Appendix To “Real Business Cycles in Emerging Countries?” *

Javier García-Cicco† Roberto Pancrazi‡
Central Bank of Chile Duke University

Martín Uribe§
Columbia University and NBER

September 17, 2009

1 Optimality Conditions of the Household’s Problem

Letting $\lambda_t X_{t-1}^{-\gamma}$ denote the Lagrange multiplier associated with the sequential budget constraint, the optimality conditions associated with this problem are (??), (??), the no-Ponzi-game constraint holding with equality, and

$$[C_t/X_{t-1} - \theta \omega^{-1} h_t^\omega]^{-\gamma} = \lambda_t$$

$$[C_t/X_{t-1} - \theta \omega^{-1} h_t^\omega]^{-\gamma} \theta h_t^{\omega-1} = (1 - \alpha) a_t \left(K_t / X_{t-1} h_t \right)^{\alpha} \left(X_t / X_{t-1} \right)^{1-\alpha} \lambda_t$$

$$\lambda_t = \beta \frac{1 + r_t}{g_t^\gamma} E_t \lambda_{t+1}$$

*We thank for comments Stephanie Schmitt-Grohé, Vivian Yue, Viktor Todorov, Andy Neumeyer, Alejandro Gay, and seminar participants at the Federal Reserve Bank of San Francisco, the International Monetary Fund, HEC Montreal, Universidad de San Andrés (Buenos Aires), and the XI Workshop in International Economics and Finance held at Universidad Torcuato Di Tella. The views and conclusions presented in this paper are exclusively those of the authors and do not necessarily reflect the position of the Central Bank of Chile or of the Board members.

†E-mail: jgarcia-cicco@bcentral.cl.
‡E-mail: rp21@duke.edu.
§E-mail: martin.uribe@columbia.edu.
\[1 + \phi \left(\frac{K_{t+1}}{K_t} - g \right) \lambda_t = \frac{\beta}{g_t} E_t \lambda_{t+1} \left[1 - \delta + \alpha a_{t+1} \left(\frac{X_{t+1} h_{t+1}}{K_{t+1}} \right)^{1-\alpha}
+ \phi \left(\frac{K_{t+2}}{K_{t+1}} \right) \left(\frac{K_{t+2}}{K_{t+1}} - g \right) - \frac{\phi}{2} \left(\frac{K_{t+2}}{K_{t+1}} - g \right)^2 \right] \]

2 Equilibrium Conditions in Stationary Form

Define \(y_t = Y_t / X_{t-1} \), \(c_t = C_t / X_{t-1} \), \(d_t = D_t / X_{t-1} \), and \(k_t = K_t / X_{t-1} \). Then, a stationary competitive equilibrium is give by a set of processes stationary solution to the following equations:

\[[c_t - \theta \omega^{-1} h_t^\omega]^{-\gamma} = \lambda_t \]
\[\theta h_t^\omega = (1 - \alpha) a_t g_t^{1-\alpha} \left(\frac{k_t}{h_t} \right)^\alpha \]
\[\lambda_t = \frac{\beta}{g_t} \left[1 + r^* + \psi \left(e^{d_t - \bar{d}} - 1 \right) \right] E_t \lambda_{t+1} \]

\[[1 + \phi \left(\frac{k_{t+1}}{k_t} g_t - g \right)] \lambda_t = \frac{\beta}{g_t} E_t \lambda_{t+1} \left[1 - \delta + \alpha a_{t+1} \left(\frac{g_{t+1} h_{t+1}}{k_{t+1}} \right)^{1-\alpha}
+ \phi \frac{k_{t+2}}{k_{t+1}} g_{t+1} \left(\frac{k_{t+2}}{k_{t+1}} g_{t+1} - g \right) - \frac{\phi}{2} \left(\frac{k_{t+2}}{k_{t+1}} g_{t+1} - g \right)^2 \right] \]

\[\frac{d_{t+1}}{1 + r_t} g_t = d_t - y_t + c_t + i_t + \phi \left(\frac{k_{t+1}}{k_t} g_t - g \right)^2 k_t, \]
\[r_t = r^* + \psi \left(e^{d_t - \bar{d}} - 1 \right), \]
\[k_{t+1} g_t = (1 - \delta) k_t + i_t \]
\[y_t = a_t k_t^\alpha (g_t h_t)^{1-\alpha} \]

3 GMM Estimation Procedure

Let \(b \equiv [g \sigma_g \sigma_p \sigma_a \rho_a] \)' be the 6x1 vector of structural parameters to be estimated. We write the moment conditions as:\footnote{The estimation results are little changed if in writing the moment conditions we replace the empirical moments \(\bar{g}' Y, \bar{g}' C, \) and \(\bar{g}' I \) by their theoretical counterpart \(E_{gy}(b) \), and the empirical moment \(\bar{tb}_y \) by its theoretical counterpart \(E_{tby}(b) \). Specifically, the parameter estimates using annual Mexican data from 1900 to 2005 are}

\[\frac{d_{t+1}}{1 + r_t} g_t = d_t - Y_t + C_t + I_t + \phi \left(\frac{k_{t+1}}{k_t} g_t - g \right)^2 k_t, \]
\[r_t = r^* + \psi \left(e^{d_t - \bar{d}} - 1 \right), \]
\[k_{t+1} g_t = (1 - \delta) k_t + I_t \]
\[y_t = a_t k_t^\alpha (g_t h_t)^{1-\alpha} \]
\[
\begin{pmatrix}
E_{yy}(b) - g_t \bar{Y} \\
\sigma_{yy}(b) - (g_t \bar{Y} - \bar{g} \bar{Y})^2 \\
\sigma_{ge}(b) - (g_t \bar{C} - \bar{g} \bar{C})^2 \\
\sigma_{gI}(b) - (g_t I - \bar{g} I)^2 \\
\sigma_{by}(b) - (tby_t - \bar{tby})^2 \\
\rho_{gy,gc} - \frac{(g_t \bar{Y} - \bar{g} \bar{Y})(g_t \bar{C} - \bar{g} \bar{C})}{\sigma_{gy}(b)\sigma_{gc}(b)} \\
\rho_{gy,gi} - \frac{(g_t \bar{Y} - \bar{g} \bar{Y})(g_t I - \bar{g} I)}{\sigma_{gy}(b)\sigma_{gi}(b)} \\
\rho_{gy,by} - \frac{(g_t \bar{Y} - \bar{g} \bar{Y})(tby_t - \bar{tby})}{\sigma_{gy}(b)\sigma_{by}(b)} \\
\rho_{gy1}(b) - \frac{(g_t \bar{Y} - \bar{g} \bar{Y})(g_t Y_{t-1} - \bar{g} Y_{t-1})}{\sigma_{gy}(b)\sigma_{y1}(b)} \\
\rho_{gy2}(b) - \frac{(g_t \bar{Y} - \bar{g} \bar{Y})(g_t Y_{t-2} - \bar{g} Y_{t-2})}{\sigma_{gy}(b)\sigma_{y2}(b)} \\
\rho_{gy3}(b) - \frac{(g_t \bar{Y} - \bar{g} \bar{Y})(g_t Y_{t-3} - \bar{g} Y_{t-3})}{\sigma_{gy}(b)\sigma_{y3}(b)} \\
\rho_{gi1}(b) - \frac{(g_t I - \bar{g} I)(g_t Y_{t-1} - \bar{g} Y_{t-1})}{\sigma_{gi}(b)\sigma_{y1}(b)} \\
\rho_{gi2}(b) - \frac{(g_t I - \bar{g} I)(g_t Y_{t-2} - \bar{g} Y_{t-2})}{\sigma_{gi}(b)\sigma_{y2}(b)} \\
\rho_{gi3}(b) - \frac{(g_t I - \bar{g} I)(g_t Y_{t-3} - \bar{g} Y_{t-3})}{\sigma_{gi}(b)\sigma_{y3}(b)} \\
\rho_{by1}(b) - \frac{(tby_t - \bar{tby})(tby_{t-1} - \bar{tby})}{\sigma_{by}(b)\sigma_{y1}(b)} \\
\rho_{by2}(b) - \frac{(tby_t - \bar{tby})(tby_{t-2} - \bar{tby})}{\sigma_{by}(b)\sigma_{y2}(b)} \\
\rho_{by3}(b) - \frac{(tby_t - \bar{tby})(tby_{t-3} - \bar{tby})}{\sigma_{by}(b)\sigma_{y3}(b)} \\
\end{pmatrix},
\]

where \(Ex(b)\) denotes the expected value of the variable \(x_t\) implied by the theoretical model, \(\sigma_x(b)\) denotes the standard deviation of \(x_t\) implied by the theoretical model, \(\rho_{xy}(b)\) denotes the correlation between \(x_t\) and \(y_t\) implied by the theoretical model, and \(\rho_{xj}\) denotes the autocorrelation of order \(j\) of \(x_t\) implied by the theoretical model. All of these statistics are functions of the vector \(b\) of structural parameters. We denote by \(\bar{x} \equiv T^{-1} \sum_{t=1}^{T} x_t\) the sample mean of \(x_t\), where \(T\) is the sample size. We compute moments implied by the theoretical model by solving a linearized version of the system of equilibrium conditions with respect to the logarithm of all variables except the trade-balance share in GDP, which we keep in levels.

Define \(J(b, W) = \bar{u}'W\bar{u}\), where \(\bar{u}(b)\) denotes the sample mean of \(u_t(b)\) and \(W\) is a sym-
Table 1: Mexico 1980:Q1-2003:Q3: Estimated Structural Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Point Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>1.000</td>
<td>0.001</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.008</td>
<td>0.001</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.715</td>
<td>0.038</td>
</tr>
<tr>
<td>σ_a</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>ρ_a</td>
<td>0.508</td>
<td>0.147</td>
</tr>
<tr>
<td>ϕ</td>
<td>1.150</td>
<td>0.128</td>
</tr>
</tbody>
</table>

Overidentifying Restrictions Test

<table>
<thead>
<tr>
<th>Test</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p value</td>
<td>0.189</td>
</tr>
</tbody>
</table>

metric positive definite matrix compatible with $\bar{u}(b)$. The GMM estimate of b, denoted \hat{b}, is given by

$$\hat{b} = \arg\min_b J(b,W).$$

The matrix W is estimated in two steps. For more details see Burnside (1999).2

4 GMM Estimation: Mexico 1980:Q1 2003:Q2

The estimation of the RBC model using quarterly Mexican data from 1980:1 to 2003:2 is shown in table Table 1. The fit of the model, as measured by the p value of the test of overidentifying restrictions is much better than the one obtained using the long sample 1900-2005. This is reflected in a better matching of the second moments of interest, as shown in table 2 and figure 1.

Table 2: Mexico 1980:Q1-2003:Q2

<table>
<thead>
<tr>
<th>Statistic</th>
<th>(g^Y)</th>
<th>(g^C)</th>
<th>(g^I)</th>
<th>tby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>1.6</td>
<td>1.6</td>
<td>7.4</td>
<td>4.0</td>
</tr>
<tr>
<td>—Model</td>
<td>1.5</td>
<td>1.9</td>
<td>5.7</td>
<td>3.7</td>
</tr>
<tr>
<td>—Data</td>
<td>(0.3)</td>
<td>(0.2)</td>
<td>(1.0)</td>
<td>(0.4)</td>
</tr>
<tr>
<td>Correlation with (g^Y)</td>
<td>0.91</td>
<td>0.65</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>—Model</td>
<td>0.76</td>
<td>0.75</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>—Data</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>Correlation with tby</td>
<td>-0.45</td>
<td>-0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Model</td>
<td>-0.23</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Data</td>
<td>0.07</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Correlation</td>
<td>0.07</td>
<td>0.08</td>
<td>-0.06</td>
<td>0.89</td>
</tr>
<tr>
<td>—Model</td>
<td>0.25</td>
<td>0.19</td>
<td>0.44</td>
<td>0.95</td>
</tr>
<tr>
<td>—Data</td>
<td>(0.10)</td>
<td>(0.14)</td>
<td>(0.10)</td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Note: Standard deviations are reported in percentage points. Standard errors of sample-moment estimates are shown in parenthesis.
Figure 1: Mexico 1980:Q1-2003:Q2: The Autocorrelation Function of the Trade Balance-to-Output Ratio