Problem 4.1 Let D_n be the random demand of time period n. Clearly D_n is i.i.d. and independent of all X_k for $k < n$. Then we can represent $X_n + 1$ by

$$X_{n+1} = \max\{0, X_n \cdot 1_{[s, \infty)}(X_n) + S \cdot 1_{[0,s)}(X_n) - D_{n+1}\}$$

which depends only on X_n since D_{n+1} is independent of all history. Hence $\{X_n, n \geq 1\}$ is a Markov chain. It is easy to see assuming $\alpha_k = 0$ for $k < 0$,

$$P_{ij} = \begin{cases}
\alpha_{s-j} & \text{if } i < s, j > 0 \\
\sum_{k=S}^{\infty} \alpha_k & \text{if } i < s, j = 0 \\
\alpha_{i-j} & \text{if } i \geq s, j > 0 \\
\sum_{k=i}^{\infty} \alpha_k & \text{if } i \geq s, j = 0
\end{cases}$$

The following three problems (4.2, 4.4, 4.5) needs a fact:

$$P(A \cap B|C) = P(A|B \cap C)P(B|C)$$

which requires a proof to use. Try to prove it by yourself.

Problem 4.2 Let S be the state space. First we show that

$$P(X_{n+1} = j|X_n = i_1, \cdots, X_k = i_k) = P(X_{n+1} = j|X_k = i_k)$$

by the following: Let $A = \{X_{n+1} = j\}$, $B = \{X_{n1} = i_1, \cdots, X_k = i_k\}$ and $B_b, b \in I$ are elements of $\{(X_l, l \leq n_k, l \neq n_1, \cdots, l \neq n_k) : X_l \in S\}$.

$$P(A|B) = \sum_{b \in I} P(A \cap B_b|B)$$

$$= \sum_{b \in I} P(A|B_b \cap B)P(B_b|B)$$

$$= \sum_{b \in I} P(A|X_{n_k} = i_k)P(B_b|B)$$

$$= P(A|X_{n_k} = i_k) \sum_{b \in I} P(B_b|B)$$

$$= P(A|X_{n_k} = i_k)P(\Omega|B)$$

$$= P(X_{n+1} = j|X_k = i_k) .$$
We consider the mathematical induction on \(l \equiv n - m \). For \(l = 1 \), we just showed. Now assume that the statement is true for all \(l \leq l^* \) and consider \(l = l^* + 1 \):

\[
\begin{align*}
P(X_n = j | X_{n_1} = i_1, \ldots, X_{n_k} = i_k) &= \sum_{i \in S} P(X_n = j | X_{n-1} = i, X_{n_1} = i_1, \ldots, X_{n_k} = i_k) P(X_{n-1} = i | X_{n_1} = i_1, \ldots, X_{n_k} = i_k) \\
&= \sum_{i \in S} P(X_n = j | X_{n-1} = i) P(X_{n-1} = i | X_{n_k} = i_k) \quad \text{By } l \leq l^* \text{ cases} \\
&= \sum_{i \in S} P(X_n = j, X_{n-1} = i) P(X_{n-1} = i | X_{n_k} = i_k) \\
&= \sum_{i \in S} P(X_n = j | X_{n_k} = i_k) P(X_{n} = j) \\
&= P(X_n = j | X_{n_k} = i_k)
\end{align*}
\]

which completes the proof for \(l = l^* + 1 \) case.

Problem 4.3 Simply by *Pigeon hole principle* which saying that if \(n \) pigeons return to their \(m(< n) \) home (through hole), then at least one home contains more than one pigeon.

Consider any path of states \(i_0 = i, i_1, \ldots, i_n = j \) such that \(P_{i_k}i_{k+1} > 0 \). Call this a path from \(i \) to \(j \). If \(j \) can be reached from \(i \), then there must be a path from \(i \) to \(j \). Let \(i_0, \ldots, i_n \) be such a path. If all of values \(i_0, \ldots, i_n \) are not distinct, then there must be a subpath from \(i \) to \(j \) having fewer elements (for instance, if \(i, 1, 2, 4, 1, 3, j \) is a path, then so is \(i, 1, 3, j \)). Hence, if a path exists, there must be one with all distinct states.

Problem 4.4 Let \(Y \) be the first passage time to the state \(j \) starting the state \(i \) at time 0.

\[
P^n_{ij} = P(X_n = j | X_0 = i) = \sum_{k=0}^{n} P(X_n = j, X_0 = i) = \sum_{k=0}^{n} P(X_n = j | Y = k) P(Y = k | X_0 = i) = \sum_{k=0}^{n} P(X_n = j | X_k = j) P(Y = k | X_0 = i) = \sum_{k=0}^{n} P^n_{i_j} P^n_{ji}
\]

Problem 4.5 (a) The probability that the chain, starting in state \(i \), will be in state \(j \) at time \(n \) without ever having made a transition into state \(k \).
(b) Let Y be the last time leaving the state i before first reaching to the state j starting the state i at time 0.

$$
P^n_{ij} = P(X_n = j | X_0 = i)$$

$$= \sum_{k=0}^{n} P(X_n = j, Y = k | X_0 = i)$$

$$= \sum_{k=0}^{n} P(X_n = j, Y = k, X_k = i | X_0 = i)$$

$$= \sum_{k=0}^{n} P(X_n = j, Y = k | X_k = i) P(X_k = i | X_0 = i)$$

$$= \sum_{k=0}^{n} P(X_n = j, X_l \neq i, l = k + 1, \ldots, n - 1 | X_k = i) P^k_{ii}$$

$$= \sum_{k=0}^{n} P_{ij/i}^{n-k} P^k_{ii}$$

Problem 4.12 If we add the irreducibility of P, it is easy to see that $\pi = \frac{1}{n} \mathbf{1}$ is a (and the unique) limiting probability.