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Abstract

This paper derives a second-order approximation to the solution of a general class of discrete-
time rational expectations models. The main theoretical contribution is to show that for any
model belonging to that class, the coe1cients on the terms linear and quadratic in the state
vector in a second-order expansion of the decision rule are independent of the volatility of the
exogenous shocks. In addition, the paper presents a set of MATLAB programs that implement
the proposed second-order approximation method and applies it to a number of model economies.
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1. Introduction

Since the seminal papers of Kydland and Prescott (1982) and King et al. (1988), it
has become commonplace in macroeconomics to approximate the solution to non-linear,
dynamic, stochastic, general equilibrium models using linear methods. Linear approx-
imation methods are useful to characterize certain aspects of the dynamic properties
of complicated models. In particular, if the support of the shocks driving aggregate
@uctuations is small and an interior stationary solution exists, Arst-order approxima-
tions provide adequate answers to questions such as local existence and determinacy
of equilibrium and the size of the second moments of endogenous variables.
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However, Arst-order approximation techniques are not well suited to handle questions
such as welfare comparisons across alternative stochastic or policy environments. For
example, Kim and Kim (in press) show that in a simple two-agent economy, a welfare
comparison based on an evaluation of the utility function using a linear approximation
to the policy function may yield the spurious result that welfare is higher under autarky
than under full risk sharing. The problem here is that some second- and higher-order
terms of the equilibrium welfare function are omitted while others are included. Conse-
quently, the resulting criterion is inaccurate to order two or higher. The same problem
arises under the common practice in macroeconomics of evaluating a second-order ap-
proximation to the objective function using a Arst-order approximation to the decision
rules. For in this case, too, some second-order terms of the equilibrium welfare function
are ignored while others are not. 1 In general, a correct second-order approximation of
the equilibrium welfare function requires a second-order approximation to the policy
function.

In this paper, we derive a second-order approximation to the policy function of a
general class of dynamic, discrete-time, rational expectations models. A strength of
our approach is not to follow a value function formulation. This allows us to tackle
easily a wide variety of model economies that do not lend themselves naturally to the
value function speciAcation. To obtain an accurate second-order approximation, we use
a perturbation method that incorporates a scale parameter for the standard deviations
of the exogenous shocks as an argument of the policy function. In approximating the
policy function, we take a second-order Taylor expansion with respect to the state
variables as well as this scale parameter. This technique was formally introduced by
Fleming (1971) and has been applied extensively to economic models by Judd and
co-authors (see Judd, 1998, and the references cited therein).

The main theoretical contributions of the paper are: First, it shows analytically that in
general the Arst derivative of the policy function with respect to the parameter scaling
the variance/covariance matrix of the shocks is zero at the steady state regardless
of whether the model displays the certainty-equivalence property or not. 2 Second, it
proves that in general the cross derivative of the policy function with respect to the
state vector and with respect to the parameter scaling the variance/covariance matrix of
the shocks evaluated at the steady state is zero. This result implies that for any model
belonging to the general class considered in this paper, the coe1cients on the terms
linear and quadratic in the state vector in a second-order expansion of the decision
rule are independent of the volatility of the exogenous shocks. In other words, these
coe1cients must be the same in the stochastic and the deterministic versions of the
model. Thus, up to second order, the presence of uncertainty aIects only the constant
term of the decision rules.

1 See Woodford (2002) for a discussion of conditions under which it is correct up to second order to
approximate the level of welfare using Arst-order approximations to the policy function.

2 Judd (1998, pp. 477–480) obtains this result in the context of a simple one-sector, stochastic, discrete-time
growth model. Thus, our theoretical Anding can be viewed as a generalization of Judd’s result to a wide
class of rational expectations models.
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The usefulness of our theoretical results can be illustrated by relating them to recent
work on second-order approximation techniques by Collard and Juillard (2001a, b)
and Sims (2000). We follow Collard and Juillard closely in notation and methodology.
However, an important diIerence separates our paper from their work. Namely, Collard
and Juillard apply a Axed-point algorithm, which they call ‘bias reduction procedure,’
to capture the fact that the policy function depends on the variance of the underlying
shocks. Their procedure makes the coe1cients of the approximated policy rule that are
linear and quadratic in the state vector functions of the size of the volatility of the
exogenous shocks. By the main theoretical result of this paper, those coe1cients are,
up to second order, independent of the standard deviation of the shocks. It follows that
the bias reduction procedure of Collard and Juillard is not equivalent to a second-order
Taylor approximation to the decision rules. 3

Sims (2000) also derives a second-order approximation to the policy function for a
wide class of discrete-time models. In his derivation, Sims (2000) correctly assumes
that the coe1cients on the terms linear and quadratic in the state vector do not depend
on the volatility of the shock and obtains a second-order approximation to the policy
function that is valid only under this assumption. However, he does not provide the
proof that this must be the case. Our paper provides this proof in a general setting.

At a practical level, our paper contributes to the existing literature by providing
MATLAB code to compute second-order approximations for any rational expectations
model whose equilibrium conditions can be written in the general form considered in
this paper. We demonstrate the ability of this code to deliver accurate second-order
approximations by applying it to a number of example economies.

The Arst example considered is the standard, one-sector, stochastic growth model.
Sims (2000) computes a second-order approximation to this economy, which we are
able to replicate. The second example applies our code to the two-country growth model
with complete asset markets studied by Kim and Kim (in press). This economy fea-
tures multiple state variables. Kim and Kim have derived analytically the second-order
approximation to the policy function of this economy. We use this example to verify
that our code delivers correct answers in a multi-state environment. Finally, we apply
our code to the asset-pricing model of Burnside (1998). This example is also analyzed
in Collard and Juillard (2001b). Burnside solves this model analytically. Thus, we can
derive analytically the second-order approximation to the policy function. This exam-
ple serves two purposes. First, it gives support to the validity of our code. Second, it
allows us to quantify the diIerences between the Taylor second-order approximation
and the bias reduction procedure of Collard and Juillard (2001a, b).

The remainder of the paper is organized as follows. In the next section we present
the model. In Section 3 we derive Arst- and second-order approximations to the policy
function. In Section 4 we describe the Matlab computer code designed to implement
the second-order approximation to the policy rules. Section 5 closes the paper with
applications of the algorithm developed in this paper to three example economies.

3 The procedure adopted by Collard and Juillard can be interpreted as having the objective of Atting a
second-order polynomial approximation to the policy function for a speciAc value of the standard deviation
of the vector of exogenous shocks strictly greater than zero.
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2. The model

The set of equilibrium conditions of a wide variety of dynamic general equilibrium
models in macroeconomics can be written as

Etf(yt+1; yt ; xt+1; xt) = 0; (1)

where Et denotes the mathematical expectations operator conditional on information
available at time t. The vector xt of predetermined variables is of size nx × 1 and the
vector yt of non-predetermined variables is of size ny × 1. We deAne n= nx + ny. The
function f maps Rny × Rny × Rnx × Rnx into Rn. The state vector xt can be partitioned
as xt = [x1

t ; x2
t ]

′. The vector x1
t consists of endogenous predetermined state variables

and the vector x2
t of exogenous state variables. SpeciAcally, we assume that x2

t follows
the exogenous stochastic process given by

x2
t+1 = 	x2

t + 
̃��t+1;

where both the vector x2
t and the innovation �t are of order n� × 1. The vector �t is

assumed to have a bounded support and to be independently and identically distributed,
with mean zero and variance/covariance matrix I . 4

The scalar �¿ 0 and the n� × n� matrix 
̃ are known parameters. All eigenvalues of
the matrix 	 are assumed to have modulus less than one. 5

To see how the equilibrium conditions of a familiar model can be expressed in the
form given by Eq. (1), consider the simple neoclassical growth model. Its equilibrium
conditions are given by

c−�
t = �Etc

−�
t+1[�At+1k�−1

t+1 + 1 − �];

ct + kt+1 = Atk�t + (1 − �)kt ;

ln At+1 = � ln At + ��t+1;

for all t¿ 0, given k0 and A0. Let yt = ct and xt = [kt ; ln At]′. Then

Etf(yt+1; yt ; xt+1; xt) = Et



y−�

1t − �y−�
1t+1[�ex2t+1x�−1

1t+1 + 1 − �]

y1t + x1t+1 − ex2t x�1t − (1 − �)x1t

x2t+1 − �x2t


 ;

where xit and yit denote, respectively, the ith element of the vectors xt and yt .

4 See Samuelson (1970) and Jin and Judd (2002) for discussions of what might go wrong when the vector
of exogenous shocks is allowed to have an unbounded support.

5 Note that our formulation allows for any number of lags in endogenous and exogenous state variables.
Also, it is straightforward to accommodate a more general law of motion for x2

t of the form x2
t+1 =�(x2

t ) +
�
̃�t+1, where � is a non-linear function satisfying the condition that all eigenvalues of its Arst derivative
evaluated at the non-stochastic steady state lie within the unit circle. Further, the size of the innovation �t
need not equal that of x2

t .
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We now return to the general case. The solution to the model given in Eq. (1) is
of the form:

yt = g(xt ; �); (2)

xt+1 = h(xt ; �) + 
��t+1; (3)

where g maps Rnx × R+ into Rny and h maps Rnx × R+ into Rnx . The matrix 
 is of
order nx × n� and is given by


 =

[ ∅

̃

]
:

We wish to And a second-order approximation of the functions g and h around the
non-stochastic steady state, xt = Sx and �= 0. We deAne the non-stochastic steady state
as vectors ( Sx; Sy) such that

f( Sy; Sy; Sx; Sx) = 0:

It is clear that Sy=g( Sx; 0) and Sx=h( Sx; 0). To see this, note that if �= 0, then Etf=f.

3. Approximating the solution

Substituting the proposed solution given by Eqs. (2) and (3) into Eq. (1), we can
deAne

F(x; �) ≡ Etf(g(h(x; �) + 
��′; �); g(x; �); h(x; �) + 
��′; x)

= 0: (4)

Here we are dropping time subscripts. We use a prime to indicate variables dated in
period t + 1.

Because F(x; �) must be equal to zero for any possible values of x and �, it
must be the case that the derivatives of any order of F must also be equal to zero.
Formally,

Fxk�j (x; �) = 0 ∀x; �; j; k; (5)

where Fxk�j (x; �) denotes the derivative of F with respect to x taken k times and with
respect to � taken j times.

3.1. First-order approximation

We are looking for approximations to g and h around the point (x; �) = ( Sx; 0) of the
form

g(x; �) = g( Sx; 0) + gx( Sx; 0)(x − Sx) + g�( Sx; 0)�;

h(x; �) = h( Sx; 0) + hx( Sx; 0)(x − Sx) + h�( Sx; 0)�:
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As explained earlier,

g( Sx; 0) = Sy

and

h( Sx; 0) = Sx:

The remaining unknown coe1cients of the Arst-order approximation to g and h are
identiAed by using the fact that, by Eq. (5), it must be the case that:

Fx( Sx; 0) = 0

and

F�( Sx; 0) = 0:

Thus, using the Arst of these two expressions, gx and hx can be found as the solution
to the system

[Fx( Sx; 0)]ij = [fy′ ]i�[gx]
�
�[hx]

�
j + [fy]i�[gx]

�
j + [fx′ ]i�[hx]

�
j + [fx]ij

= 0; i = 1; : : : ; n; j; � = 1; : : : ; nx; � = 1; : : : ; ny

Here we are using the notation suggested by Collard and Juillard (2001a). So, for
example, [fy′ ]i� is the (i; �) element of the derivative of f with respect to y′. The
derivative of f with respect to y′ is an n× ny matrix. Therefore, [fy′ ]i� is the element
of this matrix located at the intersection of the ith row and �th column. Also, for
example, [fy′ ]i�[gx]

�
�[hx]

�
j =

∑ny
�=1

∑nx
�=1(@fi=@y′�)(@g�=@x�)(@h�=@xj).

Note that the derivatives of f evaluated at (y′; y; x′; x) = ( Sy; Sy; Sx; Sx) are known. The
above expression represents a system of n × nx quadratic equations in the n × nx
unknowns given by the elements of gx and hx. 6

Similarly, g� and h� are identiAed as the solution to the following n equations:

[F�( Sx; 0)]i = Et{[fy′ ]i�[gx]
�
�[h�]� + [fy′ ]i�[gx]

�
�[
]��[�′]� + [fy′ ]i�[g�]� + [fy]i�[g�]�

+ [fx′ ]i�[h�]� + [fx′ ]i�[
]��[�′]�}

= [fy′ ]i�[gx]
�
�[h�]� + [fy′ ]i�[g�]� + [fy]i�[g�]� + [fx′ ]i�[h�]�

= 0; i = 1; : : : ; n; � = 1; : : : ; ny; � = 1; : : : ; nx;

� = 1; : : : ; n�: (6)

6 A number of authors have developed algorithms for Anding solutions to the above equation associated
with non-explosive paths for the state and control variables (e.g., Blanchard and Kahn, 1985; Sims, 2002;
and Klein (2000)). In the numerical applications presented at the end of the paper we used Klein’s package
to solve for gx and hx .
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Note that this equation is linear and homogeneous in g� and h�. Thus, if a unique
solution exists, we have that

h� = 0

and

g� = 0:

These two expressions represent our Arst main theoretical result. They show that in
general, up to Arst order, one need not correct the constant term of the approximation
to the policy function for the size of the variance of the shocks. This result implies
that in a Arst-order approximation the expected values of xt and yt are equal to their
non-stochastic steady-state values Sx and Sy.

3.2. Second-order approximation

The second-order approximations to g and h around the point (x; �) = ( Sx; 0) are of
the form

[g(x; �)]i = [g( Sx; 0)]i + [gx( Sx; 0)]ia[(x − Sx)]a + [g�( Sx; 0)]i[�]

+
1
2

[gxx( Sx; 0)]iab[(x − Sx)]a[(x − Sx)]b

+
1
2

[gx�( Sx; 0)]ia[(x − Sx)]a[�]

+
1
2

[g�x( Sx; 0)]ia[(x − Sx)]a[�]

+
1
2

[g��( Sx; 0)]i[�][�]

[h(x; �)]j = [h( Sx; 0)]j + [hx( Sx; 0)]ja[(x − Sx)]a + [h�( Sx; 0)]j[�]

+
1
2

[hxx( Sx; 0)]jab[(x − Sx)]a[(x − Sx)]b

+
1
2

[hx�( Sx; 0)]ja[(x − Sx)]a[�]

+
1
2

[h�x( Sx; 0)]ja[(x − Sx)]a[�]

+
1
2

[h��( Sx; 0)]j[�][�];

where i = 1; : : : ; ny, a; b = 1; : : : ; nx, and j = 1; : : : ; nx. The unknowns of this expansion
are [gxx]iab, [gx�]ia, [g�x]ia, [g��]i, [hxx]

j
ab, [hx�]ja, [h�x]ja, [h��]j, where we have omitted

the argument ( Sx; 0). These coe1cients can be identiAed by taking the derivative of
F(x; �) with respect to x and � twice and evaluating them at (x; �) = ( Sx; 0). By the
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arguments provided earlier, these derivatives must be zero. SpeciAcally, we use Fxx( Sx; 0)
to identify gxx( Sx; 0) and hxx( Sx; 0). That is, 7

[Fxx( Sx; 0)]ijk = ([fy′y′ ]i��[gx]
�
�[hx]

�
k + [fy′y]i��[gx]

�
k

+ [fy′x′ ]i��[hx]
�
k + [fy′x]i�k)[gx]

�
�[hx]

�
j

+ [fy′ ]i�[gxx]
�
��[hx]

�
k [hx]

�
j

+ [fy′ ]i�[gx]
�
�[hxx]

�
jk

+ ([fyy′ ]i��[gx]
�
�[hx]

�
k + [fyy]i��[gx]

�
k + [fyx′ ]i��[hx]

�
k + [fyx]i�k)[gx]

�
j

+ [fy]i�[gxx]
�
jk

+ ([fx′y′ ]i��[gx]
�
�[hx]

�
k + [fx′y]i��[gx]

�
k + [fx′x′ ]i��[hx]

�
k + [fx′x]i�k)[hx]

�
j

+ [fx′ ]i�[hxx]
�
jk

+ [fxy′ ]ij�[gx]
�
�[hx]

�
k + [fxy]ij�[gx]

�
k + [fxx′ ]ij�[hx]

�
k + [fxx]ijk

= 0; i = 1; : : : ; n; j; k; �; � = 1; : : : ; nx; �; � = 1; : : : ; ny:

Since we know the derivatives of f as well as the Arst derivatives of g and h evaluated
at (y′; y; x′; x) = ( Sy; Sy; Sx; Sx), it follows that the above expression represents a system of
n× nx × nx linear equations in the n× nx × nx unknowns given by the elements of gxx
and hxx.

Similarly, g�� and h�� can be obtained by solving the linear system F��( Sx; 0) = 0.
More explicitly,

[F��( Sx; 0)]i = [fy′ ]i�[gx]
�
�[h��]�

+ [fy′y′ ]i��[gx]
�
�[
]�"[gx]

�
�[
]��[I ]�"

+ [fy′x′ ]i��[
]�"[gx]
�
�[
]��[I ]�"

+ [fy′ ]i�[gxx]
�
��[
]�"[
]��[I ]�"

+ [fy′ ]i�[g��]�

+ [fy]i�[g��]�

+ [fx′ ]i�[h��]�

7 At this point, an additional word about notation is in order. Take for example the expression [fy′y′ ]
i
��.

Note that fy′y′ is a three dimensional array with n rows, ny columns, and ny pages. Then [fy′y′ ]
i
�� denotes

the element of fy′y′ located at the intersection of row i, column � and page �.
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+ [fx′y′ ]i��[gx]
�
�[
]�"[
]��[I ]�"

+ [fx′x′ ]i��[
]�"[
]��[I ]�"

= 0; i = 1; : : : ; n; �; � = 1; : : : ; ny; �; � = 1; : : : ; nx;

�; " = 1; : : : ; n�: (7)

This is a system of n linear equations in the n unknowns given by the elements of g��
and h��.

Finally, we show that the cross derivatives gx� and hx� are equal to zero when
evaluated at ( Sx; 0). We write the system F�x( Sx; 0) = 0 taking into account that all terms
containing either g� or h� are zero at ( Sx; 0). Then we have,

[F�x( Sx; 0)]ij = [fy′ ]i�[gx]
�
�[h�x]

�
j + [fy′ ]i�[g�x]

�
� [hx]

�
j + [fy]i�[g�x]

�
j + [fx′ ]i�[h�x]

�
j

= 0; i = 1; : : : n; � = 1; : : : ; ny; �; �; j = 1; : : : ; nx: (8)

This is a system of n × nx equations in the n × nx unknowns given by the elements
of g�x and h�x. But clearly, the system is homogeneous in the unknowns. Thus, if a
unique solution exists, it is given by

g�x = 0

and

h�x = 0:

These equations represent our second main theoretical result. They show that in general,
up to second-order, the coe1cients of the policy function on the terms that are linear in
the state vector do not depend on the size of the variance of the underlying shocks. 8

We summarize our two main theoretical results in the following theorem:

Theorem 1. Consider the model given by Eq. (1) and its solution given by the policy
functions (2) and (3). Then

g�( Sx; 0) = 0;

h�( Sx; 0) = 0;

gx�( Sx; 0) = 0; and

hx�( Sx; 0) = 0:

Theorem 1 shows that the second-order approximation to the policy function of a
stochastic model belonging to the general class given in Eq. (1) diIers from that of
its non-stochastic counterpart only in a constant term given by 1

2g���
2 for the control

8 Chen and Zadrozny (2003) obtain similar results in the context of a linear-quadratic exponential Gaussian
optimal control problem. Also, upon receiving a draft of our paper, Ken Judd communicated to us that in
work in progress he came across results similar to those we obtain in this section.
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vector yt and by the Arst nx−n� elements of 1
2h���

2 for the endogenous state vector x1
t .

Therefore, any second-order expansion of the policy function of a stochastic problem
whose linear and quadratic coe1cients do not coincide with those of the non-stochastic
version of the model does not represent a second-order Taylor expansion. This is the
case, for instance, with the approximation resulting from the bias reduction procedure of
Collard and Juillard (2001a, b). 9 In Section 5.2, we quantify the diIerences between a
second-order Taylor expansion and the bias reduction procedure for a particular model
economy.

3.3. Higher-order approximations

It is straightforward to apply the method described thus far to Anding higher-order
approximations to the policy function. For example, given the Arst- and second-order
terms of the Taylor expansions of h and g, the third-order terms can be identiAed by
solving a linear system of equations. More generally, one can construct sequentially the
nth-order approximation of the policy function by solving a linear system of equations
whose (known) coe1cients are the lower-order terms and the derivatives up to order
n of f evaluated at (y′; y; x′; x) = ( Sy; Sy; Sx; Sx) (see also Collard and Juillard, 2001a; and
Judd, 1998). 10

4. Matlab codes

We prepared a set of Matlab codes that implements the second-order approximation
developed above. The only inputs that the user needs to provide are the set of equi-
librium conditions (the function f(yt+1; yt ; xt+1; xt) and the non-stochastic steady-state
values of xt and yt given by Sx and Sy. In our programs, much work and possibilities
for errors are eliminated by using the MATLAB toolbox Symbolic Math to compute
analytically the Arst and second derivatives of the function f.

The programs are publicly available on the world wide web. 11 The program gx hx.m
computes the matrices gx and hx. The inputs to the program are the Arst derivatives
of f evaluated at the steady state. That is, fy, fx, fy′ , and fx′ . This step amounts to
obtaining a Arst-order approximation to the policy functions. A number of packages are
available for this purpose. We use the one prepared by Paul Klein of the University

9 Collard and Juillard (2001b) maintain that the presence of stochastic shocks will in general aIect the
coe1cients on the terms that are linear or quadratic in xt in a second-order approximation. SpeciAcally, on
p. 984 they state that “[i]t should be clear to the reader that, as higher-order moments will be taken into
account, values for f0 and f1 [in our notation, f1 corresponds to the coe1cient on xt − Sx in the second-order
expansion] will be aIected. More particularly, both of them will now depend on volatilities.”

10 We conjecture the following generalization of Theorem 1: The derivatives of the policy function with
respect to x any number of times and with respect to � an odd number of times evaluated at the non-stochastic
steady state are zero. We base this conjecture on numerical results obtained by Jes+us Fern+andez-Villaverde
of the University of Pennsylvania who extended our method to accommodate higher order approximations
using Mathematica and applied it to a number of variations of the neoclassical growth model.

11 The URL is http://www.econ.upenn.edu/∼uribe/2nd order.htm.

http://www.econ.upenn.edu/~uribe/2nd_order.htm.
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of Western Ontario, which consists of the three programs solab.m, qzswitch.m, and
reorder.m. 12

The program gxx hxx.m computes the arrays gxx and hxx. The inputs to the program
are the Arst and second derivatives of f evaluated at the steady state and the matrices
gx and hx produced by gx hx.m.

The program gss hss.m computes the arrays g�� and h��. The inputs to the program
are the Arst and second derivatives of f evaluated at the steady state, the matrices
gx and hx produced by the program gx hx.m, the array gxx produced by the program
gxx hxx.m, and the matrix 
.

4.1. Computing the derivatives of f

Computing the derivatives of f, particularly the second derivatives, can be a daunting
task if the model is large. We approach this problem as follows. The MATLAB Toolbox
Symbolic Math can handle analytical derivatives. We wrote programs that compute
the analytical derivatives of f and evaluate them at the steady state. The program
anal deriv.m computes the analytical derivatives of f and the program num eval.m
evaluates the analytical derivatives of f at the steady state.

4.2. Examples

To illustrate the use of the programs described thus far, we posted on the website
given above the programs needed to obtain the second-order approximation to the
decision rules of the three model economies studied in Section 5. For example, to
obtain the second-order approximation to the policy functions of the neoclassical growth
model discussed in Sections 2 and 5, run the program neoclassical model run.m. The
output of this program are the matrices gx and hx and the arrays gxx, hxx, g�� and h��.
This program calls the program neoclassical model.m, which produces the Arst- and
second derivatives of f. More generally, neoclassical model.m illustrates how to write
down analytically the equations of a model belonging to the class given in Eq. (1)
using the MATLAB Toolbox Symbolic Math.

5. Applications

In this section, we apply the second-order approximation method developed above
and the computer code that implements it to solve numerically for the equilibrium
dynamics of a number of models. These models were chosen because they are partic-
ularly well suited for evaluating the ability of the proposed algorithm to arrive at the
correct second-order approximation to the decision rule. We begin with the one-sector
neoclassical growth model for which Sims (2000) has computed a second-order ap-
proximation. This is an economy with one endogenous predetermined state and one
control variable. We then consider a two-country growth model with complete asset

12 For a description of the technique used in this package, see Klein (2000).
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markets. In this case there are two endogenous predetermined variables and one con-
trol. For this economy, Kim and Kim (in press) derive analytically the second-order
approximation to the policy function in the case that the underlying shocks are iid.
We close the section with an examination of an asset pricing model that has a closed
form solution due to Burnside (1998). Recently, Collard and Juillard (2001b) have
used this model as a benchmark to evaluate the accuracy of their perturbation method,
which incorporates an iterative procedure to capture the eIects of the presence of un-
certainty on the coe1cients of the second-order expansion. As we show above, this
procedure introduces a discrepancy in the second-order approximation with respect to
the second-order Taylor expansion. We present parameterization under which these
diIerences are quantitatively large.

5.1. Example 1: The neoclassical growth model

Consider the simple neoclassical model, described in Section 2. We calibrate the
model by setting �= 0:95, �= 1, �= 0:3, �= 0, and �= 2. We choose these parameter
values to facilitate comparison with the results obtained by applying Sims’s (2000)
method. 13 Here we are interested in a quadratic approximation to the policy function
around the natural logarithm of the steady state. Thus, unlike in Section 2, we now
deAne:

xt =

[
ln kt

ln At

]

and

yt = ln ct :

Then the non-stochastic steady-state values of yt and xt are, respectively:

Sy = −0:8734:

and

Sx =

[−1:7932

0

]
:

The coe1cients of the linear terms are:

gx = [0:2525 0:8417]

and

hx =

[
0:4191 1:3970

0:0000 0:0000

]
:

13 See the MATLAB script sessionEG.m in Sims’s website (http://eco-072399b.princeton.edu/yftp/gensys2/
GrowthEG)

http://eco-072399b.princeton.edu/yftp/gensys2/GrowthEG
http://eco-072399b.princeton.edu/yftp/gensys2/GrowthEG
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The coe1cients of the quadratic terms are given by:

gxx(:; :; 1) = [ − 0:0051 − 0:0171];

gxx(:; :; 2) = [ − 0:0171 − 0:0569]

and

hxx(:; :; 1) =

[−0:0070 −0:0233

0 0

]
;

hxx(:; :; 2) =

[−0:0233 −0:0778

0 0

]
:

Finally, the coe1cients of the quadratic terms in � are:

g�� = −0:1921

and

h�� =

[
0:4820

0

]
:

A more familiar representation is given by the evolution of the original variables.
Let

ĉt ≡ ln(ct= Sc)

and

k̂ t ≡ ln(kt= Sk):

Then, the laws of motion of these two variables are given by

ĉt = 0:2525k̂ t + 0:8417Ât +
1
2

[ − 0:0051k̂2
t − 0:0341k̂ t Ât − 0:0569Â2

t − 0:1921�2]

and

k̂ t+1 = 0:4191k̂ t + 1:3970Ât

+
1
2

[
−0:0070k̂2

t − 0:0467k̂ t Ât − 0:0778Â2
t + 0:4820�2

]
:

It can be veriAed that these numbers coincide with those obtained by Sims (2000).

5.2. Example 2: A two-country neoclassical model with complete asset markets

The following 2-country international real business cycle model with complete asset
markets is taken from Kim and Kim (in press). The competitive equilibrium real allo-
cations associated with this economy can be obtained by solving the Arst-best problem.
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The planner’s objective function is given by

E0

∞∑
t=0

�t

[
C1−�

1t − 1
1 − �

+
C1−�

2t − 1
1 − �

]
;

where Cit , i=1; 2, denotes consumption of the representative household of country i in
period t. The planner maximizes this utility function subject to the budget constraint

C1t + C2t + K1t+1 − (1 − �)K1t + K2t+1 − (1 − �)K2t = A1tK�
1t + A2tK�

2t ;

where Kit denotes the stock of physical capital in country i and Ait is an exogenous
technology shock whose law of motion is given by

ln Ait = �iln Ait−1 + ��it ; i = 1; 2;

where �it ∼ NIID(0; 1) and �i ∈ (−1; 1). The optimality conditions associated with this
problem are the above period-by-period budget constraint and

C1t = C2t ;

C−�
1t = �EtC

−�
1t+1[�A1t+1K�−1

1t+1 + (1 − �)];

C−�
1t = �EtC

−�
1t+1[�A2t+1K�−1

2t+1 + (1 − �)]:

We use the following parameter values: � = 2; � = 0:1; � = 0:3; � = 0; and � = 0:95.
Given this parameterization, the second-order approximation to the policy function

is given by:

K̂1t+1 = [ 0:4440 0:4440 0:2146 0:2146 ]




K̂1t

K̂2t

Â1t

Â2t




+
1
2

[ K̂1t K̂2t Â1t Â2t ]

×




0:22 −0:18 −0:023 −0:088

−0:18 0:22 −0:088 −0:023

−0:023 −0:088 0:17 −0:042

−0:088 −0:023 −0:042 0:17







K̂1t

K̂2t

Â1t

Â2t




−1
2

0:166�2;

K̂2t+1 = K̂1t+1;
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and

Ĉ1t = [ 0:2 0:2 0:097 0:097 ]




K̂1t

K̂2t

Â1t

Â2t




+
1
2

[ K̂1t K̂2t Â1t Â2t ]

×




0:1 −0:08 −0:0093 −0:038

−0:08 0:1 −0:038 −0:0093

−0:0093 −0:038 0:079 −0:019

−0:038 −0:0093 −0:019 0:079







K̂1t

K̂2t

Â1t

Â2t




+
1
2

0:406�2

Ĉ2t = Ĉ1t ;

where a hat over a variable denotes the log-deviation from its steady state. The
non-stochastic steady state is given by [Ki; Ai; Ci] = [2:6257; 1; 1:0733]. Kim and
Kim (in press) derive analytically a second-order approximation to the decision rule
of the model considered here. Our numerical results match those implied by Kim and
Kim’s analytical second-order approximation, as can be checked by running the pro-
gram kim run.m.

5.3. Example 3: An asset pricing model

Consider the following endowment economy analyzed by Burnside (1998) and
Collard and Juillard (2001b). The representative agent maximizes the lifetime utility
function

E0

∞∑
t=0

�t C
(
t

(
;

subject to

ptet+1 + Ct = ptet + dtet

and a borrowing limit that prevents agents from engaging in Ponzi games. In the
above expressions, Ct denotes consumption, pt the relative price of trees in terms of
consumption goods, et the number of trees owned by the representative household at
the beginning of period t, and dt the dividends per tree in period t. Dividends are
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assumed to follow an exogenous stochastic process given by

dt+1 = ext+1dt;

where ext denotes the gross growth rate of dividends. The natural logarithm of the
gross growth rate of dividends, xt , is assumed to follow an exogenous AR(1) process

xt+1 = (1 − �) Sx + �xt + �
�t+1;

and �t ∼ NIID(0; 1). 14

The optimality conditions associated with the household’s problem are the above
budget constraint, the borrowing limit, and

ptC(−1
t = �EtC(−1

t+1 (pt+1 + dt+1):

In equilibrium we have that Ct = dt and et = 1. DeAning the price-dividend ratio as
yt = pt=dt yields the equilibrium condition

yt = �Et{e(xt+1 [1 + yt+1]}:
Burnside (1998) shows that the non-explosive solution to this equation is of the form

yt ≡ g(xt ; �) =
∞∑
i=1

�ieai+bi(xt− Sx); (9)

where

ai = ( Sxi +
( 2�2
2

2(1 − �)2

[
i − 2�(1 − �i)

1 − �
+

�2(1 − �2i)
1 − �2

]

and

bi =
(�(1 − �i)

1 − �
:

It is immediate to see that g�( Sx; 0) =gx�( Sx; 0) = 0, in line with Theorem 1. Collard and
Juillard (2001b) present an algorithm to compute a second-order approximation to the
above policy function. Their method appends to a deterministic perturbation method
a Axed-point algorithm involving an iterative procedure. This procedure introduces a
dependence of the coe1cients of the linear and quadratic terms of the expansion of
the policy function on the volatility of the underlying shocks. Theorem 1 shows that
in a second-order expansion the coe1cients on the terms linear and quadratic in the
state are independent of the volatility of the exogenous shocks. It follows that the
Axed-point algorithm proposed by Collard and Juillard (2001b) yields a second-order
approximation that diIers from the Taylor second-order approximation.

A second-order approximation of (9) around xt = Sx and � = 0 yields

yt ≈ g( Sx; 0) + gx(xt − Sx) +
1
2
gxx(xt − Sx)2 +

1
2
g���2; (10)

14 To make the notation compatible with that used in previous sections, we call �
 what Burnside calls �.
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Table 1
Second-order approximation to the policy function of the asset-pricing model

f0 f1 f2

Benchmark calibration:
2nd-order approx. 12.48 2.27 0.42
Fixed-point algorithm 12.48 2.30 0.43

High curvature, ( = −10:
2nd-order approx. 4.79 4.83 6.07
Fixed-point algorithm 5.00 5.97 7.50

High Persistence, � = 0:9:
2nd-order approx. 22.02 − 99:07 976.84
Fixed-point algorithm 14.50 −115:40 1137.81

Note: The benchmark calibration is � = 0:95, ( = −1:5, � = −0:139, Sx = 0:0179, � = 1 and 
 = 0:0348.
The rows labeled ‘2nd-order approx.’ are obtained either by evaluating Eq. (10) or by running the pro-
gram asset run.m. The rows labeled ’Fixed-Point Algorithm’ are taken from Collard and Juillard (2001b),
Table 2.

where

gx =
(��e( Sx

(1 − �e( Sx)(1 − �e( Sx�)
;

gxx =
(

�(
1 − �

)2 [ �e( Sx

1 − �e( Sx − 2�e( Sx�
1 − �e( Sx�

+
�e( Sx�2

1 − �e( Sx�2

]
;

and

g�� =
(

(

1 − �

)2 [ �e( Sx

(1 − �e( Sx)2 +
(

�2

1 − �2 − 2�
1 − �

)

× �e( Sx

1 − �e( Sx +
2�2

1 − �
�e( Sx

1 − �e( Sx�
− �4

1 − �2

�e( Sx

1 − �e( Sx�2

]
:

We follow Burnside (1998) and Collard and Juillard (2001b) and use the calibration
�=0:95, (=−1:5, �=−0:139, Sx=0:0179, and 
=0:0348. Then, evaluating the above
expressions we obtain

yt ≈ 12:30 + 2:27(xt − Sx) +
1
2

0:42(xt − Sx)2 +
1
2

0:35�2:

This is precisely the equation one obtains using the perturbation algorithm developed
in this paper, as can be veriAed by running the program asset run.m.

Collard and Juillard (2001b) express the second-order approximation to yt as

yt = f0 + f1(xt − Sx) +
1
2
f2(xt − Sx)2:

Relating their notation to ours, we have f0=g( Sx; 0)+ 1
2g���

2, f1=gx, and f2=gxx. In their
Table 2, Collard and Juillard (2001b) report the numerical values for fi (i=0; 1; 2) for
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Fig. 1. Non-local accuracy test. Note: y denotes the price-dividend ratio, x (the state variable) denotes
the log of the gross growth rate of dividends, � denotes the parameter scaling the standard deviation of
the exogenous shock, and xss denotes the steady-state value of x. All parameters take the values used in the
benchmark calibration, as given in the note to Table 1. In computing the exact solution we truncated the
inAnite sum at i = 1000.

three diIerent calibrations of the above asset-pricing model. To facilitate comparison,
we reproduce in our Table 1 their numbers in the rows labeled Axed-point algorithm.
We also report the correct coe1cients, which can be obtained either by evaluating
Eq. (10) or by running the programs implementing our proposed algorithm
(asset run.m). The table shows that the discrepancy with respect to the Taylor expan-
sion introduced by the Axed-point algorithm of Collard and Juillard can be signiAcant.
For example, when the intertemporal elasticity of substitution is low (( = −10) the
coe1cients associated with the constant, linear, and quadratic terms are, respectively,
4, 24, and 24 percent larger than those of the second-order expansion. Similarly, when
the underlying shock is assumed to be highly persistent (� = 0:9), then the diIerence
between the coe1cients on the constant term is 34 percent and on the linear and
quadratic terms is 16 percent.

We close this section by performing an accuracy test of the second-order approx-
imation method described in this paper. The test is along the lines of Judd (1998).
SpeciAcally, let y2nd(x; �) denote the second-order approximation to the price-dividend
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ratio given in Eq. (10) for some value of the state variable x and of the scale param-
eter �. Similarly, let yexact(x; �) be the exact equilibrium price-dividend ratio given in
Eq. (9). Fig. 1 plots log10(|y2nd(x; �)=yexact(x; �) − 1|) as a function of x − Sx and �.
We explore a wide range of values for x and �. In our calibration, Sx takes the value
0.0179. We construct the Agure using values for x between −0:1 and 0:1. The range
for the scale parameter � is [0,1]. The maximum approximation error is of the order
10−3:4.

6. Conclusion

Most models used in modern macroeconomics are too complex to allow for ex-
act solutions. For this reason, researchers have appealed to numerical approximation
techniques. One popular and widely used approximation technique is a Arst-order per-
turbation method delivering a linear approximation to the policy function. One reason
for the popularity of Arst-order perturbation techniques is that they do not suIer from
the ‘curse of dimensionality.’ That is, problems with a large number of state vari-
ables can be handled without much computational demands. However, an important
limitation of this approximation technique is that the solution displays the certainty
equivalence property. In particular, the Arst-order approximation to the unconditional
means of endogenous variables coincides with their non-stochastic steady state values.
This limitation restricts the range of questions that can be addressed in a meaningful
way using Arst-order perturbation techniques. Two such questions are welfare evalua-
tions and risk premia in stochastic environments.

Within the family of perturbation methods an obvious way to overcome these lim-
itations is to perform a higher-order approximation to the policy function. This is
precisely what this paper accomplishes. We build on previous work by Collard and
Juillard, Sims, and Judd among others. In particular, this paper derives a second-order
approximation to the solution of a general class of discrete-time rational expectations
models.

The main theoretical contribution of the paper is to show that for any model belong-
ing to the general class considered, the coe1cients on the terms linear and quadratic
in the state vector in a second-order expansion of the decision rule are independent
of the volatility of the exogenous shocks. In other words, these coe1cients must be
the same in the stochastic and the deterministic versions of the model. Thus, up to
second order, the presence of uncertainty aIects only the constant term of the de-
cision rules. But the fact that only the constant term is aIected by the presence of
uncertainty is by no means inconsequential. For it implies that up to second order the
unconditional mean of endogenous variables can in general be signiAcantly diIerent
from their non-stochastic steady state values. Thus, second-order approximation meth-
ods can in principle capture important eIects of uncertainty on average rate of return
diIerentials across assets with diIerent risk characteristics and on the average level of
consumer welfare. An additional advantage of higher-order perturbation methods is that
like their Arst-order counterparts, they do not suIer from the curse of dimensionality.
This is because given the Arst-order approximation to the policy function, Anding the
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coe1cients of a second-order approximation simply entails solving a system of linear
equations.

In addition to fully characterizing the second-order approximation to the policy func-
tion analytically, the paper presents a set of MATLAB programs designed to compute
the coe1cients of the second-order approximation. This code is publicly available.
The validity and applicability of the proposed method is illustrated by solving the
dynamics of a number of model economies. Our computer code coexists with others
that have been developed recently by Chris Sims and Fabrice Collard and Michel
Juillard to accomplish the same task. We believe that the availability of this set
of independently developed codes, which have been shown to deliver identical re-
sults for a number of example economies, helps build conAdence across potential
users.

A number of important aspects of higher-order approximations to the policy func-
tion remain to be explored. At the forefront stands the problem of characterizing
second-order accurate approximations to artiAcial time series as well as to conditional
and unconditional moments of endogenous variables. We leave this task for future
research.
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