 9 There exists a stable solution to the many-to-one stable matching problem with the fol-

lowing properties:
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• Assign each student to the median university, among all universities assigned to in the stable

solutions;

• Assign each university its median set of students, among all stable admission solutions, and

where the set of students assigned are ranked ordered based on the ranking of the worst assigned

student in each solution.

Proof: Let µ1 >u µ2 >u . . . >u µK be the distinct sets of students that are assigned to university u

in some stable matching. Note that WLOG, we may assume that |µi| = qu for all i. Let ki be the

number of times µi appears in all the stable solution. Hence
∑K

i=1 ki = N . Suppose N is odd. The

median solution is µk∗ where

k∗ = argmin

{

j :
j

∑

i=1

ki ≥
N + 1

2
,
j−1
∑

i=1

ki ≤
N − 1

2

}

.

As in the proof to Theorem 7, we examine the packing procedure by focusing on the phases where bins

associated with u are being packed. We have proven in Theorem 7 that in phase i, items in µi \ µi−1

are being packed into the bins. In the beginning of phase k∗, the maximum available space in the bins

are greater than 0.5, but the addition of the items in µk∗ \ µk∗−1 decreases the maximum available

space on all bins to less than 0.5. Hence the set of students assigned to u, under I0.5(u), are exactly

the students corresponding to the items in µk∗ \ µk∗−1, and µk∗ ∩ µk∗−1. Hence the qu students in

I0.5(u) are exactly the students in µk∗.

The existence of a matching mechanism that assigns all participants their median choice is indeed

surprising. One of the limitations of this mechanism though is that all the stable matching solutions

must be enumerated before a median solution can be constructed. This can theoretically be obtained

by enumerating all the corner points of the polytope given by the LP characterization of the stable

admission polytope or by combinatorial methods. Finding an efficient method to compute the median

solution remains a challenging open problem.

4.2 Admissions with couples

Finally, we consider the stable admissions problem with couples. This is an extension of the stable

admission problem to incorporate externalities, where the preferences of the students may depend on

the matching produced. In particular, where the stable admission problem includes pairs of couples,

whose preferences (ranking of the universities) depends also on where their spouses are assigned to

under the matching.

Consider for instance the example discussed in 3.2. Suppose further that a4 and a10 are a “couple.”

Although both prefer university u3 to the rest of the hospitals, their preferences may change if one

of them is not assigned to u3. In particular, if university u3 is very far from u1, whereas u4 and u5

are nearby, then a4 and a10, who prefer to stay together, may rank the assignment {(u5, a4), (u4, a10)}
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above the assignment {(u3, a4), (u1, a10)}, although individually they preferred the assigned universities

in the latter assignment.

To handle the externalities introduced by the preferences of the couples, one common approach is

to allow the couples to submit joint rankings of the pairs of universities they would like to be assigned

to (cf. [33] and the references therein). We can define an analogous notion of stability in this problem.

Unfortunately, many of the appealing results for the stable marriage problem do not carry over to the

case where couples express preferences over pairs of positions. For example [2]:

(i) There are instances of the couples problem that do not have a stable matching;

(ii) Even if an instance of the couples problem has a stable matching, it may not have a university

optimal or student optimal stable matching;

(iii) In an instance of the couples problem in which the preference lists are not complete, there may

be stable matchings which leave different numbers of positions unfilled.

Klaus and Klijn [21] shows recently that stable solutions exist for the couple problem whenever

the couples have “weakly responsive” preferences6. However, the definition of “weakly responsive”

preferences essentially ensures that the couple preferences can be captured using suitably defined

individual preferences, thus reducing the problem to the classical stable admissions problem without

couples. This guarantees the existence of stable matching. Unfortunately, these assumptions on the

preference profiles, which guarantee existence of a stable solution, may violate the most important

consideration—that couples wish to be assigned to universities in close geographical proximity. Klaus

and Klijn [21] further show that any slight deviation from the weakly responsiveness assumption easily

results in instances where the stable admission problem will have no feasible solution. Interestingly,

their example basically allow a couple to reverse their ranking, taking into account the geographical

considerations. This suggests that any preference profiles submitted by couples that take into account

the geographical considerations are likely to lead to instances where stable matching does not exist.

Cantala [11] also considers a class of realistic preferences in which (i) the “universities” are par-

titioned into regions; (ii) each couple first decides on a ranking of the regions (on which each couple

agrees), and then ranks the universities within each region; their individual rankings of the universities

within a given region may be different; and (iii) their preferences are otherwise independent, and each

of them only cares about the university they are assigned to. Even under such severe restrictions on

the class of preferences, Cantala [11] shows that a stable matching may not exist.

The literature so far seems to indicate that the stable admissions problem with couples may not

have feasible solutions if realistic preferences of the couples (based on geographical proximity of the

joint assignment) are to be modeled. In the rest of this section, we propose a different approach to

handle this problem: Instead of allowing the couples to submit joint ranking of the universities, we

6cf. B. Klaus and F. Klijn (2005): Corrigendum: Stable Matchings and Preferences of Couples, for a minor correction
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accept only individual ranking of the universities, and treat the problem as a classical stable admissions

problem. We model the preferences of the couples indirectly as side-constraints. We look for stable

solutions in the college admissions problem where the couples are matched to colleges in the same

geographical region.

We use a simple example to motivate our approach. Consider the example discussed in Section 3.2,

where the individual preferences for the universities are as shown in Table 1. Suppose further that

(a4, a10), (a2, a8) are couples. They would like to be assigned to universities in close proximity, so that

they can stay together. For the couple (a4, a10), as far as possible, they would like both to be assigned

to universities in the cluster {u3}, or to the cluster {u1, u2, u4, u5}. Similarly, the couple (a2, a8) would

like both to be assigned to universities in the cluster {u1, u3}, or to the cluster {u2, u4, u5}.

To incorporate these additional considerations, we need to answer the question: “Is there a stable

matching which meets these additional requirements? If so, how do we construct the solution?”

The stable matching M1 fails to address the concerns of the couples, since a4 is assigned to u3,

but a10 is assigned to u1. The matching M7 satisfies the additional requirement of couple (a4, a10)

(both are matched to universities in the same cluster {u1, u2, u4, u5}), but fails to address the needs

of couple (a2, a8). There is only one matching in this problem that meets the additional requirement

from both couples: M5.

In the rest of this section, we show that under a natural, restricted class of preferences, one can

determine efficiently whether or not a stable matching exists by simply solving a related linear program.

In particular, as long as the concerns of the couples can be modeled by geographical concerns similar

to (a)-(c) defined below, our model can be used to determine whether a feasible solution exists, and if

so, construct a feasible solution.

Specifically, we assume that each couple partitions the universities into several groups based on their

geographical locations. For example, the couple may choose to group together all of the universities

located in the same city. Note that the grouping of the universities can be different for different couples.

In our previous example, for instance, the couple (a4, a10) has chosen to group the universities into

clusters {u3}, {u1, u2, u4, u5}, whereas the couple (a2, a8) has chosen to group the universities into

clusters {u1, u3} and {u2, u4, u5}. Each husband and wife submit separate rankings of the universities

subject to the following restriction:

(a) The ranking is first done by ranking the group and then ranking the universities in the group;

(b) If a person prefers group 1 to group 2, then all universities deemed acceptable7 in group 1 will

be ranked above any university deemed acceptable in group 2; and

(c) Each couple must rank the groups in the same way, but are allowed to submit different rankings

of the universities within a group.

7Certain universities in the group may not be acceptable to the student
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For each couple c, let Kc = Kc,1∪Kc,2∪. . .∪Kc,D denote the groupings of the (acceptable) universities,

sorted according to the ranking of the cities. i.e., (acceptable) universities in group Kc,i are generally

preferred by the couple c to universities in group Kc,j, if i < j. The essential geographic preferences

of the couples are captured by allowing the husband and wife to be assigned to different universities

as long as these universities are within the same group (i.e., in the same region). This will be modeled

as a side constraint in our model.

For ease of exposition, we assume that each couple has partitioned the universities into D groupings.

Furthermore, we will assume that the students accept all universities (i.e. complete ranking) they have

been assigned to. This condition can be easily relaxed by adding additional constraints of the type

xu,a = 0 if student a does not accept university u.

We wish to find a stable matching in which each couple is assigned to universities within the same

group. We show that a variation of the linear inequality description for the stable admission polytope

remains valid for this version of the stable matching problem with couples; in particular, a stable

solution, if it exists, can be found using linear programming.

We claim that the following inequalities give the polytope of stable admission with couples (PSAC):

∑

u:(u,a)∈Γ

xu,a ≤ 1, ∀a ∈ A, (15)

∑

a:(u,a)∈Γ

xu,a ≤ qu, ∀u ∈ U, (16)

x(C) =
∑

(u,a)∈C

xu,a ≥ qu, ∀C ∈ Cu, u ∈ U. (17)

xu,a ≥ 0 ∀ a, (u, a) ∈ Γ, (18)






∑

j∈Kc,l
xp,j +

∑

j /∈Kc,l
xq,j ≤ 1

∑

j∈Kc,l
xq,j +

∑

j /∈Kc,l
xp,j ≤ 1,

for all couples (p, q) and group Kc,l. (19)

Here the inequalities (15, 16, 17, 18, 19) are called the student, university, comb, non-negativity,

and the couple constraints respectively. The first four classes of constraints are basically the valid

constraints in the classical many-to-one stable admissions polytope. As long as both students in the

couple pair are matched to some universities, then the couple constraints ensure that they are matched

to universities in the same geographical locations.

The fractional solution of (PSAC) still satisfies the decomposition property of section 3.1, since

it is a subset of the stable admission polytope. Note that if a student is unmatched in the stable

admission problem (without the added side constraints), then he/she remains unmatched in all the

stable matchings. This property ensures that either
∑

u xu,a = 0 or
∑

u xu,a = 1 in (PSAC).

Consider the randomized rounding method described in Theorem 6: Generate a number α ∈ (0, 1]

uniformly at random; for each university u, assign the qu students in Iα
u (x) to university u to get an

assignment µα. Note that by our rounding method will automatically produce a stable matching for

the original problem. We need to ensure further that it satisfies the additional couple constraints.
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This is clear whenever
∑

u xu,p = 0 or
∑

u xu,q = 0 for couple (p, q). On the other hand, if
∑

u xu,p = 1

and
∑

u xu,q = 1, then the couple constraints reduce to

∑

j∈Kc,l

xp,j ≤
∑

j∈Kc,l

xq,j

and
∑

j∈Kc,l

xq,j ≤
∑

j∈Kc,l

xp,j.

i.e.,
∑

j∈Kc,l

xp,j =
∑

j∈Kc,l

xq,j for all Kc,l.

Since the individual preferences of p and q are obtained by an identical ranking of the groupings first,

the above property ensures that in our randomized rounding method, whenever p is assigned to a

university in Kc,l, q will also be assigned to one in Kc,l too.

We thus have the following result.

Theorem 10 The convex hull of the stable admission solutions to the couples problem satisfying

conditions (a), (b) and (c) is given by (PSAC).

When (PSAC) = ∅ (when the LP is infeasible), the LP method will return an inconsistent set of

inequalities automatically, producing a certificate to the fact that there does not exist any stable

solution assigning all couples to the same geographical regions.

The above model for the couples problem inherit all the nice properties for the classical stable

admission problem, whenever a feasible solution can be found. In particular, the lattice properties of

the feasible stable admission solutions are preserved under this model. Using the same argument in

our derivation of the median solution concept, and the fact that (PSAC) ⊂ (PSA), we also have the

next result:

Theorem 11 If (PSAC) 6= ∅, then a median solution exists for the stable admission problem with

couples.

5 Concluding Remarks

In this paper, we study the stable admissions problem using a simple geometric property of the

fractional solutions in the stable admissions polytope. We exhibit a simple decomposition property,

which allows us to express fractional solutions in the stable admissions polytope as convex combinations

of integral solutions. The results provide new insight into the stable admissions problem, and generalize

many structural properties of the classical stable marriage problem.
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The stable admissions problem can be viewed as a special case of the stable marriage problem

with indifference. However, since the problem of determining whether a given pair is stable is NP-

complete for a given instance of stable marriage with ties [27], this appears to be substantially more

difficult. It is interesting to find out whether the geometric structure of the fractional solutions carries

over to this situation. Another special case of the stable matching problem with indifference is the

many-to-many stable matching problem with strict preferences. We believe that the properties of the

fractional solutions has an analogous interpretation in this general setting. However, describing the

stable matching polytope explicitly in this case requires a non-trivial extension to the comb inequalities.

Another interesting open issue is to consider more general preferences for the universities for which the

existence of a stable matching is assured; the class of substitutable preferences is a natural candidate.

We leave these issues for further research.
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