Optimal Fiscal and Monetary Policy in a Medium-Scale Macroeconomic Model

Stephanie Schmitt-Grohé
Martín Uribe

Duke University

June 24, 2005
A medium-scale macroeconomic model

• Nominal Frictions:
 1. Sticky product prices
 2. Sticky nominal wages
 (indexed to lagged price inflation)
 3. Cash-in-advance constraint on wages
 4. Money demand by households

• Real Rigidities:
 1. Distortionary income taxation
 2. Monopolistically competitive product and factor markets
 3. Habit persistence in consumption
 4. Investment adjustment costs
 5. Variable capacity utilization
• Sources of Uncertainty

 1. Government consumption shocks

 2. Government transfer shocks

 3. Technology shocks

• Government Policy Objective: Ramsey-Optimal Stabilization

• Policy Instruments

 1. Distortionary income taxation

 2. Issuance of money and nominally risk-free bonds
Long-run Inflation: Policy Tradeoffs

- Price stickiness calls for $\pi = 0\%$

- Money demand by HH and firms calls for Friedman rule ($\pi = -3.8\%$)

- Under an income tax regime, positive nominal interest rates allow for differential taxation of capital and labor income

- Positive nominal interest rates allow for indirect taxation of transfers, n_t.
The Optimal Rate of Inflation

<table>
<thead>
<tr>
<th>Environment</th>
<th>Ramsey Steady State</th>
<th>(\chi)</th>
<th>(\bar{n})</th>
<th>(\pi)</th>
<th>(R)</th>
<th>(\tau^h)</th>
<th>(\tau^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BV</td>
<td>0.2</td>
<td>4.2</td>
<td>35.4</td>
<td>-6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BV</td>
<td>4.6</td>
<td>8.8</td>
<td>34.7</td>
<td>-6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-3.8</td>
<td>0</td>
<td>24.1</td>
<td>-5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-0.2</td>
<td>3.8</td>
<td>23.3</td>
<td>-5.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\chi\) = Degree of Price Indexation.
\(\bar{n}\) = Government Transfers.
BM = Benchmark Value.

Note: The inflation rate, \(\pi\), and the nominal interest rate, \(R\), are expressed in percent per year. The labor income tax rate, \(\tau^h\), and the capital income tax rate, \(\tau^k\), are expressed in percent.
Capital Income Taxation: Policy Tradeoffs

• Monopolistic competition calls for a capital subsidy, $\tau^k < 0$, such that social and private return on capital are equated.

$$(1 - \tau^k)(uF_k/\mu - \delta - a(u)) = uF_k - \delta - a(u).$$

• The optimal profit tax is 100%. So, when profits and capital are restricted to be taxed at same rate, the optimal level of τ^k_t increases.

<table>
<thead>
<tr>
<th>τ^k_t</th>
<th>Ramsey Steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ^ϕ_t</td>
<td>π</td>
</tr>
<tr>
<td>0.2</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$\tau^\phi_t = \text{Profit Tax Rate}$.
Resolution of Long-run Policy Tradeoffs:

- The optimal inflation rate is **positive** but close to zero.

- The optimal capital tax rate is **negative** but close to zero.
Optimal Policy Under Income Taxation

\(\tau^k_t = \tau^h_t = \tau^\phi_t \)

Short-Run Policy Tradeoffs

• Surprise inflation acts as a lump-sum tax on nominal assets

• Sticky prices make inflation volatility undesirable because it creates price dispersion

• Sticky wages: Set inflation so as to bring about efficient real wage

• Smooth income tax rates so as to smooth distortions over time.
Ramsey Dynamics under Income Taxation
\[\tau^k_t = \tau^h_t = \tau^\phi_t = \tau^y_t \]

No Transfers \((n_t = 0)\)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\tilde{\alpha})</th>
<th>(\tilde{\tau}^y_t)</th>
<th>(R_t)</th>
<th>(\pi_t)</th>
<th>(w_t)</th>
<th>(a_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>19.0</td>
<td>4.0</td>
<td>0.02</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.64</td>
<td>Std. dev.</td>
<td>1.0</td>
<td>1.3</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser. corr.</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Mean</td>
<td>19.0</td>
<td>4.4</td>
<td>0.4</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.64</td>
<td>Std. dev.</td>
<td>1.5</td>
<td>3.1</td>
<td>5.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser. corr</td>
<td>0.5</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Mean</td>
<td>19.0</td>
<td>4.0</td>
<td>0.02</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>Std. dev.</td>
<td>0.4</td>
<td>0.7</td>
<td>0.1</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser. corr</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Mean</td>
<td>19.0</td>
<td>4.4</td>
<td>0.4</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Std. dev.</td>
<td>0.1</td>
<td>0.2</td>
<td>5.8</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser. corr</td>
<td>0.6</td>
<td>0.8</td>
<td>-0.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Resolution of Short-run Policy Tradeoffs:

- The optimal volatility of inflation is **small**.

- **Tax smoothing** is optimal.

- **Near-random walk** in government debt.
Welfare Losses of NOT conduction optimal fiscal policy

Ad-hoc fiscal policy: zero (secondary) fiscal deficits, $a_t = a$

Ramsey Optimal Monetary and Fiscal Policy:

\[
\text{Consumption and labor: } \{c_t^r, h_t^r\}_{t=0}^{\infty}
\]
\[
\text{Welfare: } E_0 U(\{c_t^r, h_t^r\}_{t=0}^{\infty})
\]

Ramsey Optimal Monetary BUT ad hoc Fiscal Policy:

\[
\text{Welfare: } W^a = E_0 U(\{c_t^a, h_t^a\}_{t=0}^{\infty})
\]

Welfare Cost, λ:

\[
W^a = E_0 U(\{(1 - \lambda)c_t^r, h_t^r\}_{t=0}^{\infty})
\]

\[
\lambda = 0.0088 \text{ percent}
\]
(or 19 cents per month per person)
Welfare Losses of NOT conducing optimal monetary policy

Ad hoc monetary policy: $\hat{R}_t = 0.5\hat{\pi}_t$

$\lambda = 0.0130$ percent
(or 28 cents per month per person)
Implementing the Ramsey equilibrium with policy rules

\[
\hat{R} = \alpha_\pi \hat{\pi}_t + \alpha_W \hat{\pi}_W^t + \alpha_y \hat{y}_t + \alpha_R \hat{R}_{t-1}
\]

and

\[
\hat{\tau}_t^y = \beta_a \hat{a}_t + \beta_y \hat{y}_t + \beta_\tau \hat{\tau}_{t-1}^y
\]

Pick 7 policy coefficients so as to match the impulse response functions of all endogenous variables for 20 periods for each of the 3 shocks.

\[
\begin{align*}
\alpha_\pi & = 0.37 \\
\alpha_W & = -0.16 \\
\alpha_y & = -0.06 \\
\alpha_R & = 0.55 \\
\beta_a & = -0.06 \\
\beta_y & = 0.02 \\
\beta_\tau & = 1.88
\end{align*}
\]
Impulse Response to a Technology Shock
Solid line: Ramsey, dashed line: optimized rule
Welfare Costs of the Optimized Rule

Consumption and labor processes under the Ramsey Policy:
\[\{c_t^r, h_t^r\}_{t=0}^\infty \]

Welfare under the Ramsey Policy:
\[E_0U(\{c_t^r, h_t^r\}_{t=0}^\infty) \]

Welfare Cost of the Optimized Rule, \(\lambda \):
\[E_0U(\{c_t^0, h_t^0\}_{t=0}^\infty) = E_0U(\{(1 - \lambda)c_t^r, h_t^r\}_{t=0}^\infty) \]

\(\lambda = 0.017 \) percent
(or 39 cents per month per person)
Impulse Response to a Government Purchases Shock

Solid line: Ramsey, dashed line: optimized rule
Impulse Response to a Transfer Shock
Solid line: Ramsey, dashed line: optimized rule

Output
Consumption
Investment
Hours
Wage rate
Tax rate
Nominal Interest Rate
Inflation
Last, by not least, ...

The paper makes a methodological contribution by showing how to find the equilibrium conditions of Ramsey problems for a quite general class of models analytically using symbolic algebra tools.

The programs used for this paper, illustrating the use of this technique, are posted at the authors’s websites.