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Abstract

Multilevel functional data is collected in many biomedical studies. For example, in

a study of the effect of Nimodipine on patients with subarachnoid hemorrhage (SAH),

patients underwent multiple 4-hour treatment cycles. Within each treatment cycle,

subjects’ vital signs were recorded every 10 minutes. This data has a natural multi-

level structure with treatment cycles nested within subjects and measurements nested

within cycles. Most literature on nonparametric analysis of such multilevel functional

data focus on conditional approaches using functional mixed effects models. However,

parameters obtained from the conditional models do not have direct interpretations

as population average effects. When population effects are of interest, we may em-

ploy marginal regression models. In this work, we propose marginal approaches to

fit multilevel functional data through penalized spline generalized estimating equation

∗Correspondence author
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(penalized spline GEE). The procedure is effective for modeling multilevel correlated

generalized outcomes as well as continuous outcomes without suffering from numerical

difficulties. We provide a new variance estimator robust to misspecification of correla-

tion structure. We investigate the large sample properties of the penalized spline GEE

estimator with multilevel continuous data and show that the asymptotics falls into two

categories. In the small knots scenario, the estimated mean function is asymptotically

efficient when the true correlation function is used and the asymptotic bias does not

depend on the working correlation matrix. In the large knots scenario, both the asymp-

totic bias and variance depend on the working correlation. We propose a new method

to select the smoothing parameter for marginal penalized spline regression based on an

estimate of the asymptotic mean squared error (MSE). Finally, we apply the methods

to the SAH study to evaluate a recent debate on discontinuing the use of Nimodipine

in the clinical community.

Key words: Penalized spline; GEE; Semiparametric models; Longitudinal data; Functional

data

1 Introduction

Multilevel functional data is often collected in many biomedical studies. For example, in

a study of the effect of Nimodipine on patients diagnosed with subarachnoid hemorrhage

(SAH) introduced in section 1.1 below, each patient is administered with one of the two

doses of Nimodipine during multiple 4-hour treatment cycles, and their clinical outcomes

were recorded every 10 minutes (Choi et al. 2011). The data has a multilevel structure with

treatment cycles nested within subjects and repeated outcome measurements nested within

cycles.

Modeling multilevel functional data has recently received extensive attention. Brumback

and Rice (1998) used smoothing splines based methods to analyze nested samples of function-
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al data. Guo (2002) proposed a functional mixed effects model with functional random effects

fitted by a Kalman filtering. Zhou et al. (2008) proposed jointly modeling paired sparse func-

tional data with reduced rank principal components. Baladandayuthapani et al. (2008) and

Staicu et al. (2010) developed a functional mixed effects model based Bayesian approaches for

correlated multilevel spatial data. Crainiceanu et al. (2009) proposed methods for function-

al regression with multilevel functional predictors under a mixed effects model framework.

Apanasovich et al. (2008) proposed a composite likelihood based approach for correlated

binary data. Di et al. (2009) developed a functional multivariate analysis of variance which

used a few functional principal components to reduce dimensionality.

The above methods on multilevel functional data in the current literature focus on con-

ditional approaches through a functional mixed effects model or functional principal com-

ponents analysis. In clinical trials, such as the SAH study described in section 1.1 (Choi et

al. 2011), the goal is to estimate the population average effect or group difference. To achieve

this goal, marginal approaches are more suitable than conditional approaches. There is a

wealth of literature on nonparametric marginal regression models through local polynomial

or kernel based methods (see for example, Lin and Carroll 2000, Welsh et al. 2002, Lin

et al. 2004). In particular, Welsh et al. (2002) compared the efficiency of the local kernel

based methods with spline based methods for marginal models with single-level function-

al data. However, it is not straightforward to apply kernel smoothing to accommodate the

multilevel data structure. A few other works that propose marginal models fitted by smooth-

ing splines include Ibrahim and Suliadi (2010a, 2010b). In a variable selection setting, Fu

(2003) proposed penalized generalized estimating equation (penalized spline GEE) to handle

collinearity among variables.

The pros and cons of marginal versus conditional model for longitudinal data has been

debated extensively in literature (see for example, Diggles et al. 2002). Marginal models

provide a direct estimation of the population average effect. In contrast, for generalized out-

comes, conditional models do not directly give estimators of population averaged marginal
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effects due to a non-identity link function. Therefore, when marginal effects are of interest,

subject-specific random effects need to be integrated out, usually through numerical inte-

gration. In addition, a potential computational advantage of the marginal regression is that

since the procedure only requires the specification of the first two moments of the marginal

distribution, it is particularly effective for modeling correlated generalized outcomes. Nu-

merical algorithms for conditional approaches for multilevel functional data with generalized

outcomes may not always converge. In the SAH study, the functional mixed effects model

with a two-level random effects did not converge for the primary binary outcome. Further-

more, a widely known advantage of using a robust sandwich variance estimator in marginal

models is that it remains consistent under a misspecified working correlation structure. For

a parametric model, the estimated mean parameters are asymptotically efficient when the

true correlation is used. However, for nonparametric models fitted by local polynomials,

such property does not hold (Lin and Carroll 2000). To take into account the within-cluster

correlation to improve efficiency, seemingly unrelated kernel estimator should be used (Wang

2003, Lin et al. 2004). It may not be straightforward to adapt local kernel based approaches

to effectively account for more complicated multilevel functional data.

There is few literature on marginal approaches for multilevel functional data through

reduced-rank penalized spline smoothing (P-spline; Eilers and Marx 1996; Ruppert et

al. 2003). In this work, we study semiparametric marginal regression models with multi-

level continuous or generalized functional data. The developed penalized spline GEE and

robust variance estimator provide tools to evaluate the population average effect without

requiring integrating over the distribution of the random effects. The rest of the manuscript

is organized as follows. In section 1.1, we provide an overview of the clinical study that mo-

tivated this research. In section 2, we present the penalized spline GEE for marginal models

along with a robust variance estimator. In section 3, we investigate large sample properties

of the proposed estimator and show that similar to independent data, the asymptotics fall

into two scenarios. For the small knots scenario, the estimated population mean function is
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asymptotically efficient when the true correlation function is used and the asymptotic bias

does not depend on the working correlation matrix. For the large knots scenario, both the

asymptotic bias and variance depend on the working correlation. In section 4, we use the

asymptotic results to develop a new method to select the smoothing parameter for marginal

regressions based on an estimated asymptotic mean squared error (MSE). In section 5, we

carry out extensive simulation studies to examine the performance of the approaches under

various models. In section 6, we apply the proposed methods to the SAH study to evaluate

a debatable recommendation in the clinical community to discontinue the use of Nimodipine

among SAH patients. Lastly, in section 7 we conclude with some remarks.

1.1 Motivating example: Nimodipine and the SAH study

Subarachnoid hemorrhage (SAH) is an acute cerebrovascular event caused by rupture of a

cerebral aneurysm. It can have devastating consequences, causing serious morbidity and

mortality. Nimodipine is the only medication shown in phase III trials to improve clinical

outcomes after SAH (Dorhout et al. 2007). Although initial clinical studies did not document

low blood pressure as a side effect, a decrease in the blood pressure and even a decrease in

brain oxygen delivery has been observed during routine clinical usage (Stiefel et al. 2004).

In light of these clinical findings, the effectiveness of Nimodipine has been challenged. In

fact, recent clinical guidelines have suggested discontinuing the use of Nimodipine when ad-

ministration is associated with significant decreases in blood pressure. Although this is a

strong recommendation, the committee admits to little clinical data supporting their recom-

mendation (Dringer et al. 2011). In this work, we aim to quantify the effect of Nimodipine

on various physiologic outcomes from an observational study of SAH patients admitted to a

neurological intensive care unit (Choi et al. 2011).

Nimodipine is administered to patients with SAH at one of the two doses every 4 hours,

creating multiple 4-hour treatment cycles. Within each treatment cycle, subjects’ vital signs

such as mean arterial blood pressure (MAP) and brain tissue oxygenation are recorded
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continuously and averaged over 10 minutes. Every 4 hours a patient receives a high dose or

a low dose of Nimodipine depending on his or her clinical profile. This scenario creates a

natural multilevel data structure with treatment cycles nested within subjects and repeated

outcome measurements nested within cycles. Our primary research interest is to estimate

mean physiologic outcomes averaged across treatment cycles and across subjects to evaluate

the acute effects of Nimodipine on systemic and brain physiology. Specific research questions

include whether Nimodipine increases or reduces the MAP and its effect on the risk of cerebral

autoregulation loss.

2 Marginal nonparametric or semiparametric models

and reduced rank smoothing

2.1 Single-level continuous functional data

Let i = 1, · · · , n index subject and let j = 1, · · · , ni index observations within a subject.

Let Yi = (Yi1, · · · , Yini
)T denote a vector of outcomes on the ith subject, let Xij denote a

vector of covariates and let Xi = (Xi1, · · · , Xini
)T . For simplicity in illustration, we present

methods for a nonparametric model. It is straightforward to extend it to semiparametric

models such as a partially linear model. Consider the marginal regression,

E(Yij|Xij) = f(Xij), cov(Yi|Xi) = Σi,

where f(·) is an unspecified smooth function. Let B(x) denote an l-dimensional vector

of spline basis functions, such as B-splines or truncated polynomials. For the pth order

truncated polynomial with K knots, B(x) = [1, x, · · · , xp, (x− τ1)
p
+, · · · , (x− τK)

p
+]

T , where

τ1, · · · , τK is a sequence of knots. Let Bi = [B(Xi1), · · · , B(Xini
)]T denote the ni × l matrix

of basis functions. Given the covariance matrix Σi, the usual penalized spline estimator with
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the qth order penalty minimizes a weighted least-square,

n∑
i=1

(Yi −Biθ)
TΣ−1

i (Yi −Biθ) + λ

∫ b

a

{
[BT (x)θ](q)

}2

dx,

where θ is a vector of basis coefficients and λ is a smoothing parameter. Using a difference-

based penalty matrix, the above can be expressed as:

n∑
i=1

(Yi −Biθ)
TΣ−1

i (Yi −Biθ) + λθTDqθ,

where Dq is an appropriate penalty matrix depending on the chosen basis. For example, for

the pth order truncated polynomial basis, we have q = p+ 1 and Dq = diag(0p+1,1K). The

fitted value at a fixed point is f̂(x) = BT (x)θ̂ and its standard error is estimated from

BT (x)

(
n∑

i=1

BT
i Σ

−1
i Bi + λDq

)−1 n∑
i=1

BT
i Σ

−1
i Bi

(
n∑

i=1

BT
i Σ

−1
i Bi + λDq

)−1

B(x). (1)

In practice, Σi is often unknown and will be estimated under a parametric model. A mis-

specified parametric model would lead to an inconsistent estimate of the standard error of

f̂(x).

Next, consider the GEE for a parametric mean model with a design matrix Zi which

solves

n∑
i=1

ZT
i V

−1
i (Yi − Ziη) = 0,

where Vi is a working covariance matrix of Yi not necessary equal to the true covariance Σi.

Although no likelihood is assumed for the GEE-based approaches, the estimating equation

can be treated as the score equation for mean parameters from a partly exponential model

(Zhao, Prentice and Self 1992). For a model with a nonparametric mean function, adding

a roughness penalty to a partly exponential model and taking the partial derivative with

respect to the basis coefficients for the mean function motivates the penalized spline GEE,

n∑
i=1

BT
i V

−1
i (Yi −Biθ)− λDqθ = 0,

7



where again Vi is a working covariance matrix. When ignoring the penalty term, the penalized

spline GEE reduces to a regular parametric GEE. The solution is

θ̂λ =

(
n∑

i=1

BT
i V

−1
i Bi + λDq

)−1 n∑
i=1

BT
i V

−1
i Yi, (2)

and the sandwich covariance formula for θ̂λ is

cov(θ̂λ) = H−1
n,λMnH

−1
n,λ, (3)

where Hn,λ =
∑n

i=1B
T
i V

−1
i Bi + λDq, and Mn =

∑n
i=1 B

T
i V

−1
i (Yi − Biθ)(Yi − Biθ)

TV −1
i Bi.

The sandwich variance for f̂(x) is

var[f̂(x)] = BT (x)cov(θ̂λ)B(x).

Let τ index a finite dimensional parameter vector for Vi and let V̂i = Vi(τ̂). The variance

is then estimated by Ĥn,λ =
∑n

i=1B
T
i V̂

−1
i Bi + λDq and M̂n =

∑n
i=1B

T
i V̂

−1
i (Yi −Biθ̂0)(Yi −

Biθ̂0)
T V̂ −1

i Bi in (3), where θ̂0 is an initial regression spline estimator.

Note that this new variance estimator (3) differs from the usual model-based estimator in

(1). It shares the robustness property as the sandwich variance estimator for the parametric

marginal regressions: it remains consistent even if the correlation structure is misspecified.

2.2 Single-level generalized functional data

Again, first consider a nonparametric model

E(Yij|Xij) = µij, g(µij) = f(Xij),

where g(·) is a known link function and f(·) is an unspecified smooth function. Let µ(·) =

g−1(·) denote the inverse of the link function, and with a little abuse of notation, let µ(Biθ) =

[µ(BT
i1θ), · · · , µ(BT

ini
θ)]T . The penalized spline GEE for generalized outcomes is then

n∑
i=1

DT
i (θ)[Vi(θ)]

−1[Yi − µ(Biθ)]− λDqθ = 0, (4)
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where Di(θ) =
∂µ(Biθ)

∂θ
, Vi(θ) = A

1/2
i (θ)Ri(τ)A

1/2
i (θ), Ai(θ) = diag[var(Yi1), · · · , var(Yini

)],

and Ri(τ) is a working correlation matrix. Similar to the continuous outcome model, the

sandwich covariance estimator for θ̂λ takes the same form as (3) with

Hn,λ(θ) =
n∑

i=1

BT
i Ai(θ)[Vi(θ)]

−1Ai(θ)Bi + λDq and

Mn(θ) =
n∑

i=1

BT
i Ai(θ)[Vi(θ)]

−1[Yi − µ(Biθ)][Yi − µ(Biθ)]
T [Vi(θ)]

−1Ai(θ)Bi,

which can be estimated by replacing θ with θ̂λ in the above expressions.

The estimating equation in (4) and the variance estimator are different from the likelihood

based conditional approaches. The resulting fitted function and parameters also have differ-

ent interpretations (population average effects) from the ones obtained from a conditional

models (subject-specific effects).

2.3 Multilevel functional data

For multilevel functional data, let Yij(tijk) denote the measurement on the ith subject during

the jth cycle at the kth time point, where i = 1, · · · , n, j = 1, · · · , ni and k = 1, · · · , nij.

The marginal methods presented in previous sections can be applied under the working as-

sumption that all measurements on the ith subject are independent. However, a good choice

of working covariance matrix may improve estimation efficiency. To obtain a reasonable

working covariance, we present a two-way functional analysis of variance (ANOVA) working

model as,

Yij(tijk) = µ(tijk) + ηj(tijk) + ξi(tijk) + γij(tijk) + εijk, (5)

where µ(t) is the grand mean function, ηj(t) is the deviation of the jth cycle from the grand

mean, or the cycle effect, ξi(t) is the subject-specific deviation from the cycle-specific mean

function (or the subject effect), γij(t) is the interaction effect, and εijk ∼ N(0, σ2
ε) are the

residual measurement errors.

9



Using the spline basis expansion, we have

µ(t) ≈ BT (t)µ, ηj(t) ≈ BT (t)ηj, ξi(t) ≈ BT (t)αi, γij(t) ≈ BT (t)γij,

where µ, ηj, αi and γij are basis coefficients. Let Yij = [Yij(tij1), · · · , Yij(tijnij
)]T and Bij =

[Bij(tij1), · · · , Bij(tijnij
)]T . Then a working model using regression splines can be expressed

as

Yij = Bijµ+Bijηj +Bijαi +Bijγij + εij, (6)

ηj ∼ N(0,Θ), αi ∼ N(0,Λ), γij ∼ N(0,Γ), εij ∼ N(0, σ2
εInij

).

Under the model (6), a working covariance matrix is computed to improve estimation ef-

ficiency. Other working covariance can also be used. We do not assume the covariance

structure to be correctly specified and will use the robust sandwich formula to compute the

standard error of the mean function. For generalized outcomes, a similar functional ANOVA

model can be defined.

3 Asymptotic properties

For independent data, Claeskens et al. (2008) showed that the asymptotics of the penalized

spline estimator fall into two categories, depending on the number of knots used. Zhu et

al. (2008) studied asymptotics for regression spline estimator with correlated data. Here we

examine the asymptotics of penalized spline estimator in a marginal model for correlated

continuous data.

We assume cov(Yi) = Σ, thus the covariance matrix does not vary across subjects. Let

V denote a working covariance matrix of Yi and let B = (BT
1 , · · · , BT

n )
T . Let Cp+1([a, b])

denote the space of all p+1 times continuously differentiable functions defined on [a, b]. Let

G = (gij) and V −1 = (vst) with

gij =
m∑
s ̸=t

∫ b

a

∫ b

a

Bi(x)v
stBj(y)ρst(x, y)dxdy +

m∑
s=1

∫ b

a

Bi(x)v
ssBj(x)ρs(x)dx,
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where Qn,jl(x, y) =
1
n

∑n
i=1 I(tij ≤ x, ti,l ≤ y), Qn,j(x) =

1
n

∑n
i=1 I(tij ≤ x). Here, Qjl(x, y)

and Qj(x) are certain distribution functions with positive continuous density functions

ρjl(x, y) and ρj(x). Let W = {wij} = V −1ΣV −1 and U = {uij}, where

uij =
m∑
s ̸=t

∫ b

a

∫ b

a

Bi(x)wstBj(y)ρst(x, y)dxdy +
m∑
s=1

∫ b

a

Bi(x)wssBj(x)ρs(x)dx.

Denote the approximation bias as ba(t, p+ 1). Zhu et al. (2008) showed that

ba(t, p+ 1) = −µ(p+1)(t)

(p+ 1)!

K∑
i=0

I(τi ≤ t < τi+1)δ
p+1
i Bp+1(

t− τi
δi

).

Denote the shrinkage bias as bλ(x, V ) = −λ

n
BT (x)(G+

λ

n
Dq)

−1Dqβ, where

β = (BTV −1B)−1BTV −1sf/n, V = diag(V, · · · , V ), and sf (·) = BT (·)β is the best L∞

approximation to the function f(·).

Define Kq = λK2q/n.

Theorem 1. Assume that conditions A1 through A4 in the appendix hold.

1. If Kq = o(1) and f(·) ∈ Cp+1[a, b], then the following statements hold

E[f̂(x)]− f(x) = ba(x, p+ 1) + bλ(x, V ) + o[K−(p+1)] + o

(
λ

n
Kq

)
,

var[f̂(x)] =
1

n
BT (x)(G+

λ

n
Dq)

−1U(G+
λ

n
Dq)

−1B(x) + o

(
K

n

)
,

MSE[f̂(x)] = O

(
K

n

)
+O(K−2(p+1)) +O

(
λ2

n2
K2q

)
.

For K = O(n
1

2p+3 ) and λ = O(nγ) for γ ≤ (p + 2 − q)/(2p + 3), the optimal rate for mean

squared error (MSE), n− 2p+2
2p+3 , is attained by the penalized spline estimator.

2. If Kq = O(1) and f(·) ∈ Cp+1[a, b], the following statements hold

E[f̂(x)]− f(x) = ba(x, p+ 1) + bλ(x, V ) + o(K−q) + o

[(λ
n

) 1
2

]
,

var[f̂(x)] =
1

n
BT (x)(G+

λ

n
Dq)

−1U(G+
λ

n
Dq)

−1B(x) + o

[
1

n

(λ
n

)− 1
2q

]
,

MSE[f̂(x)] = O

[
1

n

(λ
n

)− 1
2q

]
+O

(
K−2q

)
+O

(
λ

n

)
.

For λ = O(n
1

2q+1 ) and K = O(n
1

2q+1 ), the optimal rate for MSE, n− 2q
2q+1 , is attained by the

penalized spline estimator.
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Proof of this Theorem is in the technical appendix. We make the following remarks:

Remark 1. The asymptotic scenario 1 is close to regression spline, i.e., the optimal rate of

mean squared error (MSE) attained by the penalized spline estimator is similar to a regression

spline estimator shown in Zhu et al. (2008). In this case, the shrinkage bias becomes negligible

when smoothing parameter λ = O(nγ) is small, that is when γ ≤ (p+2−q)/(2p+3). Therefore

the asymptotic MSE is dominated by the squared approximation bias and asymptotic variance.

Remark 2. The asymptotic scenario 2 is close to smoothing spline, i.e., the optimal rate

of MSE attained by the penalized spline estimator is similar to a smoothing spline estimator

shown in Lin et al. (2004). In this case, the approximation bias becomes negligible when the

number of knots K = O(nν) is large, that is when ν ≥ q
(2q+1)(p+1)

. Therefore, the asymptotic

MSE is dominated by the squared shrinkage bias and asymptotic variance. This property is

useful for developing methods to choose smoothing parameter.

Remark 3. In the asymptotic scenario 1, since the shrinkage bias is negligible, the asymp-

totic bias does not depend on the choice of working covariance matrix or the design density

Q(x). The asymptotic variance is minimized when the true covariance V = Σ is used,

therefore the asymptotic MSE is minimized when V = Σ.

Remark 4. In the asymptotic scenario 2, the shrinkage bias is not negligible and the asymp-

totic bias depends on the working covariance matrix, the true covariance matrix, and the

design density Q(x). Therefore the penalized spline estimator is not “design-adaptive” in the

sense of Fan (1992). When λ converges to infinity at a certain rate, we show in the appendix

that the asymptotic variance is minimized when V = Σ, which is similar to that reported in

Welsh et al. (2002).

In many cases, the working covariance matrix is estimated. Let τ index a finite dimen-

sional parameter vector of the V and let V̂ = V (τ̂). Suppose τ can be estimated at a

parametric rate, i.e., τ̂ = τ + op(n
−1/2). The next theorem shows that the estimation of τ̂

does not have any effect on the asymptotic distribution of f̂(x).
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Corollary 1. Assume Kq = o(1) and that there exists h > 0, C > 0, such that

supi,j E|ϵij|2+h ≤ C, where ϵij = Yij − f(Xij). Then

f̂(x)− f(x)− ba(x, p+ 1)− bλ(x, V )√
var[f̂(x)]

−→ N(0, 1)

in distribution, as n −→ ∞. Furthermore, we have v̂ar[f̂(x)] = var[f̂(x)] + op(1). Lastly, let

f̃(x) = BT (x)[
∑n

i=1(B
T
i V̂

−1Bi + λDq)
−1
∑n

i=1B
T
i V̂

−1Yi], then f̃(x) = f̂(x) + op(1).

Proof of the corollary 1 is in the appendix. Here, the normality addresses the small knots

scenario.

4 Selection of the smoothing parameter

For penalized spline smoothing, there are two tuning parameters to be determined: the num-

ber of knots of the spline basis and the smoothing parameter. Both empirical and theoretical

work have suggested that when the number of knots is sufficiently large, increasing it further

does not guarantee improvement in the quality of fit (Ruppert 2002; Li and Ruppert 2008).

With a sufficiently large number of knots, the choice of smoothing parameter is critical for

satisfactory performance. Popular methods to choose smoothing parameter include infor-

mation criterion based approaches such as AIC and BIC, cross-validation (CV), generalized

cross-validation (GCV, Craven and Wahba 1979), generalized maximum likelihood (GML,

Wahba 1985), and restricted maximum likelihood (REML, Wand 2003) where the smoothing

parameter is estimated as a ratio of two variance components. Opsomer et al. (2001) com-

pared various methods for choosing smoothing parameter with correlated data and found

that GCV may tend to under-smooth data. For marginal models, no likelihood is specified;

thus an AIC, BIC or REML-based smoothing parameter is not available.

Here we assume a sufficient number of knots is used and propose a new method to select

the smoothing parameter by minimizing an estimate of the asymptotic average mean squared

error. The asymptotic analysis in section 3 reveals that the bias is decomposed as the sum
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of the approximation bias and the shrinkage bias. Since the approximation bias does not

depend on λ, we propose to select the smoothing parameter by minimizing an estimate of

the asymptotic MSE as the sum of the squared shrinkage bias and the asymptotic variance.

To be specific, we choose λ by

argminλ

(
1

M

M∑
j=1

{
b̂2λ(xj, V̂ ) + v̂ar[f̂(xj)]

})
,

where xj, j = 1, · · · ,M, belong to a grid set covering the range of Xi. Note that the

shrinkage bias is the difference between the bias of the penalized spline estimator and the

approximation bias, or the bias due to the shrinkage effect. It can be estimated by the

difference between a regression spline estimator and a penalized spline estimator through

nonparametric bootstrap. Specifically, with a given λ, at a given x, and for each bootstrap

copy of data, we obtain a penalized spline estimator, f̂
(b)
λ (x), and a regression spline estimator

f̂
(b)
reg(x). We repeat this procedure B times, where B is large, and estimate the squared

shrinkage bias by

b̂2λ(x, V̂ ) =
1

B

B∑
b=1

[f̂
(b)
λ (x)− f̂

(b)
reg(x)]

2.

We compare the proposed MSE-based choice of smoothing parameter with other existing

alternatives, such as CV or GCV, in simulation studies.

5 Simulation studies

To study the performance of the proposed approaches, we conduct four simulation studies.

The first two studies investigate the proposed methods for single-level functional data and

the last two studies assess methods for multilevel data. In each case, we carried out 500

simulation runs. For penalized spline estimators, we used a truncated quadratic polynomial

base with 20 knots.

Scenario I: Single-level functional data

Study I: Continuous outcome
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The continuous outcomes are generated from the model

Yij = f(Xij) + ϵij, i = 1, · · · , n, j = 1, · · · ,m, (7)

with n = 200 and m = 3. The covariates Xij are independently generated from a uniform

distribution, U(0, 1). The random errors are generated from a multivariate normal, uni-

form or Laplace distribution with compound symmetry correlation and ρ = 0.2. The true

underlying function f(x) is log(x), 2 exp(x), or 2 sin(2πx).

We compare the proposed P-spline approach with a regression spline approach (R-spline)

where the number of knots is chosen by leave-ten-subjects-out cross validation. For the

P-spline estimator, we compare two methods for choosing the smoothing parameter: the

proposed MSE-based and the GCV. The GCV for correlated continuous data minimizes

GCV(λ) =

∑
ij(Ỹij − B̃T

ijβ̂λ)
2

{1− 1
N
trace[H−1

n (β̂λ)Gn]}2
,

where Ỹi = Σ̂
−1/2
0 Yi, B̃i = Σ̂

−1/2
0 Bi, Gn =

∑
i B̃

T
i B̃i, and Σ̂0 is estimated based on an initial

regression spline estimator.

Table 1 summarizes the mean of average MSE, i.e., 1
N

∑
ij[f̂(Xij) − f(Xij)]

2, over 500

simulation repetitions for all estimators. We see that in all scenarios, the P-spline with MSE-

based smoothing parameter is more efficient than the other two approaches. The efficiency

gain can be up to 18%. In several scenarios with non-normal random errors, the MSE-based

P-spline estimator has 50% lower mean average MSE than the R-spline estimator. When the

true underlying function is 2 sin(2πx), the P-spline with GCV to choose smoothing parameter

is the least efficient, where its mean average MSE is about five times as large as the other

approaches. A close inspection of our simulations suggest that in some cases, GCV tends to

under-smooth data for correlated data, which is consistent with results reported in literature

(Opsomer et al. 2001; Welsh et al. 2002).

In Table 2, we show the mean estimated pointwise standard error using the sandwich

estimator under a compound symmetry or a working independent covariance structure. We

compare the sandwich estimator with the empirical standard deviation and the model-based
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standard error estimators. When the underlying covariance structure is correctly specified as

compound symmetry, both the sandwich estimator and the model-based estimator are close

to the empirical standard deviation of f̂(x). However, when assuming an incorrectly specified

working independent covariance structure, the model-based standard error underestimates

variability of f̂(x), while the sandwich estimator is still close to the empirical standard

deviation. The f̂(x) fitted with a correctly specified compound symmetry covariance has a

lower empirical variance than f̂(x) fitted with an incorrectly specified working independent

covariance, indicating some efficiency gain in choosing an appropriate correlation structure.

Similar results are obtained for other functions of f(x), which are not shown here.

Study II: Binary outcome

The binary outcomes are generated from the marginal model,

logit[Pr(Yij = 1)] = f(Xij), i = 1, · · · , n, j = 1, · · · ,m, (8)

where n = 100, m = 5, and the within subject correlation is compound symmetry with

ρ = 0.2. The covariates Xij are independently generated from U(0, 1). We use three different

functions f(x) = sin(2πx), exp(x)− 2, and 2− 16x+ 30x2 − 15x3. Since the standard GCV

does not apply to correlated binary data, we compare the MSE-based smoothing parameter

selection with leave-ten-subjects-out cross validation. Table 3 and 4 summarize the mean

average MSE of f̂(x) and pointwise standard deviation. In all three cases, the P-spline with

MSE-based smoothing parameter selection is more efficient than the other two approaches.

The efficiency gain of P-spline (MSE) over P-spline (CV) or R-spline is up to 20%.

We assess performance of the standard error estimation with f(x) = sin(2πx) under

a compound symmetry and a working independent correlation structure. The pointwise

sandwich standard error estimator is close to the empirical standard deviation of f̂(x) under

both correlation structures. The results for the other two functions are similar and thus are

not shown here. Again, when working independence is assumed, the model-based standard

error is much smaller than the empirical standard deviation of f̂(x). Similar to Study I,

using a correctly specified covariance structure improves estimation efficiency of f̂(x).
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Scenario II: Multilevel functional data

Study I′: Continuous outcome

We generated the outcomes from a three-level partially linear model,

Yijk = f(Xijk) + Ziβ + αi + ηij + ϵijk, (9)

i = 1, · · · , n, j = 1, · · · , J, k = 1, · · · ,m,

where n = 30, J = 5, m = 10, and αi ∼ N(0, 1) are subject-level random effects, and

ηij ∼ N(0, 1) are subject-specific cycle-level random effects. Note that for continuous data,

f(·) and β in model (9) are marginal means and the random effects are merely used to

simulate correlation among outcomes. The covariates Xijk are independently generated

from U(0, 1), and the measurement errors ϵijk are independently generated from N(0, 1).

The subject level covariates Zi are i.i.d. and follow N(0, 1) and the coefficient β = 0.4. We

used two different functions, f(x) = 2 sin(2πx) and f(x) = 2 − 16x + 30x2 − 15x3. We

examine three working correlation structures: assuming all observations are independent,

assuming observations from different cycles are independent (between-cycle independence),

and the true correlation structure (accounting for both between- and within-cycle correlation

of the observations on the same subject). For the P-spline approaches, the proposed MSE

method was used to select the smoothing parameter.

Tables 5 and 6 summarize the simulation results. In Table 5, we show the mean average

MSE of the fitted nonparametric function and the standard error of the parametric estimate.

In terms of the mean average MSE, using a correctly specified correlation structure yields

the most efficient estimator and accounting for the within-cycle correlation but ignoring the

between-cycle correlation ranks the second. Using working independent covariance for all

observations on a subject provides the least efficient estimator. Compared to the R-spline,

the P-spline estimator has a smaller mean average MSE. For the estimation of the parametric

part, all the approaches lead to estimators with small biases and similar variances. Table

6 shows the pointwise mean estimated standard error of f̂(x). For all the three correlation

structures, the sandwich estimates are close to the corresponding empirical variances. How-
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ever, properly accounting for correlation increases the efficiency of the estimate. When the

correct correlation structure is used, the model-based pointwise standard error estimate is

close to the empirical estimate as well. We see that the pointwise empirical standard devi-

ation is slightly higher when using working independence covariance is slightly higher than

using independent cycle or correctly specified correlation.

Study II′: Binary outcome

Here we generate binary outcomes from the following three-level model:

logit[Pr(Yijk = 1)] = f(Xijk) + Ziβ, (10)

i = 1, · · · , n, j = 1, · · · , J, k = 1, · · · ,m,

where the between-cycle correlation is 0.07 and within-cycle correlation is 0.3, n = 50, J = 5,

and m = 5. The correlation at both levels assume exchangeable structure. The covariates

Xijk are independently generated from U(0, 1). The subject level covariates Zi are generated

from U(0, 1) with the coefficient β = 0.2. Two functions, f(x) = sin(2πx) and exp(x)−2 are

used. We compare the estimator obtained assuming working independence of all observations

on a subject to the one assuming between cycle independence. For the P-spline estimators,

the proposed MSE-based method is used to select the smoothing parameter.

The simulation results are shown in Tables 7 and 8. Table 7 summarizes the mean average

MSE of the nonparametric estimate and the standard error of the parametric estimate. The

results are analogous to those in study I′ for the continuous outcome. In general, properly

accounting for the correlation leads to a smaller mean average MSE estimate. For the

parametric coefficient, all the approaches result in estimators with small biases and similar

variances. For the nonparametric function, the P-spline estimators are more efficient than

the R-spline estimator.Table 8 summarizes the mean pointwise standard error estimate of

the fitted nonparametric function. We observe the sandwich variance estimates to be close

to the corresponding empirical variance estimates using either correlation structure.
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6 Data analysis

Per clinical protocol in the SAH study, Nimodipine was administered orally every 4 hours

(Choi et al. 2011). Each patient received a dose of 30 mg (low dose) or 60 mg (high dose).

Patients underwent multiple treatment cycles and their physiologic outcomes, such as MAP

and brain oxygenation, during each treatment cycle were recorded. The dose level does

not change within a treatment cycle of the same patient, but can change from cycle to

cycle depending on the patient’s clinical profile. The oxygen reactivity index (ORX) was

calculated post-hoc as the running Pearson correlation coefficient between the brain tissue

oxygenation and cerebral perfusion pressure, which takes a value between −1 and 1. The

ORX is an index of cerebral autoregulation, a reflection of the cerebral vasculatures ability

to control blood flow to the brain, independent of the systemic blood pressure. Higher ORX

values indicate a higher risk of poor outcome after acute brain injury (Jaeger et al. 2006).

Physiologic variables were measured continuously and averaged over 10 minutes. Patients

were monitored for 90 minutes before each dose, making for 9 measurements, and 120 minutes

after the dose, making for 12 measurements. Including the time of administration, each cycle

had a total of 22 measurements. We observed 562 treatment cycles, among which 30 mg

Nimodipine was given in 279 cycles and 60 mg Nimodipine was given in 283 cycles. The total

number of observations is 11482. In Figure 1, we show the scatter plot of a subject’s MAP

during several treatment cycles. A scatterplot smoothing line was added to each individual

figure.

The primary research goal of the study is to estimate the effect of Nimodipine on vari-

ous physiologic outcomes in patients with SAH averaged across treatment cycles and across

patients. The correlation between measurements taken at different cycles on a subject and

repeated measurements within a cycle may be difficult to model. Such correlation is not of

scientific interest but needs to be accounted for. Hence, the marginal approach focusing on

average effect with a robust standard error estimate is the preferred analysis. For the contin-

uous outcome of interest, MAP, we fitted the marginal model under two working covariance
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structures: (1) assuming independence between cycles and exchangeable correlation within

cycles; and (2) the two-way ANOVA in (5) accounting for both levels of correlation. The

marginal mean is specified with a varying coefficient model,

E(Yijk|Xijk,Wij, Zij) = f(Xijk) + β(Xijk)Wij + ZT
i γ, (11)

whereXijk is the time in a treatment cycle centered at the point of administering Nimodipine,

Wij is an indicator of being on the higher dose, Zi is a vector of baseline covariates including

age and gender, f(·) is the MAP for the lower dose cycle, and β(·) is the difference in MAP

between the two dose cycles.

In the upper panel of Figure 2, we show the sample mean MAP obtained by averaging

measurements at the same time point across subjects and treatment cycles. In the lower left

panel of the same figure, we show the estimated mean MAP for each dose cycle obtained

from model (11), assuming working independence of all observations on the same subject.

The lower right panel presents the estimated MAP, assuming the working two-way ANOVA

model in (5). The smoothed estimates obtained from model (11) reflect a similar trend to the

sample average. Using different working correlation structures gives similar point estimates.

However, accounting for between-cycle correlation provides an estimator with a narrower

confidence band than when the between-cycle correlation is ignored.

As expected, Nimodipine has a larger effect on decreasing the MAP in high dose cycles

than on the low dose cycles: the mean MAP in a high dose cycle decreases from 120.7 (95%

CI: [119.1, 122.3] to 116.4 (95% CI: [114.7, 118.0]), while in the low does cycles it decreases

from 106.5 (95% CI: [105.4, 107.6]) to 105.1(95% CI: [104.0, 106.2]). The results also suggest

that the effect of Nimodipine in the high dose cycles lasts longer than the low dose cycles.

In Figure 3, we plot the estimated difference between MAP at a given time point (time t)

post-medication and right before taking the medication (time zero) in both dose cycles. In

the low dose cycles, there is a slight dip in the mean MAP and it bounces back 50 minutes

post-medication (left panel of Figure 3). In the high dose cycles, the mean MAP continues

to decrease until about 90 minutes after administering the medication (right panel of Figure
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3). From the pointwise confidence bands in Figure 3, we see that Nimodipine significantly

decreases the MAP in the high dose cycles over the course of a treatment cycle, while it only

slightly decreases the MAP in the low dose cycles.

The other goal of the study is to estimate the effect of Nimodipine on cerebral autoregu-

lation. We defined loss of autoregulation as the oxygen reactivity index (ORX) greater than

0.2. Patients with a prolonged loss of cerebral autoregulation are at risk for worse outcomes.

Let Rijk be the at risk indicator for subject i in cycle j at time point k. The multilevel

functional mixed effects model with a logit link function and normal random effects failed

to converge for this binary outcome. We fit the following marginal model to assess the risk

of loss of autoregulation,

logit[Pr(Rijk = 1)] = f(Xijk) + β(Xijk)Wij + ZT
i γ. (12)

The working covariance assuming exchangeable within cycle correlation and independent

between cycle correlation on the same subject is used. Figure 4 shows the estimated risk

cerebral autoregulation loss in the low and high dose cycles. For the low dose cycles, the

probability of autoregulation loss increases slightly before the medication and continues to

until 33 minutes post-medication, at which the maximal probability of 28% (95% CI [0.25,

0.31]) is attained. Then afterwards, the probability decreases to the minimal risk of 20%

(95% [0.16, 0.25]) at the end of the treatment cycle. For the high dose cycles, the risk of

cerebral autoregulation loss is always more than 30% and varies between 31% and 35.5%.

Analogous to the MAP outcome, we plot the odds ratio of cerebral autoregulation loss at

a time point t post-medication to right before taking the medication (time zero) in both

dose cycles. Figure 5 shows that the estimated odds ratio is greater than one until about

65 minutes after administering Nimodipine in the low dose cycles. For the high does cycles,

the estimated odds ratio stays above one until about 95 minutes after the administration.

However, there is no significant difference in the odds ratio of post-medication risk comparing

to right before medication between the two dosage groups for the entire treatment period.

In summary, we found some evidence of Nimodipine reducing the mean MAP when ad-
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ministered at the 60 mg dose, but not at the 30 mg dose. Nimodipine does not appear to

have a significant effect on cerebral autoregulation. These findings can be used to evalu-

ate the safety concerns of Nimodipine and the recommendation of discontinuing the use of

Nimodipine in SAH patients that is proposed in Diringer et al. (2011).

7 Discussion

The proposed marginal approach provides an effective alternative to analyze multilevel func-

tional data when the population average effects are of interest. The robust sandwich variance

estimator can be used for both conditional models and marginal models to protect against

misspecification of correlation matrix, especially when the data has a complicated multilevel

structure. Our investigation of the asymptotic properties reveals that for the small knots

scenario, the asymptotic bias does not depend on the working correlation matrix and that

the estimated mean function is asymptotically efficient when the working correlation is cor-

rectly specified. For the large knots scenario, both the asymptotic bias and variance depend

on the working correlation. A practical use of the asymptotic properties is to develop a new

method to select the smoothing parameter in marginal approaches based on minimizing the

asymptotic mean squared error. Without a likelihood framework, information criteria such

as AIC or BIC are not applicable to choose the smoothing parameter. However, for logistic

regression with random intercepts, under a bridge distribution (Wang and Louise 2003) the

marginal model takes a logistic form; therefore, the regression parameters in a conditional

model also has a marginal interpretation. Likelihood based inference can then be obtained

under a conditional model and it may be possible to estimate the smoothing parameter from

the likelihood using a bridge distribution for single level data.

Our methods can be applied to other marginal models such as an additive model,

g[E(Yijk|Xijk,Wijk)] = f1(Xijk) + f2(Wijk),

where f1(·) and f2(·) are smooth functions. For the multilevel MAP data in our example, we
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used a two-way ANOVA to obtain a working covariance function. Other techniques, such as

functional principal components can also be used to obtain an efficient working covariance

function and the standard error will be calculated by the robust sandwich formula. Although

consistency is guaranteed by the sandwich variance estimator, effective choice of covariance

structure for multilevel binary data deserves further research.
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Table 1: Mean average MSE of f̂(x) using various smoothing techniques and smoothing

parameter selectors, continuous outcome, n = 200,m = 3, 500 simulations.

f(x) Error dist. P-spline (MSE) P-spline (GCV) R-spline

log(x) N(0,1) 0.015 0.023 0.018

log(x) U(-3,3) 0.044 0.055 0.052

2 exp(x) N(0,1) 0.007 0.007 0.014

2 exp(x) Laplace(0,1) 0.021 0.021 0.041

2 sin(2πx) N(0,1) 0.011 0.065 0.013

2 sin(2πx) Laplace(0,1) 0.021 0.106 0.027

Table 2: Pointwise standard deviation, continuous outcome, f(x) = 2 sin(2πx), compound

symmetry correlation (ρ = 0.2), normal random error, n = 200,m = 3, 500 simulations.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CS Empirical 0.11 0.10 0.10 0.10 0.096 0.099 0.10 0.10 0.11

Model-based∗ 0.11 0.10 0.10 0.10 0.097 0.097 0.099 0.11 0.10

Sandwich 0.11 0.10 0.10 0.10 0.097 0.097 0.099 0.11 0.11

WI Empirical 0.12 0.12 0.12 0.12 0.10 0.12 0.12 0.11 0.12

Model-based∗∗ 0.099 0.096 0.093 0.093 0.092 0.091 0.093 0.094 0.098

Sandwich 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12

∗: Under correctly specified compound symmetry correlation

∗∗: Under incorrectly specified working independence correlation
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Table 3: Mean average MSE of f̂(x) using various smoothing techniques and smoothing

parameter selection, binary outcome, n = 100,m = 5, 500 simulations

f(x) P-spline (MSE) P-spline (CV) R-spline

sin(2πx) 0.059 0.064 0.063

exp(x)− 2 0.047 0.057 0.058

2− 16x+ 30x2 − 15x3 0.060 0.066 0.065

Table 4: Pointwise standard deviation with binary outcome, exchangeable correlation (ρ =

0.2), f(x) = sin(2πx), n = 100,m = 5, 500 simulations

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CS Empirical 0.27 0.25 0.24 0.24 0.23 0.22 0.22 0.24 0.24

Model-based∗ 0.25 0.24 0.23 0.22 0.21 0.21 0.22 0.23 0.23

Sandwich 0.25 0.23 0.23 0.22 0.21 0.21 0.22 0.23 0.24

WI Empirical 0.28 0.26 0.25 0.25 0.23 0.23 0.23 0.24 0.24

Model-based∗∗ 0.23 0.21 0.20 0.19 0.18 0.18 0.20 0.21 0.21

Sandwich 0.26 0.24 0.23 0.22 0.21 0.21 0.23 0.24 0.24

∗: Under correctly specified compound symmetry correlation

∗∗: Under incorrectly specified working independence correlation
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Table 5: Mean average MSE of f̂(x) and SE of β̂ using different correlation structures,

continuous outcome, multilevel model, n = 100, J = 5,m = 10, 500 simulations

f(x) = 2 sin(2πx)

R-spline P-spline (WI) P-spline (Ind cycles) P-spline (True)

AMSE[f̂(·)] 0.045 0.047 0.044 0.043

mean β̂ 0.395 0.394 0.394 0.395

mean ŜE(β̂) 0.221 0.221 0.221 0.221

f(x) = 2− 16x+ 30x2 − 15x3

R-spline P-spline (WI) P-spline (Ind cycles) P-spline (True)

AMSE[f̂(·)] 0.044 0.042 0.041 0.040

mean β̂ 0.401 0.401 0.401 0.401

mean ŜE(β̂) 0.243 0.243 0.243 0.242
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Table 6: Pointwise standard deviation, continuous outcome, multilevel model, normal ran-

dom error, n = 100, J = 5,m = 10, 500 simulations

f(x) = 2 sin(x)

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (WI) 0.22 0.22 0.21 0.21 0.20 0.22 0.23 0.22 0.22

Sandwich (WI) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Empirical (Ind cycles) 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.21

Sandwich (Ind cycles) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Empirical (True) 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.21

Model-based (True) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Sandwich (True) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

f(x) = 2− 16x+ 30x2 − 15x3

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (WI) 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.21 0.21

Sandwich (WI) 0.21 0.21 0.20 0.20 0.20 0.20 0.21 0.21 0.21

Empirical (Ind cycles) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.20

Sandwich (Ind cycles) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Empirical (True) 0.20 0.20 0.19 0.19 0.20 0.20 0.20 0.20 0.20

Model-based (True) 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Sandwich (True) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
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Table 7: Mean average MSE of f̂(x) and SE of β̂ using different correlation structures, binary

outcome, multilevel model, n = 100, J = 5,m = 10, 500 simulations

f(x) = sin(2πx)

R-spline P-spline (WI) P-spline (Ind cycles)

AMSE[f̂(·)] 0.077 0.075 0.074

mean β̂ 0.205 0.203 0.203

mean ŜE(β̂) 0.428 0.426 0.425

f(x) = exp(x)− 2

R-spline P-spline (WI) P-spline (Ind cycles)

AMSE[f̂(·)] 0.075 0.073 0.071

mean β̂ 0.191 0.191 0.191

mean ŜE(β̂) 0.434 0.436 0.433
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Table 8: Pointwise standard deviation, binary outcome, multilevel model, n = 100, J =

5,m = 10, 500 simulations

f(x) = sin(2πx)

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (WI) 0.27 0.27 0.27 0.26 0.26 0.27 0.27 0.27 0.27

Sandwich (WI) 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.26

Empirical (Ind cycles) 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.27 0.27

Sandwich (Ind cycles) 0.25 0.25 0.25 0.24 0.24 0.24 0.25 0.25 0.25

f(x) = exp(x)− 2

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Empirical (WI) 0.26 0.26 0.25 0.25 0.26 0.26 0.26 0.26 0.26

Sandwich (WI) 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.25

Empirical (Ind cycles) 0.26 0.26 0.24 0.25 0.25 0.25 0.25 0.25 0.25

Sandwich (Ind cycles) 0.25 0.24 0.24 0.24 0.23 0.23 0.23 0.24 0.25
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Figure 1: Scatterplot of the MAP versus time measured on a subject during four treatment

cycles. Dots: observed MAP; Solid line: local polynomial smoothing using observed MAP

in a cycle. Time is centered at administration of Nimodipine, so that negative values are

before using the medication and positive values are after using the medication.
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Figure 2: Estimated effect of Nimodipine on MAP and its 95% pointwise confidence band.

Upper panel: sample average at each time point. Lower left: assuming independence between

cycles. Lower right: using a working two-way ANOVA model based correlation structure.
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Figure 3: Estimated differences µ̂(t)− µ̂(0) and f̂(t)− f̂(0) for MAP, with µ̂(t) = f̂(t)+ β̂(t).

Left panel: the low dose group; Right panel: the high dose group. The solid lines are the

estimated curves and the dotted lines are associated the 95% pointwise confidence bands.
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Figure 4: Estimated effect of Nimodipine on being at risk of cerebral autoregulation loss.

Left panel: the low dose group. Right panel: the high dose group. The solid lines are the

estimated curves and the dotted lines are associated the 95% pointwise confidence bands.
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Figure 5: Estimated odds ratio exp[µ̂(t)]/ exp[µ̂(0)] and exp[f̂(t)]/ exp[f̂(0)] of at risk for

autoregulation loss, with µ̂(t) = f̂(t) + β̂(t). Left panel: the low dose group; Right panel:

the high dose group. The solid lines are the estimated curves and the dotted lines are

associated the 95% pointwise confidence bands.
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