Problem 4.1 Let D_n be the random demand of time period n. Clearly D_n is i.i.d. and independent of all X_k for $k < n$. Then we can represent X_{n+1} by

$$X_{n+1} = \max\{0, X_n \cdot 1_{[s, \infty)}(X_n) + S \cdot 1_{[0, s)}(X_n) - D_{n+1}\}$$

which depends only on X_n since D_{n+1} is independent of all history. Hence $\{X_n, n \geq 1\}$ is a Markov chain. It is easy to see assuming $\alpha_k = 0$ for $k < 0$, $P_{ij} = \begin{cases} \alpha_{s-j} & \text{if } i < s, j > 0 \\ \sum_{k=S}^{\infty} \alpha_k & \text{if } i < s, j = 0 \\ \alpha_{i-j} & \text{if } i \geq s, j > 0 \\ \sum_{k=i}^{\infty} \alpha_k & \text{if } i \geq s, j = 0 \end{cases}$

The following three problems (4.2, 4.4, 4.5) needs a fact:

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|B \cap C)\mathbb{P}(B|C)$$

which requires a proof to use. Try to prove it by yourself.

Problem 4.2 Let S be the state space. First we show that

$$\mathbb{P}(X_{n_k+1} = j|X_{n_1} = i_1, \cdots, X_{n_k} = i_k) = \mathbb{P}(X_{n_k+1} = j|X_{n_k} = i_k)$$

by the following: Let $A = \{X_{n_k+1} = j\}$, $B = \{X_{n_1} = i_1, \cdots, X_{n_k} = i_k\}$ and $B_b, b \in \mathcal{I}$ are elements of $\{(X_l, l \leq n_k, l \neq n_1, \cdots, l \neq n_k) : X_l \in S\}$.

$$\mathbb{P}(A|B) = \sum_{b \in \mathcal{I}} \mathbb{P}(A \cap B_b|B)$$

$$= \sum_{b \in \mathcal{I}} \mathbb{P}(A|B_b \cap B)\mathbb{P}(B_b|B)$$

$$= \sum_{b \in \mathcal{I}} \mathbb{P}(A|X_{n_k} = i_k)\mathbb{P}(B_b|B)$$

$$= \mathbb{P}(A|X_{n_k} = i_k) \sum_{b \in \mathcal{I}} \mathbb{P}(B_b|B)$$

$$= \mathbb{P}(A|X_{n_k} = i_k)\mathbb{P}(\Omega|B)$$

$$= \mathbb{P}(X_{n_k+1} = j|X_{n_k} = i_k)$$
We consider the mathematical induction on \(l = n - m \). For \(l = 1 \), we just showed. Now assume that the statement is true for all \(l \leq l^* \) and consider \(l = l^* + 1 \):

\[
P(X_n = j | X_{n_1} = i_1, \cdots, X_{n_k} = i_k) = \sum_{i \in S} P(X_n = j | X_{n-1} = i | X_{n_1} = i_1, \cdots, X_{n_k} = i_k)
\]

which completes the proof for \(l = l^* + 1 \) case.

Problem 4.3 Simply by *Pigeon hole principle* which saying that if \(n \) pigeons return to their \(m(< n) \) home (through hole), then at least one home contains more than one pigeon.

Consider any path of states \(i_0 = i, i_1, \cdots, i_n = j \) such that \(P_{i_k, i_{k+1}} > 0 \). Call this a path from \(i \) to \(j \). If \(j \) can be reached from \(i \), then there must be a path from \(i \) to \(j \). Let \(i_0, \cdots, i_n \) be such a path. If all of values \(i_0, \cdots, i_n \) are not distinct, then there must be a subpath from \(i \) to \(j \) having fewer elements (for instance, if \(i, 1, 2, 4, 1, 3, j \) is a path, then so is \(i, 1, 3, j \)). Hence, if a path exists, there must be one with all distinct states.

Problem 4.4 Let \(Y \) be the first passage time to the state \(j \) starting the state \(i \) at time 0.

\[
P^n_{ij} = P(X_n = j | X_0 = i)
\]

\[
= \sum_{k=0}^{n} P(X_n = j, Y = k | X_0 = i)
\]

\[
= \sum_{k=0}^{n} P(X_n = j | Y = k, X_0 = i) P(Y = k | X_0 = i)
\]

\[
= \sum_{k=0}^{n} P(X_n = j | X_k = j) P(Y = k | X_0 = i)
\]

\[
= \sum_{k=0}^{n} \sum_{f_{ij}} P^n_{ij}^{k} f_{ij}^k
\]

Problem 4.5 *(a)* The probability that the chain, starting in state \(i \), will be in state \(j \) at time \(n \) without ever having made a transition into state \(k \).
(b) Let Y be the last time leaving the state i before first reaching to the state j starting the state i at time 0.

$$P_{ij}^n = \mathbb{P}(X_n = j | X_0 = i)$$

$$= \sum_{k=0}^{n} \mathbb{P}(X_n = j, Y = k | X_0 = i)$$

$$= \sum_{k=0}^{n} \mathbb{P}(X_n = j, Y = k, X_k = i | X_0 = i) \mathbb{P}(X_k = i | X_0 = i)$$

$$= \sum_{k=0}^{n} \mathbb{P}(X_n = j, X_l \neq i, l = k + 1, \ldots, n - 1 | X_k = i) P_{ii}^k$$

$$= \sum_{k=0}^{n} P_{ij}^{n-k} \cdot P_{ii}^k$$

Problem 4.7

(a) ∞

Here is an argument: Let x be the expected number of steps required to return to the initial state (the origin). Let y be the expected number of steps to move to the left 2 steps, which is the same as the expected number of steps required to move to the right 2 steps. Note that the expected number of steps required to go to the left 4 steps is clearly $2y$, because you first need to go to the left 2 steps, and from there you need to go to the left 2 steps again. Then, consider what happens in successive pairs of steps: Using symmetry, we get

$$x = 2 + (0 \times (1/2) + y \times (1/2)) = 2 + y/2$$

and

$$y = 2 + (0 \times (1/4) + y \times (1/2) + (2 \times y) \times (1/4))$$

If we subtract y from both sides, this last equation yields

$$2 = 0.$$

Hence there is no finite solution. The quantity y must be infinite; a finite value cannot solve the equation.

(b) Note that the expected number of returns in $2n$ steps is the sum of the probabilities of returning in $2k$ steps for k from 1 to n, each term of which is binomial. Thus, we have

$$E[N_{2n}] = \sum_{k=1}^{n} \frac{(2k)!}{k!k!} (1/2)^{2k},$$

3
which can be shown to be equal to the given expression by mathematical induction.

(c) We say that \(f(n) \sim g(n) \) as \(n \to \infty \) if
\[
f(n)/g(n) \to 1 \quad \text{as} \quad n \to \infty.
\]

By Stirling’s approximation,
\[
(2n + 1)(2n)!/(n!)^2 (1/2)^n \sim 2 \sqrt{n/\pi},
\]
so that
\[
E[N_n] \sim \sqrt{2n/\pi} \quad \text{as} \quad n \to \infty.
\]

Problem 4.8 (a)
\[
P_{ij} = \frac{\alpha_j}{\sum_{k=1}^{\infty} \alpha_k}, \quad j > i
\]

(b) \(\{T_i, i \geq 1\} \) is not a Markov chain - the distribution of \(T_i \) does depend on \(R_i \). \(\{(R_{i+1}, T_i), i \geq 1\} \) is a Markov chain.

\[
P(R_{i+1} = j, T_i = n|R_i = l, T_{i-1} = m) = \frac{\alpha_j}{\sum_{k=l+1}^{\infty} \alpha_k} \left(\sum_{k=0}^{l} \alpha_k \right)^{n-1} \sum_{k=l+1}^{\infty} \alpha_k
\]
\[
= \alpha_j \left(\sum_{k=0}^{l} \alpha_k \right)^{n-1}, \quad j > l
\]

(c) If \(S_n = j \) then the \((n+1)st\) record occurred at time \(j \). However, knowledge of when these \(n + 1 \) records occurred does not yield any information about the set of values \(\{X_1, \cdots, X_j\} \). Hence, the probability that the next record occurs at time \(k, k > j \), is the probability that both \(\max\{X_1, \cdots, X_j\} = \max\{X_1, \cdots, X_{k-1}\} \) and that \(X_k = \max\{X_1, \cdots, X_k\} \). Therefore, we see that \(\{S_n\} \) is a Markov chain with
\[
P_{jk} = \frac{j}{k} \frac{1}{1 - \frac{1}{k}}, \quad k > j.
\]

Problem 4.11 (a)
\[
\sum_{n=1}^{\infty} P_{ij}^n = E[\text{number of visits to } j|X_0 = i]
\]
\[
= E[\text{number of visits to } j| \text{ever visit } j, X_0 = i]f_{ij}
\]
\[
= (1 + E[\text{number of visits to } j|X_0 = j])f_{ij}
\]
\[
= \frac{f_{ij}}{1 - f_{jj}} < \infty.
\]

since \(1 + \text{number of visits to } j|X_0 = j \) is geometric with mean \(\frac{1}{1 - f_{jj}} \).
(b) Follows from above since

\[
\frac{1}{1 - f_{jj}} = 1 + \mathbb{E}[\text{number of visits to } j|X_0 = j] = 1 + \sum_{n=1}^{\infty} P_{jj}^n.
\]

Problem 4.12 If we add the irreducibility of \(P \), it is easy to see that \(\pi = \frac{1}{n} \mathbf{1} \) is a (and the unique) limiting probability.