N cups, M balls. Denote p_k as the probability that exactly k cups are non-empty. Let X be the number of non-empty cups. Then we have

$$E[X] = \sum_{k=1}^{M} kp_k$$

Finding p_k

Choose k cups, $\binom{N}{k}$ possibilities. Then choose a partition of the M balls into k non-empty subsets. This is a Stirling number of the second kind, $\left\{\begin{array}{c} M \\ k \end{array}\right\}$ possibilities. Now arrange the partition in some order, $k!$ possibilities. The total number of possibilities for M balls into N cups is N^M. So this probability is

$$p_k = \frac{\binom{N}{k} \left\{\begin{array}{c} M \\ k \end{array}\right\} k!}{N^M}$$

Answer

$$E[X] = \sum_{k=1}^{M} \binom{N}{k} \left\{\begin{array}{c} M \\ k \end{array}\right\} k! \frac{k!}{N^M}$$

For instance, for $N = 5$ cups and $M = 4$ balls, we have $E[X] = \frac{369}{125} \approx 2.95$. Check it out on Wolfram Alpha

1 Check wikipedia. The formula is

$$\left\{\begin{array}{c} n \\ k \end{array}\right\} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \left(\begin{array}{c} k \\ j \end{array}\right) j^n$$