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Symbolic Logic
First-Order Predicate Logic

Required Text: Yaqub, Introduction to Metalogic

1.1 The Syntax of Predicate Logic (PL) 

• The vocabulary of PL consists of the following six categories. 
• 1.1.1a Names: The following lowercase italic letters: a, b, c, …, r, s, t 

(excluding f, g, and h) with numeric subscripts if needed.
• 1.1.1b Function symbols: The following lowercase italic letters with 

numeric subscripts: f1 g1, h1, f2, g2, h2, f3, g3, h3, ... 
• 1.1.1c Predicates: Uppercase italic letters with numeric subscripts: A1, B1, 

C1, …, X1, Y1, Z1; A2, B2, C2, …, X2, Y2, Z2; A3, B3, C3, …, X3, Y3, Z3; …. 
• 1.1.1d Variables: The following lowercase italic letters: u, v, w, x, y, z with 

numeric subscripts if needed. 
• 1.1.1e Logical symbols: ¬, &, v, →, ↔, ∀, ∃, = 
• 1.1.1f Parentheses: (,)
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Object Language & Metalanguage

• The variables, logical symbols, and parentheses are referred to as the 
logical vocabulary of PL, and the names, function symbols, and 
predicates are referred to as the extra-logical vocabulary of PL.

• The language of PL generally is our object language, the language 
under study.  Our metalanguage, the language we use to conduct the 
study, is English supplemented with various mathematical symbols.

• In order to talk about, i.e. mention, a symbol, like f, we should clarify 
that we are not using it (to talk about a function).  In principle, we 
may place the symbol is quotation marks.  In practice, the context 
makes it clear when we are mentioning rather than using a symbol.

Variables & Metavariables

• The variables in the language of PL range over objects in the universe 
of discourse, or domain, of our object language (to be defined).  But 
we use variables in our metalanguage to speak of, e.g., all predicates.

• To speak of all PL predicates, function symbols, or variables, we use 
metavariables (i.e., variables in the metalanguage). 

• The boldfaced letters P, Q, and R, perhaps adjoined with numeric 
superscripts, range over PL predicates; the boldfaced letters f and g, 
possibly adjoined with numeric superscripts range over PL function 
symbols; the boldfaced letters x, y, and z range over PL variables, and 
the boldfaced capital letters, X, Y, and Z range over PL formulas.
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Intuitive Meaning of Non-Logical Symbols

• The non-logical symbols of PL are intuitively understood as follows.  
Names stand for individuals (like George Washington), function 
symbols stand for functions (like the father of), and predicates stand 
for properties and relations (like is red or is to the left of). 

• Names are examples of singular terms.  If we flank the name in PL
for George Washington with the function symbol in PL for the father 
of, for example, the resulting term is the name of George Washington’s 
father.  This is an illustration of a complex singular term.  A function 
symbol followed by a variable is an example of a functional term.

• Note: Singular, but not functional, terms are said to denote things.

Intuitive Meaning of Non-Logical Symbols

• Combining non-logical symbols with logical symbols results in complex 
expressions that correspond to complex properties, relations, or states of 
affairs, like the statement or proposition or fact that Mary is running. 

• Predicates and function symbols have arities, as in A1
3 and , f2

3. 1-place 
predicates signify properties, 2-place predicates, binary relations, 3-place
predicates, ternary relations, and so on. 1-place function symbols signify 
monadic functions, 2-place symbols binary functions, 3-place symbols, 
ternary functions (the product of x, y and ∛z), and so forth.

• Note: We often write A1xyz or f2
3xyz instead of A1

3 or f2
3 for readability.
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Intuitive Meaning of Logical Symbols

• The logical symbols signify the following operators: 
• ¬ =: negation (‘it is not the case that’)
• ∧ =: conjunction (‘and’)
• ∨ =: disjunction (‘or’) 
•→ =: material conditional (‘if…then’)
•↔ =: material biconditional (‘if and only if’)
• ∀ =: universal quantification (‘for all’)
• ∃ =: existential quantification (‘there is’)
• = =: identity (‘is numerically identical to’).

Terms

• A term of PL is either a PL name, variable, or complex expression
that is obtained from the names and variables by applying the 
following rule some finite number of times:

• Term-Formation Rule: If fn is an n-place function symbol and t1, t2, 
…, and tn are PL terms, then fn t1t2, … tn is also a PL term.
• The variables here are metavariables.  The Term-Formation Rule says that the 

result of flanking any n-place function symbol with any n terms is a term.

• N.B. Terms are not, in general, singular terms.  So, under the intended 
interpretation, they typically do not denote. f1x is a term with a ‘blank’.
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Term Trees

• We can show that f4xg2h1bf3ang1esf1y is a PL term as follows:

Formulas

• Formulas, like terms, are also either basic or derived.  We will call 
basic formulas atomic and the derived formulas compound.

• Atomic formulas of PL are expressions of the form r = s where r and s
are (atomic or complex) PL terms, and expressions of the form 
Qnt1t2…tn where Qn is any n-place PL predicate (except for the identity 
predicate =) and t1t2…tn are at most n distinct PL terms.

• Compound formulas of PL are obtained from the atomic formulas by 
applying one or more formation rules a finite number of times.
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Recursion Clauses

• Compound formulas are constructed from atomic ones by applying any of 
seven formation rules finitely-may times. If X and Y are PL formulas:
• (~): ~X is a PL formula. 
• (&): (X & Y) is a PL formula. 
• (v): (X v Y) is a PL formula. 
• (): (X Y) is a PL formula. 
• (): (X Y) is a PL formula. 
• (∀): If X contains occurrences of the PL variable z but no z-quantifiers, then 

(∀z)X is a PL formula. 
• (∃): If X contains occurrences of the PL variable z but no z-quantifiers, then 

(∃z)X is a PL formula.

Use and Mention

• We have been fudging -- and will continue to fudge -- the distinction 
between using a symbol and mentioning it. Strictly speaking, the claim that 
if X is a formula, then so is ~X is nonsensical.  ‘~X’ says that it is not the 
case that X, where X is a variable, i.e., an example of a singular term.
• What we intend is that if X is a well-formed formula, then so is the formula 

obtained by prefixing the formula denoted by X with the negation symbol, 
‘~’.  That is, we mix a use of ‘X’ with a mention of ‘~’. Since the symbol 
‘X’ is not in the PL language, we cannot express this as: if X is a PL
formula, then so is ‘~ X’. This would imply that since, e.g., (P1 v ~~P211) is 
a PL formula, the negation sign followed by ‘X’ is a PL formula as well.
• If we wanted to be very careful (more careful than virtually any 

mathematical logic text), we would use Quine quotes. The following says 
exactly what we intend: If X is a well-formed formula, then so is ⌜~ X⌝.
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Types, Tokens, and Occurrences

• We will also be careless about the distinction between symbol types, tokens, 
and occurrences.  A type is a kind of universal -- a multiply-instantiatable
entity -- like the property, the color red or the relation, being to the right of.
Logic is about symbol types. When we say that the formula (*) has one 
bound variable, we mean that the formula type does, not that a particular 
instance – i.e., tokening -- of the type does: (*) (∀x)((Fx v Gx) & Hy)
• Now consider the claim that the universal quantifier in (*) binds two 

occurrences of (the one variable) x. This is about formula types. So, 
whatever occurrences are, they ‘inhere’ in types, not their tokens (like the 
string of symbols above). But there are two of them, and only one 
(universal) letter x. Thus, even the ontology of symbols is vexed! 
• We will happily ignore these nuances, like (literally!) all logic textbooks. 

Example of Formula Construction

• Consider the string: ~(((~A1z v B3xay) K2zw) & D1y)

• This is a PL formula, because we can construct it from atomic ones 
using the seven recursion clauses as follows:

• A1z, B3xay, K2zw, and D1y are all atomic formulas.
• ~A1z is a formula by (~)
• (~A1z v B3xay) is a formula by (v)
• ((~A1z v B3xay) K2zw) is a formula by ()
• (((~A1z v B3xay) K2zw) & D1y) is a formula by (&)
• ~(((~A1z v B3xay) K2zw) & D1y) is a formula by (~)
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Formulas vs. Sentences

• A sentence is a formula that contains no free variables.  A formula 
that is not a sentence is called an open formula or open sentence.  

• A(n occurrence of) a variable in a PL formula is free if it is not 
bound.  A(n occurrence of) a variable z in a PL formula is bound
when it is inside a quantifier in the formula (as in (∀z)) or inside the 
scope of a z-quantifier in the formula.  The scope of a quantifier is the 
shortest (in terms of number of symbols from the PL vocabulary) 
formula that immediately follows the quantifier.  Exactly one formula 
must immediately follow a(n occurrence of) a quantifier in a formula.

Illustration

• The formula, ~(((~A1z v B3xay) K2zw) & D1y), is not a sentence
because it contains free variables – namely, z, x, y, and w (a is a name).

• However, we could transform it into a sentence via four applications 
of quantifier rules.  For instance, the following is a sentence:

• (∀z) ~(((~A1z v B3xay) K2zw) & D1y)                          (∀)
• (∃x)(∀z) ~(((~A1z v B3xay) K2zw) & D1y)                    (∃)
• (∀y)(∃x)(∀z) ~(((~A1z v B3xay) K2zw) & D1y)             (∀)
• (∃w)(∀y)(∃x)(∀z) ~(((~A1z v B3xay) K2zw) & D1y)      (∃)
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Immediate Components

• We will say that X is the immediate component of (∀z)X, (∃z)X, and 
~X, and that (∀z), (∃z), and ~ are their main operators, respectively.

• The immediate components of PL formulas of the forms (X & Y), (X 
v Y), (X Y) and (X  Y) are just X and Y, and their main 
operators are the binary connectives &, v, , and , respectively.

• Finally, if a formula X occurs in a formula Y (technically, the string, X, 
is identical to a substring of the string, Y), then X is a subformula of 
Y.  We say that X is a proper subformula of Y just in case X is a 
subformula of Y and it is not identical with Y.  An atomic component
of a PL formula X is a subformula of X that is an atomic formula.

Significance of Quantifier Scope

• The scope of a quantifier helps to determine the truth-conditions of 
the formula in which it appears.  

• The existential quantifier in the sentence (∃z)(∀x)S2zx applies to the 
first ‘slot’ of the predicate S2zx and the universal quantifier applies to 
the second.  If we interpret S2zx to mean that z hates x, then the 
sentence says that there is someone who hates everyone, while 
switching the variable order says that there is someone who is hated by 
everyone.  Not the same!
• Note: Occurrences of the same variable in different scopes of quantifiers are 

independent. Thus, (∃x)A1x & (∃x)B1x is equivalent to (∃x)A1x & (∃y)B1y.  



4/26/2024

10

Conventions

• For sake of readability, we will make use of conventions, like that of 
dropping the outermost parentheses in formulas, writing (s ≠ t) instead 
of ~ (s = t), failing to indicate the arity of predicates and function 
symbols, writing I instead of IΓ for an interpretation for a set of 
sentences, Γ (Gamma), italicizing or not officially unitalicized or 
italicized symbols, respectively, as this contributes to readability.

• These are conventions in the sense that what write will abbreviate the 
expressions whose grammar or meaning we described previously.  
Thus, for example, (s ≠ t) is really an abbreviation for ~ (s = t).

Semantics of PL

• A semantics for terms and formulas of a language is, intuitively, some 
specification of meanings for those terms and formulas.

• If Γ is a set of PL sentences, then the full vocabulary of Γ, Voc(Γ), is 
the extra-logical vocabulary of which members of Γ are composed 
plus the logical vocabulary of PL (the five sentential connectives and 
quantifiers, the identity predicate, the variables, and the parentheses). 

• A PL interpretation, IΓ, for Γ, then consists of Voc(IΓ), which includes 
a list of names, LN, a universe of discourse, UD, and semantical 
assignments, SA, satisfying the following three conditions.
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Semantics of PL

• (1) Voc(IΓ) includes Voc(Γ) and, perhaps, PL function symbols and 
predicates that are not in Voc(Γ)

• (2) UD is a nonempty (perhaps infinite) collection of individuals

• (3) LN consists of names for all individuals in UD, and, perhaps, 
names that are not listed in 1.1.1a or complex PL singular terms.

• An interpretation, (IΓ), according to which all of the members of Γ
are true is called a model of Γ.

Semantics of PL

• The semantical assignments (SA) made by IΓ are as follows:
• 1.2.1a IΓ assigns exactly one individual in UD to every name in LN; and 

every individual in UD is assigned by IΓ to at least one such name.  
• The individual IΓ assigns to the name s is then the referent of s on IΓ, IΓ(s).

• 1.2.1b To every n-place function symbol fn that belongs to Voc(IΓ), IΓ
assigns exactly one n-place function on UD. 
• The function IΓ assigns to the n-place function symbol fn is denoted, IΓ(fn).

• 1.2.1c To every singular term fn t1t2, … tn, where fn is an n-place function 
symbol and t1t2, … tn are singular terms, IΓ assigns the individual F(α1, α2, 
…, αn), which is unique, where F is the function that IΓ assigns to the n-
place function symbol fn, α1 is the referent that IΓ assigns to t1, α2 is the 
referent that IΓ assigns to t2, …, and αn is the referent IΓ assigns to tn.
• That is: IΓ(fn t1t2, … tn) = IΓ(fn)(IΓ(t1), IΓ(t2),…IΓ(tn)) = F(α1, α2, …, αn).
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Semantics of PL

• 1.2.1d IΓ assigns to the identity predicate, ‘=’, the binary relation of 
token identity, which holds between every individual in UD and itself 
and fails to hold between any distinct individuals in UD.

• 1.2.1e To every 1-place predicate, P1, that belongs to Voc(IΓ), IΓ
assigns just one property (set) on UD, IΓ(P1).

• 1.2.1f To every n-place predicate (n > 1), Rn, that belongs to Voc(I), IΓ
assigns just one n-place relation on (set of n-tuples from) UD, IΓ(Rn).

• Note: The individuals, functions, properties, and relations of a IΓ are 
said to be the constituents of IΓ, and the vocabulary of IΓ is interpreted
by IΓ. If IΓ is a PL interpretation for Γ, it is described as relevant to Γ.

Idealizations

• The Syntax and Semantics of PL idealizes from ordinary languages, 
somewhat as models in physics idealize from real physical systems.
• Any string of symbols in the language of PL either is (determinately) a term, 

formula, or sentence, or it is not.  There is no grammatical vagueness.
• Any predicate of PL is either true or false of any object, i.e. is bivalent.
• Every PL term uniquely denotes, i.e., refers to exactly one object, and every 

predicate and function symbol uniquely applies, on an interpretation.
• Finally, we treat functions and predicates as extensional on an interpretation, 

IΓ, i.e., as interchangeable with the sets to which they correspond on IΓ.

• One motivation for non-classical logics is to avoid such idealizations. 
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Terminology

• The set of all the individuals that have a property P1 is called the 
extension of P1, and the extension of a 1-place PL predicate on any 
relevant PL interpretation IΓ is the extension of the property that it 
designates on IΓ.  
• The set of all n-tuples, <a1, a2, a3, …, an>, bearing the relation IΓ(Rn) 

to one another is the extension of Rn.   The extension of an n-place 
predicate on a relevant PL interpretation IΓ is the extension of the 
relation that this predicate designates on IΓ.  We call the items, a1, a2, 
a3, …, an, coordinates.
• Note: Because we treat functions, properties, and relations as 

extensional, we speak indifferently of them and their extensions.

Terminology

• An n-place function on UD is a kind of relation - a ‘rule’ that assigns 
to every n-tuple of individuals in UD exactly one individual also in 
UD.  The extension of an n-place function is thus a set of n+1-tuples.

• If A is a function on UD, then the n-tuples to which it assigns 
individuals are said to be the arguments of A, and the individuals 
assigned are said to be the values of the corresponding arguments.

• Hence, a (total) n-place function F on a set UD is an (n+1)-place 
relation such that for every n-tuple <a1, a2, a3, …, an> of coordinates
in UD, there is exactly one individual an+1 in UD where the (n+1)-
tuple <a1, a2, a3, …, an, an+1> is in the extension of the function, F. 
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Example of an Interpretation

• Suppose that we wish to construct an interpretation, IΓ for the following PL
sentences with an infinite universe of discourse, UD, making each true.
• S1 (∀x) o ≠ gx
• S2 (∀x)(∀y)(gx = gy x = y)
• S3 (∀x)(x ≠ o (∃z) x = gz)

• Then here is a natural construction:
• UD: The set of all the natural numbers: {0, 1, 2, 3, 4, …}
• LN: 0, a1, a2, a3, …, an,…

• Semantical Assignments:
• I(o): 0; I (a1): 1; I(a2): 2; I(a3): 3; … (in general, I(an): n)
• I(gx): x+1 (that is, I(gx) is the successor function)

Informal Reading

• Informally, we have interpreted (S1) - (S3) to mean the following:

• (S1) 0 is not the successor of any natural number.

• (S2) Any two numbers that have the same successor are identical.

• (S3) Every natural number that is not 0 is the successor of some 
natural number.

• Because each of (S1) – (S3) is true on IΓ, and the universe, UD, is 
infinite, we have constructed an interpretation of the desired sort. 
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Substitutional vs. Objectual Interpretations

• The informal reading we gave to (S1) - (S3) suggests that the 
quantifiers range over the universe of discourse of the interpretation, 
not all things.  ‘(∀x)’ means for all natural numbers, not for all period.

• Objectual quantifiers are interpreted in this way.  But substitutional 
quantifiers on which we rely hence range over ‘basic’ names in LN. 

• The substitutional interpretation of (∀z)X is that every ‘basic’ 
substitutional instance of (∀z)X is true; and the substitutional 
interpretation of (∃z)X is that there is at least one ‘basic’ substitutional 
instance of (∃z)X that is true.  Let us explain the operative ideas.

Substitution Instance

• The sentence X[t] is a substitution instance of the quantified sentence 
(Ωz)X (where Ω is the universal quantifier symbol ∀ or the existential 
quantifier symbol ∃) just in case X[t] is obtained from X by replacing 
all occurrences of the variable z in X with the singular term t. 

• If t is a name listed in the LN of a PL interpretation, IΓ, that is relevant 
to X[t], then X[t] is a basic substitutional instance of (Ωz)X on IΓ.

• Example: (ga1 = ga2 a1 = a2) is a basic substitution instance of (S2) 
(∀x)(∀y)(gx = gy x = y).  According to our definition, (∀x)(∀y)(gx = 
gy x = y) is true on IΓ just in case every such instance is true on IΓ.
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Substitutional Interpretation

• A PL Interpretation, IΓ, is thus, a triple, <UD, V(IΓ), SA>, where UD is 
the universe of discourse, V(IΓ), is the vocabulary of the interpretation
-- including the list of names, LN -- and SA are the assignments.
• Note: Every PL interpretation has its own vocabulary, V(IΓ), which is not, in 

general, just the vocabulary of the interpreted set of sentence, Voc(Γ)!

• So defined, a PL interpretation is substitutional.  We demand that 
every member of UD has a name from LN.  Individuals come labeled.

• Substitutional interpretations contrast with objectual interpretations, 
which do not require that the objects of UD be labeled.  Before we 
discuss the difference, we specify truth conditions for sentences.

Truth Conditions

• Given the definitions of an interpretation, IΓ, and a basic substitution 
instance, we can specify truth conditions for every sentence of PL.

• If X and Y are any PL sentences and IΓ is a PL interpretation relevant to 
them (i.e., it is an interpretation for a set containing X and Y), then:

• 1.2.5a (Atomic Clause a) If X is of the form r = s where r and s are PL
singular terms, then X is true on IΓ if and only if IΓ(s) = IΓ(r), i.e., the 
referents of r and s on IΓ are numerically identical (the same individual).

• 1.2.5b (Atomic Clause b) If X is of the form P1s where P1 is a 1-place PL 
predicate and s is a PL singular term, then X is true on IΓ if and only if IΓ(s) 
∈ IΓ(P1), i.e., the referent of s on IΓ has the property that IΓ assigns to P1.
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Truth Conditions

• 1.2.5c (Atomic Clause c) If X is of the form Rna1, a2, a3, …, an, where Rn is 
an n-place PL predicate (n >1) and t1,t2, … tn are (perhaps not distinct) PL
singular terms, then X is true on IΓ if and only if <(IΓ(t1), IΓ(t2),…IΓ(tn))> ∈
IΓ(Rn), i.e., the referents of t1,t2, … tn, in the order specified, are related to 
each other according to the relation that IΓ assigns to Rn.

• 1.2.5d (Truth Functions) If X and Y are any PL sentences, then:
• ~X is true on IΓ if and only if X is false on IΓ.
• (X & Y) is true on IΓ if and only if X is true on IΓ and Y is true on IΓ.
• (X v Y) is true on IΓ if and only if X is true on IΓ or Y is true on IΓ (or both).
• (XY) is true on IΓ if and only if X is false on IΓ or Y is true on IΓ (or both).
• (XY) is true on IΓ if and only if X and Y are both true or both false on IΓ.

Truth Tables
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The Conditional

• Most of the entries in the truth tables are self explanatory.  But one 
row of the truth table for the conditional, , might seem puzzling.

• Why do we consider the conditional true when its antecedent, X, is 
false and its consequent, Y, is true?  There are three reasons.
• First, (X Y) must be either true or false given our assumption of bivalence.
• Second, whatever truth-value (X Y) has in a row must be a function of the 

truth-values of its constituents, X and Y, since  is a truth function.
• Finally,  is weaker than .  But if we assigned F to (X Y) when X was 

false and Y was true, then the truth-tables for  and  would be the same.

• Note: We have defined  such that (X Y) is equivalent to (~X v Y).

Truth Conditions Continued

• 1.2.5e (Universal Quantifier) If X is of the form (∀y)Z, then X is true 
on IΓ if and only if, for every name s in LN, the sentence Z[s] is true on 
IΓ, where Z[s] is formed by replacing all the occurrences of y in Z by s 
(i.e., just in case every basic substitution instance of Z is true on IΓ).

• 1.2.5f (Existential Quantifier) If X is of the form (∃y)Z, then X is true 
on IΓ if and only if, for some name s in LN, the sentence Z[s] is true on 
IΓ, where Z[s] is formed by replacing all the occurrences of y in Z by s 
(i.e., just in case some basic substitution instance of Z is true on IΓ).

• IΓ satisfies Γ and is a model of Γ if and only if every PL sentence in 
the set Γ is true on IΓ.  (This is not the same as objectual satisfaction!)
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Basic Substitution Instances

• Why does it suffice to specify truth-conditions in terms of basic
substitution instances?  Because if all the basic substitutional instances 
of (Ωz)X are true on IΓ, then the formula X is true of all the individuals 
in UD.  But all the individuals in UD have names in LN, and all 
singular terms, basic or not, refer to unique individuals in UD. Thus if 
we substitute a singular term for z in X, we get a true sentence on IΓ.
• Conversely, if there is some true substitution instance of (Ωz)X on IΓ, 

then there is some individual in UD of which the formula X is true. 
(Every singular term has a unique referent on IΓ). But this individual 
must have a name in LN. Hence, if we substitute this name for z in X, 
then we obtain a true sentence on IΓ. The case of falsehood is similar.

Questions about Substitutional Quantifiers

• Question 1: Do substitutional and objectual interpretations agree on 
the truth-values of all sentences in a PL language?

• Answer: Yes, but only if every individual in UD has a name in LN.

• Question 2: Some infinite sets, like ℝ, are not countable. They cannot 
be placed in one-to-one-correspondence with (a subset of) the natural 
numbers. Formal languages are ordinarily assumed to be countable.  
So, what happens if our Universe of Discourse, UD, is uncountable?

• Answer: We let LN be uncountable as well! We require that a formal 
language, like PL, be countable.  It is only our metalanguage that may 
not be.  However, in what follows, we use a countable metalanguage.
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Metalogical Concepts

• Much as there is a distinction between an object language (in this 
case a PL language) and a metalanguage (in this case English + 
technical symbols), there is a distinction between logic and metalogic.
• Confusingly, Symbolic Logic is about the latter.  It is about what is a 

valid argument, what is consistent, what is a logical truth, and so forth 
-- not (primarily) about what non-metalogical claims are true.
• Example: The claim that (∀x) x = x is a logical truth is itself a 

metalogical claim which is not a logical truth. It is about a string of 
symbols.  By contrast, the claim that (∀x) x = x is a logical truth.  The 
claim that (∀x) x = x is about everything (whatever it is) and happens 
to be such that it cannot -- as a matter of classical logic -- be false.  

Metalogical Concepts

• 1.3.1 A PL argument is a nonempty collection of PL sentences, one of 
which is the conclusion and the others of which are its premises. 
• If Γ is the set of the premises of an argument whose conclusion is X, we write: 
Γ / X.   An argument in PL has exactly one conclusion.  But its set of premises 
Γ may be empty or contain finitely or even infinitely-many PL sentences.

• 1.3.2 An argument Γ / X is valid if and only if its conclusion, X, is a 
consequence of its set of premises, Γ.  We rely on some symbolism.
• 1.3.2a The string, Γ |= X, is read: X is a logical consequence of Γ, or X

logically follows from Γ, or s Γ logically implies X.
• 1.3.2b The string, Γ |=/ X is read: X is not a logical consequence of Γ, 

or X does not logically follow from Γ, or Γ does not logically imply X.
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Metalogical Concepts

• 1.3.3a A PL argument Γ / X is valid, so that Γ |= X, if and only if X is 
true in every model of Γ that is relevant to X (that is, on every PL
interpretation for Γ / X on which all the members of Γ are true X is 
true as well).

Equivalently:

• 1.3.3b A PL argument Γ / X is valid, so that Γ |= X, if and only if there 
is no model of Γ that is relevant to X on which X is false (that is, there 
is no PL interpretation on which all the members of Γ are true and X is 
false).

Metalogical Concepts

• 1.3.4 A PL argument Γ / X is invalid, so that Γ |=/ X, if and only if there is a 
model of Γ on which X is false (that is, there is a PL interpretation on which 
the members of Γ are all true and X is false).
• We may also speak of the validity (or logical truth) and invalidity (of 

logical falsehood) of sentences, as follows.
• 1.3.5a A PL sentence is valid if and only if it is true on every PL

interpretation relevant to that sentence. 
• 1.3.5b A PL sentence is valid if and only if there is no PL interpretation on 

which it is false.
• 1.3.6a A PL sentence is contradictory (or logically false) if and only if it is 

false on every PL interpretation relevant to that sentence. 
• 1.3.6b A PL sentence is contradictory (or logically false) if and only if 

there is no PL interpretation on which it is true.
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Metalogical Concepts

• 1.3.7 A PL sentence is contingent if and only if it is true on at least one PL
interpretation and false on at least one interpretation.
• 1.3.8a Two PL sentences are logically equivalent if and only if they have 

identical truth values on every PL interpretation relevant to them.
• 1.3.8b Two PL sentences are logically equivalent if and only if there is no

relevant PL interpretation on which they disagree in truth value.
• 1.3.9 A set of PL sentences is satisfiable if and only if it has a model (that is, there 

is a PL interpretation that ‘satisfies’ it, on which every member of the set is true).
• 1.3.10a A set of PL sentences is unsatisfiable if and only if on every relevant PL

interpretation, a member of the set is false.
• 1.3.10b A set of PL sentences is unsatisfiable if and only if it lacks a model (that 

is, there is no PL interpretation on which all the members of the set are true).

Decidability and Effectiveness

• 1.3.11 A concept (property or predicate) is decidable if and only if there is 
an effective decision procedure for determining whether or not something 
is subsumed under the concept.
• A procedure is effective if and only if it is mechanical (involving no creative steps) 

and generates the desired result after finitely-many deterministic steps.

• Note: Not all effective procedures are decision procedures. There are 
effective procedures that produce the answer ‘Yes’ when and only when the 
correct answer is ‘Yes,’ but that do not produce any answer when the correct 
answer is ‘No’.  There are also effective procedures that produce the answer 
‘No’ when and only when the correct answer is ‘No,’ but do not produce 
any answer when the correct answer is ‘Yes.’ We will call the former kind of 
procedure a Yes-Procedure and will call the latter kind a No-Procedure. 
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Semidecidability

• A concept (property, predicate) with only a Yes-procedure is 
semidecidable (i.e., recursively or computably enumerable).

• A landmark limitation of Predicate Logic to which we return is that 
there is no effective decision procedure for answering all the questions 
of the form: ‘Is this PL sentence, or is this set of PL sentences, valid?’ 
(likewise for ‘satisfiable’, ‘contradictory’, ‘contingent’ and so forth).

• We will find that some metalogical concepts of PL, like validity and 
unsatisfiability, are semidecidable.  But this means that their 
compliments, invalidity and satisfiability, are not even semidecidable.

Proof Theory

• We have been discussing semantic concepts, like meaning (or 
reference), truth, validity, satisfiability and logical consequence.  
These have to do with the interpretation of strings of symbols.

• Proof Theory is a syntactic idea.  Much as we gave formation rules for 
terms and formulas in PL, we must give derivation rules for proofs.

• We hope that (*) a sentence X is derivable from a set of them, Γ,
according to our rules just in case Γ / X is a valid argument.

• Later in the course, we will find that this is indeed the case.
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Proof Theory

• 1.4.1 A proof theory makes rigorous (some relevant notion of) 
demonstrative proof.  A formal proof is called a derivation. 
• Note: Even bracketing non-classical (e.g., intuitionistic) notions of logical 

consequence, the word ‘proof’ is ambiguous.  The kind of proof that we are interested 
in, which makes rigorous the kind in pure mathematics, does not categorically 
establish its conclusion.  At best, it establishes that if the premises (axioms) are true, 
then so is the conclusion.  When we ask for ‘proof’ that the defendant is guilty, we 
seek something categorical.  We want to know whether they are guilty – period! 

• A demonstrative proof consists of: (1) the inferential antecedents, (2) the 
inferential conclusion, and (3) the inferential license (where (3) refers to 
the inferential antecedents and the rules of inference that were used). 

Proof Theory

• Formal derivations consist solely of symbolic sentences.

• The number associated with a stage or its inferential license is strictly 
extraneous to the derivation.  But since we are humans (!) who require 
a degree of narrative, we will typically write formal derivations as a 
series of inferential steps.  This is another one of our conventions. 

• Sentences in a derivation are either premises, assumptions or 
conclusions that are licensed by some formal rules of inference.  

• If L is a logical syntax and a DS a Deduction System (a collection of 
formal rules of inference), then if Γ + X is a set of L sentences, we say:
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Proof Theory

• An L derivation of X from Γ is a finite sequence of L sentences such 
that the last sentence of the sequence is X and every sentence in the 
sequence is either a member of Γ or is licensed by a rule of DS.

• If there is an L derivation of X from Γ, we will say that X is derivable
from Γin L or, instead, that X is a theorem of Γ in L, written Γ |–L X. 

• As PL is our default system, we write, |– instead of |–PL when L is PL.

• The lengthy collection of inference rules that we use is called the 
Natural Deduction System (NDS).  We will outline its details shortly.

Proof Theory

• An L derivation of X from Γ is a finite sequence of L sentences such 
that the last sentence of the sequence is X and every sentence in the 
sequence is either a member of Γ or is licensed by a rule of DS.

• The premises are listed at the start of the derivation, called the zero 
stage.  Sentences of non-zero stages are licensed by formal rules.  
Their applicability is determined by the (generally coarsest) 
syntactical forms of the inferential antecedents or conclusion. 

• We can now restate the hope that we labeled (*) in an earlier slide.
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Soundness and Completeness

• 1.4.2 Desideratum (*) consists of the following two conditionals:

• Soundness Theorem for PL: For every set Γ of PL sentences and 
every sentence X of PL, if Γ |– X, then Γ |= X (that is, if X is a 
theorem of Γ, then X is also a logical consequence of Γ).

• The Completeness Theorem for PL: For every set Γ of PL sentences 
and every sentence X of PL, if Γ |= X, then Γ |– X (that is, if X is a 
logical consequence of Γ, then X is also a theorem of Γ).

Formalizability

• The Soundness and Completeness theorems together mean that the 
semantic relation of PL, |=, is formalized by the syntactic relation, |–.  
That is, |=, is equivalent to a formal notion, |–.  Every proof registers a 
real implication; and every implication is witnessed by some proof. 

• PL is an example of a formal logic because the PL consequence 
relation is formalizable.  By contrast, the notion of logical 
consequence for Second-Order Logic (PL2), to which we return later 
in the course, is not formalizable.  Hence, PL2 is not a formal logic.

• This fact about PL2 can be described by saying that PL2 is an 
incomplete logic or, alternatively, that it is essentially semantical.
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Corollaries

• 1.4.3 (Vocabulary) A PL sentence that is derivable from the empty set, ∅, is 
a logical theorem.  A set of PL sentences from which a sentence and its 
negation are both derivable is inconsistent.  A consistent set of PL
sentences is a set that is not inconsistent.  And sentences X and Y are 
interderivable when X is derivable from Y and Y is derivable from X.
• The Soundness and Completeness Theorems have the following corollaries:
• 1.4.3a A set of PL sentences is unsatisfiable if and only if it is inconsistent.
• 1.4.3b Two PL sentences are logically equivalent if and only if they are 

interderivable.
• 1.4.3c A PL sentence is valid if and only if it is a logical theorem.
• 1.4.3d A PL sentence is contradictory if and only if a sentence and its 

negation are both derivable from it.

Proof of 1.4.3a
1.4.3a A set of PL sentences is unsatisfiable if and only if it is inconsistent.

• Part 1 (Inconsistency Unsatisfiability):
• 1) Let Γ be an inconsistent PL set, i.e., Γ |– X and Γ |– ~X, for some PL sentence X.
• 2) Γ |= X and Γ |= ~X. [From 1) by the Soundness Theorem]
• 3) Assume for reductio that Γ is satisfiable.
• 4) Then there is a PL interpretation IΓ that is a model of Γ. [From 3), by the definition of 

satisfiability]
• 5) If IΓ is not relevant to X, expand IΓ into IΓ* such that IΓ* interprets all the vocabulary in 

X without changing any of the semantical assignments made by IΓ.  Since IΓ is a model of 
Γ, IΓ* is also a model of Γ.

• 6) X and ~X are both true on IΓ*. [From 2) and 5) by the definition of logical 
consequence) 

• 7) However, by definition 1.2.5d, this is a contradiction.  Consequently, by reductio ad 
absurdum, premise 3) must be false; that is, Γ is unsatisfiable. (From 3) through 6)
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Proof of 1.4.3a
1.4.3a A set of PL sentences is unsatisfiable if and only if it is inconsistent.

• Part 2 (Unsatisfiability Inconsistency):
• 1) Let Γ be an unsatisfiable set of PL sentences, and let X be any PL

sentence.
• 2) Then there is no PL interpretation that ‘satisfies’ Γ, i.e., on which every 

member of Γ is true. [From 1), by the definition of unsatisfiability]
• 3) If X is not a logical consequence of Γ, X must be false on some PL 

interpretation that satisfies (i.e., makes true all the members of) Γ.
• 4) Γ |= X and Γ |= ~X. [From 2) and 3), since Γ has no model]
• 5) Γ |– X and Γ |– ~X. [From 4) by the Completeness Theorem]
• 6) So, Γ is inconsistent. [From 5) by the definition of inconsistency]

Proof of 1.4.3b
1.4.3b Two PL sentences are logically equivalent if and only if they are interderivable.

• Part 1 (Interderivability Logical Equivalence):
• 1) Suppose that X and Y are any interderivable PL sentences, i.e., {X}|– Y and {Y}|– X.
• 2) {X}|= Y and {Y}|= X. [From 1) by the Soundness Theorem]
• 3) Let IΓ be any PL interpretation for X and Y on which X is true.
• 4) Then Y is true on IΓ too . [From 2), i.e., {X}|= Y, and 3) by the definition of logical 

consequence
• 5) Now let IΓ be a PL interpretation for X and Y on which X is false.
• 6) Then Y is false on IΓ too. [From 2), i.e., {Y}|= X, and 5) by the definition of logical 

consequence]
• 7) So, X and Y have identical truth values on every PL interpretation  [From 3) – 6)]
• for them.
• 8) X and Y are logically equivalent. [From 7) by the definition of logical equivalence]
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Proof of 1.4.3b
1.4.3b Two PL sentences are logically equivalent if and only if they are interderivable.

• Part 2 (Logical Equivalence  Interderivability):

• 1) Suppose that X and Y are logically equivalent PL sentences.

• 2) Then there is no PL interpretation on which X is true and Y is false, or Y
is true and X is false.  [From 1) by the definition of logical equivalence]

• 3) So,{X}|= Y and {Y}|= X. [From 2) by the definition of logical 
consequence]

• 4) Thus,{X}|– Y and {Y}|– X. [From 3) by the Completeness Theorem]

• 5) X and Y are interderivable.  [From 4) by the definition of 
interderivability]

Proof of 1.4.3c
1.4.3c A PL sentence is valid if and only if it is a logical theorem.

• Part 1 (Theoremhood Validity):
• 1) Let X be any PL theorem, that is, ∅ |– X.
• 2) ∅ |= X. [From 1) by the Soundness Theorem]
• 3 Let IΓ be any PL interpretation for X. Since there is no sentence in ∅

that is false on IΓ (because there are no sentences in ∅!), IΓ satisfies ∅.
• 4) So, X is true on IΓ.  [From 2) and 3) by the definition of logical 

consequence]
• 5) Since IΓ is arbitrary, X is true on every PL interpretation of it.  

[From 3) and 4)]
• 6) X is valid.  [From 5) by the definition of valid sentence]
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Proof of 1.4.3c
1.4.3c A PL sentence is valid if and only if it is a logical theorem.

• Part 1 (Validity  Theoremhood):
• 1) Let X be any valid PL sentence.
• 2) Then X is true on every PL interpretation for it.  [From 1) by the 

definition of valid sentence]
• 3) Every PL interpretation satisfies ∅. [By the reasoning in step 3) of the 

preceding proof]
• 4) Since every PL interpretation at all for X makes X true, every 

interpretation for X that satisfies ∅ makes X true too, i.e. ∅ |= X.  [From 1) 
and 2) by the definition of logical consequence]
• 5) ∅ |– X. [From 4) by the Completeness Theorem]
• 6) X is a logical theorem.  [Fom 5) by the definition of logical theorem]

Proof of 1.4.3d
1.4.3d A PL sentence is contradictory if and only if a sentence and its negation are 
both derivable from it.

• Part 1 (Derivability  Contradictoriness):
• 1) Let Y be a PL sentence such that {Y}|– X and {Y}|– ~X.
• 2 Then {Y}|= X and {Y}|= ~X. [From 1) by the Soundness Theorem]
• 3) Assume for reductio: There is a PL interpretation IΓ on which Y is true.
• 4) If IΓ is not relevant to X, expand IΓ into IΓ * such that IΓ * interprets all of the 

vocabulary in X without altering any of the semantical assignments made by IΓ.  
Since Y is true on IΓ, it is true on IΓ * as well.

• 5) Then X and ~X are true on IΓ *, which is a contradiction.  [From 2) and 4) by 
the definition of logical consequence]

• 6) Hence, the reductio assumption is false: there is no PL interpretation on which 
Y is true.  [From 3) through 5)]
• 7) Y is contradictory [From 6) by the definition of contradictory sentence]
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Proof of 1.4.3d
1.4.3d A PL sentence is contradictory if and only if a sentence and its negation are 
both derivable from it.

• Part 1 (Contradictoriness  Derivability):
• 1) Let Y be a contradictory PL sentence and X any PL sentence.
• 2) Then there is no PL interpretation on which Y is true.  [From 1) by 

the definition of contradictory sentence and the Soundness
Theorem]
• 3) In order for X not to be a logical consequence of Y, it must be false 

on a PL interpretation on which Y is true.
• 4) Thus,{Y}|= X and {Y}|= ~X.  [From 2) and 3), applied to X & ~X]
• 5) So,{Y}|– X and {Y}|– ~X, as asserted.  [From 4) by the 

Completeness Theorem]

Rules of Inference

• 1.4.4 There are three kinds of rules of inference on which we rely:
• Normal rules
• Hypothetical rules
• Replacement rules

• The rules that we introduce include all of the standard ones.  This 
makes it easier to prove theorems in PL, but harder to prove 
metatheorems about PL.  So, later (in 1.4.7) we describe a deduction 
system with a leaner set of rules, from which all the rules that we 
enumerate presently can be derived.  This system will be important.



4/26/2024

32

Proof Blocks

• Blocks are numbered according to the order in which they are opened. They 
are opened at two stages: the zero stage and a stage at which the assumption 
of a hypothetical rule occurs. The block opened at the zero stage is the 0-
block and encloses the main derivation. It closes at the conclusion of the 
derivation. 
• A block B* is a subblock of a block B just in case B* is opened after B is 

opened and before B is closed. (So, all the blocks of a derivation, other than 
the 0-block are subblocks of the 0-block.)  A block can be closed only after 
its subblocks are.
• Nested blocks are ordered in a series B1, B2, B3, …, Bn such that Bk+1 is a 

subblock of Bk, for all k = 1, 2, 3, …, n–1. These are stacks: the last block to 
be opened is the first to be closed.  Assumptions of a block are discharged
outside of the block.

Example 1: Constructive Dilemma (CS)
• Constructive Dilemma (CD)

• [n

• h)  X v Y

• i) X Z1

• j)  Y v Z2

• k)  Z1 v Z2 h, i, j, (CD)

• n]
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Example 2: Disjunctive Syllogism (DS)

• Disjunctive Syllogism (DS)

• [n

• h)  X v Y

• i) ~X

• k)  Y     h, i, (DS)

• n]

Explanation of Rules

• In real derivations, n, h, i, j, and k get replaced with numerals. The lines h, 
i, and j are the inference’s antecedents and the line k is the inference’s 
conclusion. To the right of the conclusion is the inferential license.
• Example: The license, ‘h, i, j, (CD)’, abbreviates, ‘From lines h, i, and j by 

Constructive Dilemma,’ while ‘h, i, (DS)’ abbreviates, ‘From lines h and i
by Disjunctive Syllogism.’
• As before, the symbols X, Y, Z1, and Z2 are metalinguistic variables that 

stand for any PL sentences.
• The brackets to the left represent the block within which the rule is applied. 

We will discover that normal rules apply only within open blocks.
• Foreshadow: A left bracket followed by numeral n represents the first line of the nth 

block, and numeral n followed by a right bracket represents the last line of the nth 
block. Prior to ‘[n’ the nth block has not been opened and after ‘n]’ the it is closed.
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Concrete Illustration

• [2
…
• 6) Ps(∃y)By
• 7) ~(∀x)~Dx
• 8) Ps v (Rab & Qc)
• 9) (Rab & Qc)  (∀x)~Dx
• 10) (∃y)By v (∀x)~Dx 6, 8, 9, CD
• 11) (∃y)By                           7, 10, DS
…
• 2]

Observations about Illustration

• In the previous example, the portion of the derivation displayed is part 
of the second block. 

• The rules are applied fully within an open block.  (Block 2 is opened 
at some point prior to the 6th line and is closed after the 11th line.) 

• Any conclusion that we infer may be used as an antecedent for a later 
inference if that conclusion occurs in the open block of the inference.



4/26/2024

35

Example 3: DeM and MC

De Morgan’s Laws (DeM):

• ~(X & Y)  (~X v ~Y) 
• ~(X v Y)  (~X & ~Y)

Material Conditional (MC): 

• (XY)  (~X v Y)

• Note: The bolded biconditional arrows mean that one can replace either for 
the other.  One can also execute the replacements in a proper subformula.

Concrete Illustration

• [1
…
• 6) Ps  (∀x)~(Rab & Dx)
• 7) Ps (∀x)(~Rab v ~Dx) 6, DeM
• 8) Ps  (∀x)(Rab ~Dx) 7, MC
• 9) ~Ps v (∀x)(Rab ~Dx) 8, MC
…
• 1]

• N.B.: Rules like CD and DS only apply to entire lines.  By contrast, 
replacement rules like DeM and MC apply to individual formulas.
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A Hypothetical Rule

• Conditional Proof (CP): (‘CPA’ means Conditional Proof 
Assumption)
• [n

• [n+1 h)      X (CPA)

• n+1] k)     Y
k+1)  X Y h–k (CP)

• n]

Concrete Illustration

• [1
…
• [2 i) Ps (CPA)
…
• 2] k) (∀x)~(Rab & Dx)

k+1) Ps (∀x)~(Rab & Dx) i–k (CP)
…
• 1]

• Note: A block that is opened due to the application of some hypothetical rule 
closes at a line permitted by that specific rule. The inference’s conclusion of a 
hypothetical rule is stated immediately after the line at which its block is closed. 
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Natural Deduction

• There are many equivalent proof theories for PL, i.e., systems that 
have the same theorems and valid inferences.  But the most intuitive 
are Natural Deduction systems.  We begin with the system, NDS.

• NDS consists of seventeen normal rules, three hypothetical rules, 
and thirteen replacement rules, which we shall now enumerate.

• 1.4.5a Normal rules can only be applied fully within an open block.  
The order of lines h, j, and j in the rule schemas to follow are 
irrelevant in their application.  However, line k must succeed them.

Normal Rules: Reiteration
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Normal Rules: Conjunction

Normal Rules: Simplification
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Normal Rules: Addition

Normal Rules: Disjunctive Syllogism
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Normal Rules: Modus Ponens

Normal Rules: Modus Tollens
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Normal Rules: Biconditional Modus Ponens

Normal Rules: Biconditional Modus Tollens
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Normal Rules: Hypothetical Syllogism

Normal Rules: Constructive Dilemma
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Normal Rules: Explosion

Normal Rules: Universal Instantiation



4/26/2024

44

Normal Rules: Universal Generalization

Normal Rules: Existential Generalization
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Normal Rules: Identity

Normal Rules: Substitution
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Hypothetical Rules

• Every hypothetical rule begins a new block and adds an assumption. 

• It terminates with exiting the block and discharging the assumption. 

• The order of the lines h and k is relevant in Hypothetical Rules.

Hypothetical Rules: Reductio Ad Absurdum
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Hypothetical Rules: Conditional Proof

Hypothetical Rules: Existential Instantiation
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Replacement Rules

• Unlike other rules may be applied to proper components of a 
sentence. All replacements may be performed in the forward or 
reverse directions.  X, Y, and Z are PL sentences or PL formulas.

Replacement Rules
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Replacement Rules

Gentzen Deduction System (GDS)

• The system NDS is highly redundant.  Most of the rules can be 
derived – assuming classical logic in the metatheory – from just a few.
• This facilitates reasoning in PL. We can use (almost) all the methods 

of reasoning that we unreflectively use in mathematics.  But it is a pain 
for proving things about PL.  We must deal with each rule separately!
• A pioneering middle ground is due to Gerhard Gentzen who invented 

this style of proof system (as opposed to, e.g., Hilbert’s axiomatics).
• It is neither highly redundant, like NDS, nor maximally lean, like 

systems we will discuss.  It also inaugurated the so-called conceptual 
role approach to meaning in terms of introduction and elimination 
rules.  We will call the system Gentzen Deduction System (GDS).
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GDS Rules

• Here are the seventeen rules of GDS: 

• (1) Reiteration

• (2) Conjunction Introduction – Conj (^I)

• (3) Conjunction Elimination – Simp (^E)  

• (4) Conditional Introduction – CP (I) 

• (5) Conditional Elimination – MP ( E)

• (6) Universal Introduction – UG (∀I)

• (7) Universal Elimination – UI (∀E)

GDS Rules Continued.

• (8) Existential Introduction – EG (∃I) 

• (9) Existential Elimination – EI (∃E) 

• (10) Identity Introduction – Id (=I)

• (11) Identity Elimination – Sub (=E) 

• (12) Negation Introduction – RAA, Part 1 (~I) (with conclusion ~X)

• (13) Negation Elimination – RAA, Part 2 (~E) (with conclusion X).

• (14) Disjunction Introduction – Add (vI)

• (15) Disjunction Elimination – (vE) is the following hypothetical rule:
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Disjunction Elimination

Biconditional Elimination
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Summing Up

• The rules of NDS and GDS are mutually derivable (against a classical 
metatheory).  The former system is useful for ordinary reasoning.  It is 
also useful in philosophical contexts in which we consider alternative 
logics.  DS, for instance, is not a rule of GDS but plays a central role 
in the ‘explosion’ argument from a contradiction to an arbitrary claim.

• We will ultimately focus on a system with even fewer rules than GDS.
This will greatly expedite our proof of metatheorems about it.

• For purposes of appreciating what a PL system is and how to work in 
it, any such system serves.  We now turn to the project of investigating 
such systems from the outside to discover their scope and limitations.

Symbolic Logic
Resources of the Metatheory
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Ambient Background Assumptions

• We will ultimately be proving things about a fixed PL logic system, like that 
Disjunction Introduction is sound – that is, truth-preserving in all models.
• What rules of inference and mathematical assumptions are we allowed to use in 

proving such a thing?  May we use the very rule, Disjunction Introduction?
• If we seek to justify Disjunction Introduction, to the satisfaction of a skeptic then 

we cannot assume it.  But we aspire to something more modest: use finitely many 
applications of the rules (plus some mathematical principles) in order to justify the 
soundness of infinitely many derivations (constructed out of infinitely many 
possible combinations of the NDS rules of inference).  Our arguments will be rule 
circular, but not premise circular.  We are not assuming as a premise the 
soundness of Disjunction Introduction in arguing that this inference rule is sound!
• Upshot: Not only do mathematical theorems (like Fermat’s Last Theorem) depend 

on the axioms that one assumes, but theorems about what follows from what in a 
fixed logic do as well.  However, in the latter case the relevant axioms are logical.

Ambient Background Assumptions

• 2.1.3 Metalogic is all about proving metatheorems. These theorems 
require proofs, and proofs require logical resources, such as rules of 
inference. What are the rules of inference that are available at the 
meta-level? All the rules of the Natural Deduction System (NDS). 

• In addition to these inference rules, our metatheory assumes 
arithmetical and set-theoretic principles, such as the Axiom of 
Mathematical Induction and the Axiom of Extensionality.

• We begin by discussing arithmetical principles and their relevance.
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Arithmetic Assumptions

• 2.2.1 Our metatheory assumes the existence of the structure, <ℕ, s, <, 
+, *>. ℕ is the set of natural numbers, 0, 1, 2…  The symbols s, <, +, * 
denote the successor, less than, addition and multiplication operations. 

• We naively avail ourselves of the assumed properties of natural 
numbers in proving metatheorems.  In particular, we assume:

• First, the relation, <, is well-founded on ℕ.  In other words, every 
nonempty subset of ℕ has a minimal element with respect to <. 

• Second, the following recursion equations based on s(n) = n+1 hold.

Recursion Equations

• 2.2.1a For every natural number n, n + 0 = n.

• 2.2.1b For all natural numbers k and n, n + s(k) = s(n+k).

• 2.2.1c For every natural number n, n * 0 = 0.

• 2.2.1d For all natural numbers k and n, n * s(k) = ((n * k) + n).

• 2.2.1e For all natural numbers j, k, and m, j – k = m iff k + m = j and 
undefined otherwise.
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Induction

• The most powerful arithmetical principle that we assume is Induction.

• Induction takes two equivalent (in a standard metatheory) forms:

• Principle of Mathematical Induction (PMI): If X(n0), and for every natural 
number k ≥ n0, X[S(k)] if X(k), then for every natural number n ≥ n0, X(n).

• Principle of Complete Induction (PCI):  If X(n0), and for every natural 
number k ≥ n0, X(k) when X(m) for each m such that n0 ≤ m < k, then for every 
natural number n ≥ n0, X(n). 

Application of PMI

• Theorem: For all n ∈ ℕ, n ≥ 1, 1 + 2 + 3 + … + n = n(n + 1) / 2.

• Proof: For the Base Step, let n = 1.  Then 1 = 1(1 + 1) / 2 = 2 / 2 = 1.

• For the Inductive Step, Let k ≥ 1, and suppose, for the Inductive 
Hypothesis, that 1 + 2 + 3 + … + k = k(k + 1) / 2.  

• We argue that, given this, 1 + 2 + 3 + … + k + (k + 1) = (k + 1)[(k+1) + 
1] / 2.

• By the Inductive Hypothesis, 1 + 2 + 3 + … + k + (k + 1) = k(k + 1) / 2 
+ (k+1) = [k(k+1) + 2(k+1)] / 2 = (k + 1)(k + 2) / 2 = (k + 1)[(k+1) + 1] / 
2, as desired.



4/26/2024

56

Application of PCI

• Metatheorem: For any sentence of PL, X, if X is quantifier-free and 
one of its sentential component occurrences is of the form (Y  Z), 
then the PL sentence obtained by replacing that occurrence of (Y Z) 
in X with an occurrence of (~Y v Z) is logically equivalent to X.

• Note: This statement has nothing to do, on its face, with the natural 
numbers!  The trick of Mathematical Induction is to see how to 
transpose statements explicitly about the likes of sentences into 
statements about numbers whose predicates concern sentences. 

Application of PCI

• Proof: Let us write X[Y  Z] to denote a PL sentence of which an 
occurrence of (Y Z) is a sentential component, and X[~Y v Z] for 
the result of replacing that occurrence with an occurrence of (~Y v Z).

• We define the complexity of X[Y Z] to be the number of connective 
occurrences that appear in X[Y Z] other than the occurrence of  in 
the aforementioned occurrence of (Y  Z).

• For the Base Step, let the complexity of X[Y Z] be 0. Since, (Y
Z) is logically equivalent to ~(Y v Z), the Base Case is trivial.
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Application of PCI

• For the Inductive Step, let us suppose as the Inductive Hypothesis 
that for every m < k, where k is some non-zero natural number, any 
quantifier-free sentence X[Y Z] whose complexity is m is logically 
equivalent to X[~Y v Z] . Then we show that the theorem holds for a 
quantifier-free sentence W[Y Z] whose complexity is k. 

• Since k is not zero, W[Y Z] contains at least one connective 
occurrence other than the  of the relevant occurrence of (Y Z).

• W[Y Z] could, therefore, be a negation, conjunction, disjunction, 
conditional, or biconditional (with an occurrence of (Y Z)). 

• Let us consider each case in turn.

Application of PCI

• (a) NEGATION

• Suppose that W[Y  Z] is a negation, i.e., of the form ~V.  Hence, the 
relevant occurrence of (Y  Z) must be a sentential component 
occurrence of V.  We can write V[Y  Z].  But V[Y  Z] has a 
complexity less than k, so the Induction Hypothesis applies to it. 

• That is, V[Y  Z] is logically equivalent to V[~Y v Z]. 

• But in that case ~V[Y  Z] must be logically equivalent to ~V[~Y v 
Z] as well. Since W[Y  Z] is ~V[Y  Z] and W[~Y v Z] is ~V[~Y v 
Z], we have that W[Y  Z] is logically equivalent to W[~Y v Z].
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Application of PCI

• (b) CONJUNCTION

• Now we suppose that W[Y  Z] is a conjunction. Then it has the form 
(V & U). Since (Y  Z) is assumed to be a sentential component of (V & 
U), it must be either a sentential component of V, or of U, or both.

• Without loss of generality, assume it is a sentential component of only V.  
Then we can write V as V[Y  Z]. Since the complexity of (V & U) is k, 
the complexity of V, i.e. V[Y  Z], must be less than k. So, the Induction 
Hypothesis applies to V[Y  Z], and V[Y  Z] is logically equivalent to 
~V[~Y v Z].  But, then, V[Y  Z] & U must be logically equivalent to 
~V[~Y v Z] & U, that is, W[~Y v Z].  The case of U is identical.

Application of PCI

• (c) REMAINING CASES

• Exactly parallel reasoning applies to disjunctions, conditionals and 
biconditionals.  The Inductive Step is, thus, established.

• We may now conclude, PCI, that every quantifier-free PL sentence (of 
any complexity) that contains a sentential component occurrence of 
the form (Y  Z) is logically equivalent to the PL sentence that is 
obtained from the original sentence by replacing that occurrence of (Y 
 Z) with an occurrence of (~Y v Z).



4/26/2024

59

Set Theoretic Assumptions

• 2.3.1 Set theoretic assumptions will allow us to prove theorems about 
functions, relations, collections, sizes and structures of objects.

• We will be as liberal about sets as we are in ordinary mathematical 
contexts.  At first pass, will assume the following natural principle:

• Naïve Comprehension: For every predicate (property), there is a set 
of things that satisfy that predicate (have the corresponding property).
• Note: This applies to inconsistent predicates as well.  Consider the predicate ‘x 
≠ x’.  By Naïve Comprehension, there is a set of things that satisfy it.  It is ∅!

• Why is this a naive?  Because it turns out to be inconsistent!

Russell’s Paradox

• Consider the predicate ‘x ∉ x’.  By Naïve Comprehension, there is a 
set, R = {x : x ∉ x }.  Since R is a set, either R ∈ R or R ∉ R.  

• Assume for reductio that R ∈ R. Then R satisfies the predicate ‘x ∉ x’.  
But R satisfies this predicate just in case R ∉ R.  This is a contradiction. 

• Hence, suppose for reductio, that R ∉ R. Then R satisfies the predicate 
for membership in R.  So, R ∈ R. This is also a contradiction!

• Upshot: Naïve Comprehension (which was thought by Frege and 
Dedekind to be a principle of logic!) is contradictory, so must be false.
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Diagonal Arguments

• Russell argument is called a diagonal argument, and the method, due 
to Cantor, pervades mathematical logic and set theory.  The proofs of 
the existence of different sizes of infinity, the undecidability of the 
Halting problem and first-order logic, the undefinability of truth, the 
incompleteness of arithmetic, and the unprovability of mathematics’ 
consistency (if it is consistent) all make use of diagonal arguments.

Definitions

• Before we outline the way in which we will (try!) to circumvent Russell’s 
Paradox, we introduce the following ideas and definitions from naive set theory.
• Individuation of n-tuples: For all n-tuples, with n ≥ 1,  <a1, a2, a3, …, an> and 

<b1, b2, b3, …, bn> , are identical just in case ai = bi, for all i ≤ n.

• Subset: A is a subset of B, written A ⊆ B just in case, for every x ∈ A, x ∈ B.
• Proper Subset: A is a proper subset of B, written A ⊂ B just in case, A is a subset

of B, but A is not identical to B.  Note: [A ⊆ B & B ⊆ A]  (A = B).
• Union: If F is a family (set of sets), then the union of F, written ∪F is the set of 

members of members of F, i.e., F ={x : ∃y & y ∈ F & x ∈ y}.
• Partition: A partition of a set, A, is a family, F, that is exhaustive -- i.e., such that 
∪F = A -- and such that all of its members are disjoint -- i.e., for all A ∈ F and B
∈ F, {x : x ∈ A & x ∈ B} = ∅.  The last condition is written: ∩F = ∅.
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Definitions Continued

• Cartesian Product: If A1, A2,…An are nonempty sets, then their 
Cartesian Product, written A1 × A2 × …An , is the set {<x1, x2, x3,…, 
xn>  : x1 ∈ A1 & x2 ∈ A2 &… xn∈ An}.  
• The n-times Cartesian Product of A with itself is written An.

• n-place relations and functions (which, we saw, are just n+1-place 
relations that assign to every n-tuple exactly one individual) are 
subsets of the Cartesian Product of the sets of related items.  Hence, 
for any binary relation, R, on a set, A, R ⊆ A2.  There are a variety of 
important features that any such binary relation may possess.  

Kinds of Relation

• R is reflexive (on a set, A) iff for all x in A, x R x.

• R is irreflexive iff for all x in A, it is not the case that x R x.

• R is symmetric iff for all x and y in A, if x R y, then y R x.

• R is asymmetric iff for all x and y in A, if x R y, it is not the case that y R x.

• R is antisymmetric iff for all x and y in A, if x R y and y R x, then x = y.

• R is transitive iff for all x, y, and z in A, if x R y and y R z, then x R z.

• R is extendible iff for all x in A, there is some y in A such that x R y.

• R is total (or dichotomous) iff for all x and y in A, either x R y or y R x.
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Kinds of Relation Continued

• R is connex (trichotomous) iff for all x and y in A, either x R y, y R x, 
or x = y.

• R is injective (one-to-one) iff for all x, y, and z in A, if x R z and y R z, 
then x = y.

• R has a minimal element in D ⊆ A iff there is x ∈ D, such that for 
every y ∈ D, it is not the case that (y R x). [x is called an R-minimal 
element in D]

• R has a maximal element in D D ⊆ A iff there is x ∈ , such that for 
every y ∈ D, it is not the case that (x R y).  [x is called an R-maximal 
element in D]

Properties of Functions

• A function, written f : A  B, where A is the domain of f and B is the f’s 
range, may be total or partial.  If f : A  B is total, then, for every x ∈ A, 
there exists a y, such that <x, y> ∈ f.  (We say that f is ‘defined’ for all 
members of the domain, A.)  If it is partial, then this is not this case.
• A function, f : A  B, is said to be surjective or onto B just in case, for all y
∈ B, there exists an x, such that <x, y> ∈ f. f is merely into otherwise.
• f : A  B, is injective or one-to-one whenever, if f(x) = f(y), then x = y.  
• f : A  B, is bijection or a one-to-one correspondence, written A ≈ B, 

when it is total, one-to-one, and onto.
• Given f : A  B and g : B C, the composition of f and g, written g ∘ f : A 
 C is from A into C and assigns each argument x ∈ A, the value g(f(x)).
• Finally, if f is a bijection, then its inverse, written f-1, is defined: f-1 ∘ f(x) = 

Id(x) = x.  So, f-1 is a bijection ‘reversing’ the action of the bijection, f.
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ZFC Axioms

• Given these definitions for set-theoretic entities, and given that Naïve 
Comprehension is inconsistent, what sets can we assume exist? 
• Our answer is given by disconcertingly gerrymandered axioms which have 

become ‘the axioms of mathematics’.  Unfortunately, we will eventually 
find that their consistency is not provable in any useful sense.  They are:
• Extensionality: Sets are identical if they have the same members.
• Pairing: For any sets, z and w, there is a set containing exactly z and w.
• Union: For any set, z, there is a set, ∪z, containing exactly the members of 

members of z.
• Powerset: For any set, z, there is a set containing just the subsets of z, P(z).  

P(z) is called the powerset of z.

ZFC Axioms Continued

• Subsets (Restricted Comprehension) Schema: For any set, z, and any predicate, 
Φ, there is a set that contains exactly those members of z which satisfy Φ.
• Corollary: There is not universal set, i.e., {x : x = x}.

• Infinity: There is a set containing ∅, and containing the successor of z (i.e., z ∪
{z}) whenever it contains z.

• Foundation (Regularity) Schema: For any predicate, Φ, if there is something 
that satisfies Φ, then there is a minimal z (with respect to the ∈ relation) that does -
- i.e., a z such that Φ and no y ∈ z such that Φ.

• Replacement Schema: For any set, z, and any predicate Φ such that, for every t ∈
z, there is exactly one x with Φ(t, x), there is a set which contains just those things, 
x, for which Φ(t, x) holds for some t ∈ z.
• Choice: If z is a disjointed set not containing ∅, then there is a subset of ∪z whose 

intersection with each member of z is a singleton.
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Cardinality

• Cardinality opposes ordinality.  The cardinality of a set answers ‘how 
many?’.  Its ordinality answers ‘in what order?’  In ZFC, cardinals are soc-
called initial ordinals, i.e., the first ordinals with that many elements.

• The Axiom of Choice ensures that every set, A, finite or infinite, has a 
cardinality, written card(A) (and, so, an associated ordinality).  The ZFC
axioms are insufficient to tell us what cardinality some sets – like ℝ –
have.  But ZFC certainly proves the following elementary constraint:
• Hume’s Principle: For all sets A and B, card(A) = card(B) just in case 

there is a bijection between A and B, i.e., just in case A ≈ B.

•We say that A and B are equinumerous when card(A) = card(B).

Relative Size and Infinity

• For all sets A and B:

• 2.3.4a card(A) ≤ card(B) if/f there is a set C, such that C ⊂ B and A ≈ C.

• 2.3.4b card(A) < card(B) if/f card(A) ≤ card(B) but card(A) ≠ card(B).

• 2.3.4c card(A) ≥ card(B) if/f card(B) ≤ card(A).

• 2.3.4d card(A) > card(B) if/f card(A) ≥ card(B) but card(A) ≠ card(B).

• 2.3.4e A is infinite if/f there is a set B, such that B ⊂ A and A ≈ B.

• 2.3.4f A is finite iff it is not infinite.

• If an infinite set A ≈ ℕ, then A is countable, and uncountable if not.
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Existence of Different Sizes of Infinity

• Cantor’s Theorem: For every set, A, card(P(A)) > card(A).

• Proof (brisk style): It is clear that card(P(A)) ≥ A, since A ≈{{x} : x ∈
A}⊂ P(A).  It remains to show that card(A) ≠ card(B), i.e., for any f : A 
 P(A), ∃y ∈ P(A) such that for no x ∈ A does f(x) = y.  So, let f be 
arbitrary and y = {z : z ∉ f(z)}.  Suppose ∃x ∈ A with f(x) = y.  Then x ∈
y or x ∉ y.  If x ∈ y, then x ∉ f(x) = y.  If x ∉ y = f(x), and, hence, x ∈ y.

• Note: Cantor’s Theorem applies to any set.  In particular, it applies to ℕ 
and P(ℕ).  Hence, card(P(ℕ)) > card(ℕ), but also card(P(P(ℕ))) > 
card(P(ℕ)), card(P(P(P(ℕ)))) > card(P(P(ℕ))), and so on ad infinitum.

• Upshot: There are infinitely-many sizes of infinity!

Commentary
• It is not hard to see that ℝ ≈ P(ℕ).  Therefore, the real numbers are a familiar 

infinite set whose cardinality is greater than the first infinite cardinality.
• How much greater?  Let us represent the different cardinalities, as follows: 
ℵ1, ℵ2,ℵ3,…, and the cardinalities corresponding to the hierarchy card(ℕ), 
card(P(ℕ)), card(P(P(ℕ)))… as: 
• Then the Generalized Continuum Hypothesis is the following:

• The (restricted) Continuum Hypothesis simply says that: 
• The Continuum Hypothesis was the first on Hilbert’s agenda-setting list of 

mathematical problems to solve in the 20th century.  But it turns out to fall 
victim to the incompleteness phenomenon that we will discuss!  (So, don’t let 
anyone tell you that incompleteness is limited to paradoxical sentences!)
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Expressive Completeness

• We said that NDS and even GDS are redundant.  What does that mean?
• Expressive Completeness: A set S of truth-functional connectives, such as 

{~, v, &, , }, is called expressively complete just in case every unary 
and binary truth-functional connective is expressible in terms of the set S.
• Example: It is clear that if {~, v, &, , , ∀} is expressively complete, 

then so is {~, v, &, , ∀}.  We may define (P Q) as an abbreviation
for (P Q) & (Q P) since we know that it has the same truth-table.

• Recall: The truth-value of sentence involving truth-functional connectives 
is fully determined by the truth-values of its sentential components.
• Although NDS and GDS are expressively complete, so is {~, }.  We will 

find that there are even sets of single connectives that are thus complete.

Unary and Binary Truth-Functions

• What are all the unary and binary truth-functions.  We can list them.
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Unary and Binary Truth-Functions

Unary and Binary Truth-Functions
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Unary and Binary Truth-Functions

Unary and Binary Truth-Functions
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Unary and Binary Truth-Functions

Unary and Binary Truth-Functions
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Unary and Binary Truth-Functions
The final six truth-functions are artificial. 

Mini-Deduction System (MDS)

• We want to target an object language with an expressively complete set 
of connectives whose inference rules are sound and complete.  The set 
of truth-functional connectives that we choose is Ω = {~, }. 

• Let Ω be a set of truth-functional connectives.  Then a PL sentence, X, 
or set of PL sentences, Γ, all of whose logical operators belong to Ω is 
written XΩ or ΓΩ, respectively.  We, correspondingly, call some 
translation of a PL sentence, X, into one including only truth-functions 
from Ω, an Ω expansion of X, and again write XΩ.  (In the case of ⊤
and ⊥ we pretend that a sentence/truth-value must be plugged in.)

• We now list the Ω expansions of every truth-function.
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Ω Expansions of All Truth-Functions

Ω Expansions of All Truth-Functions
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Example: Pierce’s Arrow & Exclusive Disjunction

Expressive Completeness of Sheffer Stroke
• Finally, we exhibit the expressive completeness of the single

connective, the Sheffer Stroke, as follows.  (Unlike the 2nd edition of 
Russell’s and Whitehead’s Principia Mathematica, we will not use it!)

• Since {~, } is expressively complete, it suffices to give translations
of negations and conditionals in terms of the Sheffer Stroke.
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Mini Deduction System (MDS)
• Now that we have an expressively complete set of truth-functional 

connectives, it remains to find a sound and complete set of inference 
rules.  (Note the difference between the two kinds of completeness!)

• Here they are (compare 1.4.5):

Deriving MDS from GDS

• How do we show that MDS is sound and complete?  By using the 
Soundness and Completeness Theorems for GDS, which we remember to 
be equivalent to NDS.  Recall that the GDS rules are the following:
• (1) Reiteration
• (2) Conjunction Introduction – Conj (^I)
• (3) Conjunction Elimination – Simp (^E)  
• (4) Conditional Introduction – CP (I) 
• (5) Conditional Elimination – MP ( E)
• (6) Universal Introduction – UG (∀I)
• (7) Universal Elimination – UI (∀E)
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Deriving MDS from GDS

• (8) Existential Introduction – EG (∃I) 

• (9) Existential Elimination – EI (∃E) 

• (10) Identity Introduction – Id (=I)

• (11) Identity Elimination – Sub (=E) 

• (12) Negation Introduction – RAA, Part 1 (~I) (with conclusion ~X)

• (13) Negation Elimination – RAA, Part 2 (~E) (with conclusion X).

• (14) Disjunction Introduction – Add (vI)

• (15) Disjunction Elimination – (vE) is the following hypothetical rule:

Deriving MDS from GDS

• Since MDS already has Conditional Proof (CP), Modus Ponens (MP), 
the two parts of Reductio ad Absurdum (RAA), Universal Generalization
(UG), Universal Instantiation (UI), Identity (Id), and Substitution (Sub), 
we only need to derive the introduction and elimination rules for the 
conjunction, disjunction, biconditional, and the existential quantifier.

• Letting Ω = {~, , ∀}, we first prove the following:
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Deriving MT
• In order to prove this, it will be useful to begin by deriving Modus 

Tollens (MT).

Deriving ^I
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Deriving ^E

Deriving ^E Continued
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Deriving vI

Deriving vI Continued



4/26/2024

78

Deriving vE

Deriving I
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Deriving E

Deriving  Continued
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Deriving ∃I

Deriving Deriving ∃E



4/26/2024

81

Deriving∃E Continued

Taking Stock

• We have shown (against a classical metatheory) that all the rules of 
DGS, and, hence, NDS are derivable from the rules of MDS.  But all 
the rules of MDS are included among those of NDS. Hence, MDS and 
NDS are equivalent systems: they validate just the same inferences.

• Moreover, by the Soundness of the NDS rules, every PL sentence is 
logically equivalent with its Ω expansion.  Consequently, we have:
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Soundness and Completeness
• It follows from Theorems 2.4.1 and 2.4.2 that MDS is Sound and 

Complete if and only if NDS is Sound and Complete.  

Soundness and Completeness
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Soundness and Completeness

• Upshot: It suffices to prove the metatheorems to follow about MDS.  All references 
to PL and its deductive system refer henceforth to MDS unless otherwise stated.

Symbolic Logic
Soundness and Completeness
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The Soundness Theorem

• We have introduced the language of PL (with whatever non-logical 
vocabulary we choose) and a corresponding proof system, MDS, which 
we have shown to be sound and complete if NDS is.
• We have also enumerated the assumptions that we make in the 

metalanguage, when reasoning about PL + MDS.  We assume ZFC
(which proves the Peano Axioms of arithmetic and more), and NDS.
• We now investigate the scope and limitations of PL + MDS.  Our first 

major metatheorem is that MDS is sound for the PL semantics.  That is:
Soundness Theorem for PL: For every set Γ of PL sentences and 
every sentence X of PL, if Γ |– X, then Γ |= X (that is, if X is a 
theorem of Γ, then X is also a logical consequence of Γ).

The Soundness Theorem

• Let Γ be any arbitrary set of PL sentences, of any cardinality, and X any 
PL sentence that is derivable from Γ. 

• To say that X is derivable from Γ is to say that there is a PL derivation, 
D (metavariable!), of X from Γ.  We will write ΣD to designate the set of 
the members of Γ that are invoked in the derivation of X, D. That is:

• ΣD = {Y: Y ∈ Γ and Y appears in the derivation, D} ≈ {premises of D}

• Any PL derivation, D, of X is finite sequence of PL sentences, the last 
line of which is X itself. So, ΣD ⊆ Γ and ΣD is finite and includes X.



4/26/2024

85

The Soundness Theorem

• Observation: If ΣD |= X, then Γ |= X.

• Suppose that ΣD |= X and let M be any model of Γ that is relevant to X (i.e., 
any interpretation of Γ that makes its members true and also interprets X). 

• A model of Γ is also a model of any subset of Γ.  Hence, M is a model of ΣD.

• However, by assumption ΣD |= X.  Therefore, X must be true on M as well.

• Since M was an arbitrary model of Γ, it follows that every model of Γ that is 
relevant to X is a model of X as well. That is, If ΣD |= X, then Γ |= X. 

• Upshot: To show that Γ |= X (when Γ |- X) , it suffices to show that ΣD |= X.

The Soundness Theorem

• We prove the Soundness Theorem by Principle of Complete Induction (PCI) 
applied to the number of a line from an arbitrary derivation, D.  Recall:
• Principle of Complete Induction (PCI):  If X(n0), and for every 

natural number k ≥ n0, X(k) when X(m) for each m such that n0 ≤ m < 
k, then for every natural number n ≥ n0, X(n). 

• Let n be the number of some line of D.  If D consists of j lines, then 1 ≤ n ≤ j.
• Let us write Zn to designate the sentence that appears in derivation, D, at line n.  
• Let us write Σn for the set of all the premises and undischarged assumptions 

that occur in D at or prior to line n. 
• The length of D, j, can be any (finite!) number.  So, we will argue:

• For every natural number n ≥ 1, Σn |= Zn. 
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The Soundness Theorem

• Why does the fact that ∀n ≥ 1, Σn |= Zn show that ΣD |= X (where ΣD |– X)? 

• By the definition of a derivation of X of length j, X = Zj (X is the last line
of D).

• By the proof rules, all assumptions introduced in D by hypothetical rules 
must be discharged before the conclusion of D, X, appears. So, the 
subblocks initiated in D must be closed before the main block can be. 

• So, the set Σj contains only premises (no undischarged assumptions) that 
occur in D—i.e., Σj = ΣD. 

• Hence, if, ∀n ≥ 1, Σn |= Zn, then, indeed, ΣD |= X.

Base Step

• Let n = 1. The first line of any derivation has no antecedents.  So the 
sentence Z1 is either a premise, an assumption of a hypothetical rule, or 
an identity statement of the form s = s, introduced by rule, Identity.

• If Z1 is a premise or an assumption, then Σ1 = {Z1}. But Σ1 = {Z1} |= 
Z1, since any interpretation making a claim true makes that claim true! 

• If Z1 is of the form s = s (where s is any PL singular term), then Σ1 (the 
set of all the premises and undischarged assumptions that occur in D
at or prior to line 1) is empty.  But s = s is a logical truth (validity).

• So, ∅ |= Z1 vacuously.  There is no way to make Z1 false period.
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Inductive Step

• For the Inductive Hypothesis, let k > 1, and suppose that ∀m, 1 ≤ m < 
k (Complete Induction!), Σm |= Zm.  Since k > 1, there are three cases: 

• (1) Zk is a premise or an assumption introduced by some hypothetical 
rule

• (2) Zk is an identity statement of the form ‘s = s’, introduced by the 
rule Identity.

• (3) Zk is the conclusion of one of eight MDS rules (other than 
Identity).

• There are, thus, ten cases in all.

First Three Cases

• (1) If Zk is a premise or an assumption introduced by a hypothetical 
rule, then Zk ∈ Σk, so certainly Σk |= Zk.

• (2) If Zk is an identity statement of the form ‘s = s’, then Zk is a logical 
truth, and so consequences of anything.  In particular, Σk |= Zk.

• (3) Reiteration. 



4/26/2024

88

Reiteration

• (3) If Zk is introduced by Reiteration (Reit), then it also occurred on 
the pth line, p < k.  Since p < k, the Inductive Hypothesis applies to p. 
That is, Σp |= Zp, where Zp is the same sentence as Zk.  Since Reit must 
be applied in an open block, if Σp contains undischarged assumptions 
(introduced by hypothetical rules) then these cannot be discharged at 
line k or prior to it.  (If they could, then Zp would occur in a closed 
block, and could not be reiterated at line k.) 

• Thus, Σp ⊆ Σk. Since Σp |= Zk, Σk |= Zk as well.

Case Four

• (4) 
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Modus Ponens

• If Zk is the conclusion of Modus Ponens (MP), then the antecedents 
are of the forms: Y and (Y Zk), with Y and (Y Zk) each occurring 
in the derivation, D, prior to line k. 

• Suppose, then, that Y and (Y Zk) occur on lines p and q, 
respectively, where p < q.  Since p, q < k, the Inductive Hypothesis
applies.  That is: Σp |= Zp and Σq |= Zq, where Zp is Y and Zq is (Y
Zk).  In other words, Σp |= Y and Σq |= (Y Zk). 

• Because MP must be applied in an open block, we again have that Σp 
⊆ Σk and Σq ⊆ Σk, so that Σk |= Y and Σk |= (Y Zk).

Modus Ponens Continued

• Let M be any PL model (interpretation of Σk under which all its 
members are true) that is relevant to Zk. If M is not also relevant to Y, 
expand M into a model, M*, which is just like M except that it interprets 
the additional PL vocabulary in Y. 

• M* is still a model of Σk since it agrees with M on the interpretation of 
the vocabulary of Σk.  Moreover, since Y and (Y Zk) are consequences 
of Σk (as we just argued), they must be true on M* as well.

• Consequently, using modus ponens in the metatheory, Zk is true on M*. 

• But M and M* agree on their interpretations of the PL vocabulary in Zk.
Hence, Zk must be true on M.  Since M was arbitrary, Σk |= Zk.
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Case Five

• (5) 

Conditional Proof

• If Zk is the conclusion of a Conditional Proof (CP), then a CP block
precedes line k. This is initiated by an assumption Y at a line p prior to 
line k–1 and exited at line k.  (Line k–1 is the last line of the CP block.) 

• Let W be the sentence that appears on line k–1. Then Zk is of the form 
(Y W), and the CP Assumption, Y, is discharged at line k. 

• Since any subblock that is initiated after the CP block is opened must 
be exited before the CP block is exited, all the assumptions that are 
introduced after line p must be discharged at line k–1 or before.
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Conditional Proof Continued

• The CP Assumption, Y, is introduced at line p and is discharged at line 
k. So, Σk-1 = Σk ∪ {Y}.

• Since the Inductive Hypothesis applies to k–1, Σk-1 |= Zk-1. 

• But Zk-1 is the sentence, W.  Thus, Σk ∪ {Y} = Σk-1 |= W. 

• Let M be any model of Σk that is relevant to Y and W.  If Y is false in 
M, then (Y W) is true in M. If Y is true in M, then so is Σk ∪ {Y}.  
Thus, W is true in M too, in which case (Y W) is again true in M.

• So, Zk = (YW) is true in every model of Σk that is relevant to Zk, 
i.e., Σk |= Zk.

Cases Six & Seven

• (6) & (7) 
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Reductio Ad Absurdum

• If Zk is the conclusion of the rule Reductio Ad Absurdum (RAA), then a RAA
block is initiated at some line prior to line k–1 with the introduction of the 
Reductio Assumption ~Zk (or Zk) and is exited at line k with the discharge of the 
Reductio Assumption. 
• The last line of the RAA block is line k–1, and Zk-1 is ~Y (or Y), where Y (~Y) is 

some PL sentence, and Y (~Y) appears in the same RAA block as Zk-2. 
• Since Σk  is just like Σk-1, except that it lacks the Reductio Assumption, we have 

that Σk-1 = Σk ∪{~Zk} (alternatively: Σk-1 = Σk ∪{Zk}).
• Y and ~Y must occur in an open block, and as Zk-1 may be a premise, Σk-2 ⊆ Σk-1. 
• The Inductive Hypothesis applies to k–1 and k–2.  So, Σk-1 |= Zk-1 = ~Y (or Y), 

and Σk-2 |= Zk-2 = Y (or ~Y). 

Reductio Ad Absurdum Continued

• So, Σk-1 |= Y and Σk-1 |= ~Y (since Σk-2 ⊆ Σk-1).  As Σk-1 = Σk ∪{~Zk} 
(alternatively: Σk-1 = Σk ∪{Zk}), Σk ∪{~Zk} |= Y and Σk ∪{~Zk} |= ~Y. 

• Now let M be any PL model of Σk that is relevant to Zk. If M is not 
also relevant to Y, expand M into a model, M*, which is just like M 
except M* interprets the non-logical vocabulary of Y.  Then M* is also 
a model of Σk since it agrees with M on the vocabulary of Σk.

• Suppose now that ~Zk is true in M*.  Then M* is a model Σk ∪{~Zk} 
(or Σk ∪{Zk}), and, hence, both Y and ~Y, which is impossible.

• Hence, Zk (~Zk) must be true in M*.  Since M interprets Zk (~Zk) as 
M* does, Zk (~Zk) must be true on M as well. So, Σk |= Zk (Σk |= ~Zk).
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Case 8

• (8) 

Universal Instantiation

• Suppose that Zk is the conclusion of the rule Universal Instantiation (UI).

• Then the antecedent of the rule is a sentence of the form (∀z)Y, occurring on 
some line p that is prior to line k, with conclusion, Y[t], where Y[t] is obtained 
from Y by replacing every occurrence of the variable z with the singular term t.  
Hence, Zk is Y[t], and the Inductive Hypothesis applies to p. That is, Σp |= Zp. 

• UI must be applied in an open block.  Again, Σp⊆ Σk |= Zp = (∀z)Y.

• Let M be any PL model of Σk that is relevant to Y[t]. Since Σk |= (∀z)Y, (∀z)Y is 
true in M.  So, all substitution instances of (∀z)Y, including Y[t] = Zk, are too.

• Therefore, Σk |= Zk.
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Case 9

• (9) 

Universal Generalization

• If Zk is the conclusion of the rule Universal Generalization (UG), then:

• Zk is of the form (∀z)Y[z] (where the formula Y[z] is obtained from the 
sentence Y by replacing every occurrence of s with an occurrence of z)

• on some line p, prior to line k, Y appears

• a name s occurs in Y

• the variable z does not occur in Y

• s does not occur in any member of Σp.
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Universal Generalization Continued

• Since p < k, the Inductive Hypothesis applies to p; i.e., Σp |= Zp = Y.
• Let M be any PL model of Σp that is relevant to (∀z)Y[z]. The name s does 

not occur in the members of Σp or in (∀z)Y[z].  However, we may ensure 
that s is in LN, and assign it to a member of M, so that M interprets Y.
• So, suppose that s is in LN for M.  Writing Y[s] for the sentence Y to 

emphasize its occurrences of s, note that since Y[s] is a consequence of Σp
and M is a model of Σp that is relevant to Y[s], Y[s] is true in M as well. 
• Now let t be any name in LN of M, and suppose that the referent of s in M is 
σ, and that the referent of t in M is τ. If σ and τ are the same object, then the 
interpretation of Y[t] is actually identical to that of Y[s].
• Therefore, in this case, Y[t] is true in M because Y[s] is.

Universal Generalization Continued

• If σ and τ are distinct, then we construct another model M* that is just 
like M except that the referent of both s and t in M* is τ.  If σ now 
lacks a name, we introduce a new name in LN of M* and assign it to τ.

• The name s does not appear in any sentence in Σp, and the name s is 
the only part of the vocabulary interpreted in M that M* disagrees on.

• So, the truth values of the members of Σp are the same in M and M*.

• Since M is a model of Σp that is relevant to Y[s], M* is too.  But Y[s] 
is a consequence of Σp.  So, Y[s] is true in M*.  Since M* assigns τ
both s and t, M* gives the same interpretation to Y[s] and Y[t] . 
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Universal Generalization Continued

• Thus, Y[t] is true in M*, and since M and M* agree on the 
interpretations of the vocabulary in Y[t] (since s does not occur in 
Y[t]), Y[t] is also true in M.

• That is, for any name t in LN of M, Y[t] is true in M. So, (∀z)Y is true 
in M. So, Σp |= (∀z)Y[z].

• Since UG must be applied in an open block Σp ⊆ Σk |= (∀z)Y[z] = Zk.

Case 10

• (10) 
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Substitution

• Finally, suppose that Zk is the conclusion of the rule Substitution (Sub)  
Then sentences of the form s = t (or t = s) and Y[s] (or Y[t]) must proceed it, 
where s and t are any PL singular terms. 
• Zk is Y[s, t] (Y[t, s]) where Y[s, t] is obtained from Y[s] by replacing one or 

more occurrences of s with occurrences of t. 
• The two antecedents occur on different lines, p and q, prior to line k.
• Suppose that p < q. Then Zp is s = t and Zq is Y[s] (or Y[t]), writing Y[s] to 

remind that Y has instances of s.  Since p, q < k, the Inductive Hypothesis
applies to them; i.e., Σp |= s = t (or Σp |= t = s) and Σq |= Y[s] (or Σq |= Y[t]). 
• As before, Sub must be applied in an open block, Σp ⊆ Σk and Σq ⊆ Σk, so Σk

|= s = t (or Σk |= t = s) and Σk |= Y[s] (or Σk |= Y[t]). 

Substitution Continued

• To prove that Σk |= Y[s, t] = Zk (or Y[t, s]), consider a model M to be 
any model of Σk that is relevant to Y[s, t] (or Y[t, s]). 

• If s does not occur in Σk or in Y[s, t], then add vocabulary to M so that 
it interprets s. 

• Since s = t and Y[s] are consequences of Σk, they are also true in M, 
and Y[s] and Y[s, t] have the same truth value in M.  

• Hence, Y[s, t] is true on M, and Σk |= Y[s, t] = Zk, as desired.



4/26/2024

98

Summing Up

• The ten cases that we have considered include all the ways that Zk
could be introduced at line k according to the rules of MDS.

• In all cases, we showed that Σk |= Zk, 

• We have thereby established the Inductive Step of our proof.

• This completes our proof of the Soundness Theorem for PL.

The Completeness Theorem

• The proof of the Soundness Theorem is tedious, but straightforward.

• The proof of the Completeness Theorem is more challenging and 
interesting. Recall that the Completeness Theorem is the converse of 
the Soundness Theorem.  That is:
• The Completeness Theorem for PL: For every set Γ of PL

sentences and every sentence X of PL, if Γ |= X, then Γ |– X (that is, 
if X is a logical consequence of Γ, then X is also a theorem of Γ).

• Because the proof is involved, it is useful to begin by outlining the main 
steps of the proof.  They will serve as a roadmap for what follows.  
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Preliminary Steps

• The proof of the Completeness Theorem begins with a simple argument 
that the Completeness Theorem is equivalent to the following:
• Model Existence Theorem for PL: For every set Γ of PL

sentences, if Γ is (syntactically) consistent, then Γ has a model.  
(That is, if for no X is it the case that Γ |– Y and Γ |– ~Y, then there 
is a PL interpretation on which all of the members of Γ are true.)

• Since the Completeness Theorem and the Model Existence Theorem
are equivalent, it suffice to prove the Model Existence Theorem.  

• Here are the main steps that we take in order to do that (figure amended 
from that of Crossley et al.):

Main Steps of the Proof



4/26/2024

100

Main Steps of the Proof

Big Idea

• We will not precisely follow this order.  But the big idea of our proof will 
be the same: ‘conflate’ names with their referents; then enrich the theory, 
Γ (Σ in the figure) with new names, adding axioms to Γ saying that, 
whenever something is true a newly named object, it is true of everything; 
finally, interpret names as referring to equivalence classes of themselves.

• Let us first show that it suffices to prove the Model Existence Theorem.

• Lemma 3.2.1a: Γ ∪ (~X) is inconsistent if/f Γ |– X.  Likewise, Γ ∪ (X) is 
inconsistent if/f Γ |– ~X. 

• Proof: Since the claims are relevantly identical, we prove the first.
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Preliminary Lemmas

• Inconsistency Provability

• 1) Suppose that Γ ∪ (~X) is inconsistent, i.e., there is an Y such that Γ |–
Y and Γ |– ~Y.  

• 2) We can combine the derivations of Y and ~Y to obtain a derivation of 
anything, including X, by Reductio Ad Absurdum.  Consider:

Preliminary Lemmas

• 3) So, by 2), Γ |– X.  
• 4) Hence, by Conditional Proof (in the metatheory!), if Γ ∪ (~X) is 

inconsistent, then Γ |– X. 

• Provability  Inconsistency
• 1) Suppose that that Γ |– X.
• 2) Then certainly Γ ∪ (~X) |– X.
• 3) But also: Γ ∪ (~X) |– ~X.
• 4) Hence, by Conditional Proof, if Γ |– X, then Γ ∪ (~X) is inconsistent (i.e., 

there is an Y – namely, X – such that Γ |– Y and Γ |– ~Y).
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Preliminary Lemmas
• Lemma 3.2.1b: Γ |– ~(W Z) if/f Γ |– W and Γ |– ~Z.

• Proof that If Γ |– ~(W Z), then Γ |– W and Γ |– ~Z:

• Assume Γ |– ~(W Z).  Then there is a PL derivation, D, from Γ of
~(W Z).  Given D, we construct derivations of W and ~Z as follows:

Preliminary Lemmas

• By Conditional Proof (in the metatheory), if Γ |– ~(W Z), then Γ |– W and
Γ |– ~Z.  (This is a claim about what Γ proves!) Now to the converse:
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Preliminary Lemmas
• Proof that If Γ |– W and Γ |– ~Z, then Γ |– ~(W Z).

• Assume that Γ |– W and Γ |– ~Z.  Then there are corresponding 
derivations of W and ~Z from Γ, D1 and D2, respectively.  We can 
combine them into a single derivation of ~(W Z) from Γ thus:

Preliminary Lemmas

• Lemma 3.2.1c: If Γ |– Y, the name s occurs in Y, the variable z does 
not occur in Y, and s does not occur in any member of Γ, then Γ |–
(∀z)Y[z], where, as usual, Y[z] is obtained from Y by replacing all the 
occurrences of s with occurrences of z.

• Proof: Assume that Γ |– Y, the name s occurs in Y, the variable z does 
not occur in Y, and s does not occur in any member of Γ.

• Then there is a PL derivation, D, of Y from Γ.

• We can now use D to construct a derivation of (∀z)Y[z] from Γ as 
follows.
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Preliminary Lemmas

Preliminary Lemmas

• In light of Lemma 3.2.1a, 3.2.1b, and 3.2.1c, we are in a position to 
prove the following:
• Theorem 3.2.1: The Completeness Theorem and the Model 

Existence Theorem for PL are equivalent – i.e., they imply (in the 
metatheory) one another.

• Proof: Let us introduce some notation that will come in handy down 
the road.  We will write Con(Γ) for the claim that Γ is consistent, and 
∃M |= Γ for the claim that there is a model of Γ (i.e., a PL
interpretation on which every member of Γ comes out true). 
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Preliminary Lemmas

• 1) Assume the Completeness Theorem and that Con(Γ).  
• 2) Assume for reductio that ~∃M |= Γ. 
• 3) Then, for any PL sentence, Y, vacuously, Γ |= Y and Γ |= ~Y.
• 4) By 1) – namely, the Completeness Theorem – Γ |- Y and Γ |- ~Y.
• 5) So, ~Con(Γ), contra 1) – namely, that Con(Γ).
• 6) Hence, the reductio assumption is false, i.e., ∃M |= Γ. 
• 7) Conversely, assume the Model Existence Theorem and that, for any 

PL sentence, Y, and set of PL sentences, Γ, Γ |= Y.
• 8) Then ~∃M |= Γ such that ~(M |= Y).  That is, ~∃M |= (Γ ∪ ~ Y). 

Preliminary Lemmas

• 9) By the Model Existence Theorem, Con(Γ ∪ ~ Y)  ∃M |= (Γ ∪ ~ Y). 

• 10) Since ~∃M |= (Γ ∪ ~ Y), we have that ~Con(Γ ∪ ~ Y).

• 11) But, then, by Lemma 3.2.1a (that Γ ∪ (~X) is inconsistent if/f Γ |– X), 
Γ |– Y.

• 12) Hence, by Conditional Proof (in the metatheory), if Γ |= Y, then Γ |–
Y, which is just the Completeness Theorem.

• Upshot: We can speak ambiguously of the Completeness Theorem per se
and the Model Existence Theorem with ‘The Completeness Theorem’.
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Maximal Consistent sets of Sentences

• Definition 3.2.1: Let Δ be any set of PL sentences.  We say:

• 3.2.1a Δ is maximal if/f for every PL sentence X, Δ includes it or its 
negation – i.e., either X ∈ Δ or ~X ∈ Δ .

• 3.2.1b Δ is deductively closed if/f Δ contains all its theorems – i.e., for 
every PL sentence X such that Δ |– X, X ∈ Δ.

• 3.2.1cΔ is semantically closed if/f Δ contains all its logical 
consequences – i.e., for every PL sentence X such that Δ |= X, X ∈ Δ.
• Note: The Soundness Theorem and the Completeness Theorem 

will ensure that deductive closure and semantic closure coincide.

Maximal Consistent sets of Sentences

• Lemma 3.2.2a: Every maximal consistent set is deductively closed.
• Proof: 
• 1) Let Δ be maximal consistent.
• 2) Let Δ |- X (for some PL sentence, X).
• 3) Suppose for reductio that X ∉Δ.  
• 4) Then ~X ∈ Δ, since Δ is maximal.  
• 5) So certainly Δ |- ~X (since {Y} ∪ Γ |- Y for any Y and Γ).
• 6) Hence, Δ is inconsistent.
• 7) By reductio ad absurdum, X ∈ Δ – i.e., Δ is deductively closed.
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Maximal Consistent sets of Sentences
• 3.2.2b: A set Δ is maximal consistent if/f it is consistent and for every 

proper extension of it, Δ’ ⊃ Δ, Δ’ is inconsistent.  (When Δ’ is a mere
extension of Δ, we will write Δ’ ⊇ Δ, or equivalently Δ⊆ Δ’.)

• Proof (right-to-left):

• 1) Assume that Δ is consistent and for every set, Δ’, such that Δ ⊂ Δ’, Δ’ is 
inconsistent.

• 2) Suppose for reductio that there ∃X such that X ∉Δ and ~X ∉Δ. 

• 3) Hence, Δ ⊂ Δ ∪ {X} and Δ ⊂ Δ ∪ {~X}.

• 4) Then, by 1), Δ ∪ {X} and Δ ∪ {~X} are both inconsistent.

• 5) So, again by Lemma 3.2.1a, Δ |– X and Δ |– ~X, i.e., Δ is inconsistent.

• 6) Therefore, the reductio assumption is false, and Δ is maximal.

Maximal Consistent sets of Sentences

• 3.2.2b: A set Δ is maximal consistent if/f it is consistent and for every 
set, Δ’, such that Δ ⊂ Δ’, Δ’ is inconsistent.

• Proof (left-to-right):

• 1) Assume that Δ is maximal consistent and that ∃Δ’ with Δ ⊂ Δ’.

• 2) Consider an X such that X ∈ Δ’ but X ∉ Δ.

• 3) Since Δ is maximal, and X ∉ Δ, ~X ∈ Δ.

• 4) Since Δ ⊂ Δ’, ~X ∈ Δ’.

• 5) But, then, X ∈ Δ’ and ~X ∈ Δ’.  So, Δ’ is inconsistent, as desired.
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Lindenbaum’s Lemma

• With Lemma 3.2.2a and 3.2.2b in hand, we can now proceed to the 
first major step of the proof of the Model Existence Theorem. 

• Lindenbaum’s Lemma: Every consistent set of PL sentences can be 
extended into a maximal consistent PL set.

• Proof: 

• 1) Let Γ be a consistent set of PL sentences.

• 2) Fix an enumeration of all sentences in the language of PL, X1,
X2,…Xn,… (This is a countable set of finite strings.)

• 3) Inductively define the following extension of the set Γ:

Lindenbaum’s Lemma

• Δ0 = Γ
• Δk+1 = Δk ∪ {Xk} if Δk ∪ {Xk} is consistent
• Δk+1 = Δk if Δk ∪ {Xk} is inconsistent
• Idea: Begin with a theory, Γ, and, for every sentence in our enumeration, 

X, add it if this is consistent, and leave the construction alone if it is not.
• Note: By construction, the sets so constructed are nested, Δ0 ⊆ Δ1 ⊆ Δ2…

• We also define:
• F = {Δk = k ∈ ℕ}
• Lindenbaum Set = Δ = ∪F = {X : ∃Δi ∈ F & X ∈ Δi}
• Note: Δk ⊆ Δ, ∀k ∈ ℕ, i.e., Δ is an extension of every Δk, including Γ.
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Lindenbaum’s Lemma

• It is intuitively clear that each set, Δk, is consistent.  However, we can 
‘prove’ this fact inductively, since the sets were defined by induction.
• Δ0 = Γ is consistent by assumption.  Now suppose that Δk is consistent.  

Then Δk+1 = Δk ∪ {Xk} or Δk+1 = Δk depending on whether this is 
consistent.  So, Δk+1 is also consistent.  Hence, ∀k ∈ ℕ, Δk is consistent.
• Why is the full Lindenbaum Set = Δ consistent?  
• 1) Suppose for reductio that it is not.  
• 2) Then ∃Y such that Δ |- Y and Δ |- ~Y.  Let ΣY and Σ~Y be the sets of 

premises from Δ that occur in the derivations of Y and ~Y, respectively.  
Writing Σ = ΣY ∪ Σ~Y, we have that Σ |- Y and Σ |- ~Y.  

Lindenbaum’s Lemma

• 3) Σ ⊆ Δ. Since Δ = ∪F, Z ∈ Σ Z ∈ Δk for some k ∈ ℕ -- and, indeed, 
Z ∈ Δj for all j ≥ k. We will write ΔZ for the first Δm such that Z ∈ Δm.

• 4) Let K ={ΔZ : Z is a member Σ}. (That is, for each Z in Σ, K collects 
the firstΔm in which it occurs.) K is finite (since Σ is), and its members 
form a nested chain ordered by ⊆ relation (since the Δms of F do). Thus, 
K has a top element Δ* of which all other elements of K are subsets.

• 5) Σ ⊆ Δ*.  But, then, Δ* |- Y and Δ*|- ~Y.  Since Δ* = Δm for some m ∈
ℕ (each of which is consistent), the reductio assumption must be false.

• 5) Hence, by Reductio ad Absurdum (in the metatheory) Δ is consistent.
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Lindenbaum’s Lemma

• Why is the full Lindenbaum Set = Δ maximal? 

• 1) Let Δ’ be a set such that Δ ⊂ Δ’. 

• 2) Then there is an Xi such that Xi ∈ Δ’ and Xi ∉Δ. 

• 3) Since Xi ∉ Δ, it was excluded from Δi+1.

• 4) By the construction of Δ, Δi ∪ Xi is inconsistent. 

• 5) So, by 3.2.2b, Δ is maximal, if consistent.

• 6) Since we just proved that Δ is consistent, Δ is indeed maximal.

Henkin Sets

• We have now proved Lindenbaum’s Lemma, that every consistent
set of PL sentences can be extended into a maximal consistent PL set.

• We next use Lindenbaum’s Lemma to enlarge a given consistent set, Γ, 
into a maximal consistent set that, intuitively, captures the truth 
conditions of all PL sentences.  A set with this feature is a Henkin set.

• Conditional (): We know that (X Y) is true in a model, M, just 
when either (inclusive) X is false in M or Y is true in M.  So, if Δ
‘captures the truth conditions’ of (X Y), then we should have that (X
 Y) ∈ Δ just in case ~X ∈ Δ or Y ∈ Δ (or both).  This is the case: 
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Henkin Sets

• First, we can show that ~X ∈ Δ (X Y) ∈ Δ as follows.

• This shows that if ~X ∈ Δ (X Y) ∈ Δ by Lemma 3.2.2a, that 
every maximal consistent set (including Δ) is deductively closed.

Henkin Sets

• There is also derivation demonstrating that if Y ∈ Δ, then (X Y) ∈ Δ.

• What about the other direction?  Let (X Y) ∈ Δ.  For each of X and 
Y, either it or its negation, but not both (!), is included in Δ by the 
maximal consistency of Δ.  But if X ∈ Δ and ~Y ∈ Δ, then Δ is 
inconsistent.  So, we must have that ~X ∈ Δ or (inclusive) ~Y ∈ Δ.
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Henkin Sets

• There are two remaining connectives in the language of MDS, Ω = {~, , 
∀}, whose truth-conditions we may hope are mirrored within the 
Lindenbaum Set = Δ.  One of the connectives is straightforward.  

• Negation (~): ~X is true in a model, M, just when X is false in M.  Thus, if Δ
‘captures the truth conditions’ of ~X, then we should have that ~X ∈ Δ just 
in case X ∉ Δ.  Indeed, either X ∈ Δ or ~X ∈ Δ by Δ’s maximality.  And by 
Δ’s consistency, if ~X ∈ Δ (so Δ |- ~X), then X ∉ Δ and conversely.

• The subtle case is the universal quantifier, ∀.  By the deductive closure of Δ, 
if (∀z)Y ∈ Δ, then Y[s] ∈ Δ, for every PL name, s.  What about the converse?

Henkin Sets & Universal Quantification

• Consider a 1-place predicate Y and let Ψ be the set of all PL sentences
that result from appending a PL name s to the predicate, Y.  That is:

• Ψ ={Ys: s is a PL name}. 

• Now consider the following interpretation, J: 

• UD = {–1, 0, 1, 2, 3, …}

• LN = {x : x is a PL name} ∪ {c-1}

• Interpretation, J, assigns the appended constant, c-1, to –1, PL names
to non-negative integers, and Y to the set of non-negative integers.
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Henkin Sets & Universal Quantification

• By design, Ys is true for every PL name, s.  But the universal claim, 
(∀z)Y, is not because it has a false substitution instance in LN: Ψ⊯ Y[c-1].  

• By the Soundness Theorem, Ψ Y[c-1].  So, by Lemma 3.2.1a (i.e., that 
Γ ∪ ~X is inconsistent if/f Γ |– X), Con(Δ ∪ ~Y[c-1]).  By Lindenbaum’s
Lemma, Δ ∪ ~Y[c-1] may be extended to a maximal consistent set.

• Note: Con(Δ ∪ ~Y[c-1]) concerns sentences in the extended Vocabulary of 
the Interpretation (Voc(J)). We exploit the substitutional interpretation the 
language of PL to show that Δ    (∀z)Y in the language of PL.

• Upshot: Even if a maximal consistent set contains every basic 
substitutional instance of (∀z)Y, it need not contain (∀z)Y itself.

Henkin Sets

• How do we ensure that the maximal consistent set we end up with 
contains (∀z)Y when it contains every basic substitution instance?  We 
can demand that it includes Y[c], where c is arbitrary.  Then Universal 
Generalization applies, and (∀z)Y belongs to the set by closure.

• In order to guarantee the existence of an arbitrary name for each
universally quantified sentence, we add countably-many new names to 
the language of PL: α1, α2, α3,… αn,… These are called α names, and 
the system of predicate logic with the new vocabulary is called PL+.

• Note: Since our initial set, Γ, is in the language of PL, and the language 
of PL+ includes that of PL, the set Γ is also in the language of PL+.
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Henkin Sets
• As with all sentences of PL, X1, X2,…Xn,…, we fix an enumeration of all 

universally quantified sentences of PL+: (∀z0)W0, (∀z1)W1, (∀z2)W2,… 
(∀zn)Wn,…  Since any finite set of such sentences uses only finitely-many 
α names, we always have infinitely-many other α names to choose from.

• We can, therefore, construct the following sequence of special α names.

• Let us define c0 , c1, c2, c3,…cn,… as a sequence of α names such that:

• c0 is the first α name (in the above list) that does not occur in (∀z0)W0

• c1 is the first α name that does not occur in (∀z1)W1
• ...

• In general, cn is the first α name that does not occur in (∀zn)Wn

• Note: Remember that the cis are metalinguistic variables, not PL+ names.

Henkin Sets
• Given our stock of α names, and enumeration, c0 , c1, c2, c3,…cn,…, we 

now define, for every universally quantified sentence, (∀zn)Wn, the Wn-
Conditional, θn:

• θ0: W0[c0] (∀z0)W0

• θ1: W1[c1] (∀z1)W1

• …

• θn: Wn[cn] (∀zn)Wn

• (where Wn[cn] is obtained from Wn by replacing all occurrences of zn with 
occurrences of cn)

• Intuition: Each θn promises an arbitrary basic substitutional instance
justifying the universally quantified sentence, (∀zn)Wn.  Alternatively, one 
can think of the θns as promising a witness, cn, whenever (∃zn)Wn holds.
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Henkin Sets

• Theorem 3.2.2: If Θ = {θn : n ∈ ℕ}, then Con(Γ ∪ Θ). 
• Note: Remember that Γ is an arbitrary consistent set of PL sentences.

• Proof:

• 1) Suppose for reductio that ~Con(Γ ∪ Θ), given that Con(Γ).

• 2) Let Y be a sentence such that (Γ ∪ Θ) |- Y and (Γ ∪ Θ) |- ~Y, and let 
ΣY and Σ~Y be the sets of premises from (Γ ∪ Θ) invoked in some 
fixed derivations of Y and ~Y, respectively.

• 3) Since ΣY ⊆ (Γ ∪ Θ) and Σ~Y ⊆ (Γ ∪ Θ), (ΣY ∪ Σ~Y) = Σ⊆ (Γ ∪ Θ).

• 4) Thus, Σ |- Y and Σ |- ~Y, and Σ⊆ (Γ ∪ Θ) is inconsistent.

Henkin Sets

• 5) Since Con(Γ), Σ cannot be a subset of Γ.
• 6) Hence, (Σ ∩ Θ) ≠ ∅, and we may designate (Σ ∩ Θ) = Φ.
• 7) We likewise designate (Σ ∩ Γ) = Ψ.
• 8) Given our definitions: 
• (a) (Φ ∪ Ψ) = (Σ ∩ Θ) ∪ (Σ ∩ Γ) = Σ.
• (b) Ψ is a finite subset of Γ (because Σ is finite).
• (c) Φ is a nonempty but finite subset of Θ (it is nonempty by 6).
• Observation: Because Σ = (Φ ∪ Ψ) is inconsistent, and each of Φ and Ψ is a 

finite set (because each is formed by intersecting a set with the finite set, Σ), 
the union of Γ and finitely many W-Conditionals must be inconsistent.
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Henkin Sets

• 5) Define Λ to be the set of the first q W-conditionals, θ0, θ1, θ2,…θq-1, 
θq such that Con(Γ ∪ {θ0, θ1, θ2,…θq-1}) but ~Con(Γ ∪ {θ0, θ1, 
θ2,…θq-1, θq}).  That is, ~Con(Γ ∪Λ), but Con(Γ ∪ Λ - {θq}).
• Note: There must be such a set, Λ, even if it is only the singleton,{θ0}, since 

Con(Γ) but the union of Γ and finitely-many W-conditionals is inconsistent.

• 6) By Lemma 3.2.1a (that Γ ∪ (~X) is inconsistent if/f Γ |– X), Γ ∪
{θ0, θ1, θ2,…θq-1} |- ~θq.
• 7) From 6), by the definition of θq, Γ ∪ {θ0, θ1, θ2,…θq-1} |- ~(Wq[cq]
 (∀zq)Wq)
• 8) By Lemma 3.2.1b (that Γ |– ~(W Z) if/f Γ |– W and Γ |– ~Z), Γ ∪

{θ0, θ1, θ2,…θq-1} |- Wq[cq] and Γ ∪ {θ0, θ1, θ2,…θq-1} |- ~(∀zq)Wq.

Henkin Sets

• 9) Since Γ is a set of PL sentences, no member of Γ contains any α 
name, much less cq.  Moreover, as cq is qth in the list of α names, it  
does not occur in any of the first θ0, θ1, θ2,…θq-1 W-Conditionals.

• Upshot: Relative to Γ ∪ θ0, θ1, θ2,…θq-1, cq occurs arbitrarily in Wq[cq].

• 10) We now recall Lemma 3.2.1c: If Γ |– Y, the name s occurs in Y, the 
variable z does not occur in Y, and s does not occur in any member of Γ, 
then Γ |– (∀z)Y[z].  Consequently, Γ ∪ {θ0, θ1, θ2,…θq-1} |- (∀zq)Wq.

• 11) Since 10) contradicts 8), we conclude that Con(Γ ∪ Θ), given that 
Con(Γ), as desired. 
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Lindenbaum’s Lemma Again
• Upshot: Con(T)  Con(Γ ∪ Θ).  Hence, so long as we begin with a 

consistent set, Γ (i.e., Con(T)), we can make use of Lindenbaum’s Lemma  
and extend (Γ ∪ Θ) into a maximal consistent set of PL+ sentences, Π, that 
also captures the truth-conditions of every sentence in the PL+ language.

• Π is called a Henkin Set. We already know, by Π’s maximal consistency, that 
that (X Y) ∈ Π just in case ~X ∈ Π or Y ∈ Π (or both), that ~X ∈ Π just in 
case X ∉ Π, and that if (∀z)Y ∈ Π then Y[s] ∈ Π, for every PL+ name, s.

• However, we are finally in a position to show the following:

Lindenbaum’s Lemma Again
• ∀ Lemma: If Y[s] ∈ Π, for every PL+ name, s, then (∀z)Y ∈ Π. 

• Proof: Suppose that Y[s] ∈ Π, for every PL+ name, s.  The sentence, 
(∀z)Y, must occur as some (∀zk)Wk, since, by construction, every 
universally quantified sentence of PL+ appears in our enumeration.

• Since Θ ⊆Π, the conditional, Wk[ck] (∀zk)Wk, which is just θk, is a 
member of Π.  But, by assumption, Y[s] = Wk [cn] ∈ Π.  Hence:

• {Wk [cn], Wk[ck] (∀zk)Wk} ⊆Π.  Since Π is deductively closed
(because it is maximally consistent), (∀zk)Wk ⊆Π by modus ponens.

• Upshot: The maximal consistent Henkin Set, Π, captures the truth-
conditions of universally quantified sentences as it does the others.  We 
have that, indeed, (∀z)Y ∈ Π just in case Y[s] ∈ Π for every PL+ name, s.
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• Actually, the same holds for substitution instances involving complex terms, 
not names. (∀z)Y ∈ Π just in case Y[t] ∈ Π for every PL+ singular term, t.

• Proof: 

• Let Π be a Henkin Set and suppose that Y[t] ∈ Π for every PL+ singular 
term, t.  Every PL+ name is a PL+ singular term.  So, Y[s] ∈ Π for every 
PL+ name, s.  So, by ∀ Lemma, (∀z)Y ∈ Π.  Conversely, suppose that (∀z)Y
∈ Π.  Then, since any Henkin Set is maximal consistent, and, again, every 
such set is deductively closed (Lemma 3.2.2a), Y[t] ∈ Π, for every PL+ 
term, t, since this is deducible using the rule, Universal Instantiation.

Terms

Summary

• Rehash: We have shown that, given a consistent set of sentences, Γ, it 
can always be extended to a maximally consistent one that captures the 
truth-conditions of all sentences in the extended set’s language.

• Details: We extended the language of Γ, PL, into PL+ by adding 
infinitely many new names. We then added a W-conditional for every 
universally quantified PL+ sentence and proved that the resulting set 
was still consistent. Finally, we used Lindenbaum’s Lemma to extend 
the result into a maximal consistent set Π, called a Henkin Set. 

• However, our aim (recall!) was to prove the Model Existence 
Theorem.  How do we get from a Henkin Set to a model of Γ?
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Henkin Models

• The key idea is to construct a model of our Henkin Set, called a Henkin
Model, HΠ, with the feature that HΠ |= Y just in case Y ∈ Π.  That is:

• Y is true in HΠ when Y ∈ Π, and Y is false in HΠ when Y ∉ Π.

• Upshot: HΠ will be a model of Γ ⊆Π, as desired.

• We may specify a Henkin Model of Γ (an interpretation of all of the 
members of Γ under which each comes out true) as follows.  
• For simplicity, we first assume that PL+ lacks the identity predicate, =.

Henkin Model of Γ

• Universe of Discourse (UD): The set of all the PL+ singular terms

• List of Names (LN): All the members of UD (i.e., LN = UD).

• Semantical Assignments (SA): 

• For every name, s, in LN, HΓ(s) = s.

• For every 1-place predicate, P, in Voc(Γ), HΓ(P) = {s : Ps ∈ Γ}

• For every n-place predicate, Rn, in Voc(Γ), HΓ(Rn) = {<t1, t2, t3, …, tn> 
: Rnt1t2t3…tn ∈ Γ}.

• For every n-place function symbol, fn, in Voc(Γ), {<t1, t2, t3, …, tnfnt1
t2t3…tn> : t1, t2, t3, …, tn are PL+ singular terms}
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Henkin Model of Γ
• Note: By construction, HΓ is a model of all atomic members of Γ.  In order 

to ensure that HΓ is also a model of all complex members of Γ, we must 
expand Γ into a Henkin Set, as before, and trade HΓ for HΠ.
• Truth-Membership Theorem: Let Γ be a consistent set of sentences, and 

let Π ⊇ Γ be a Henkin Set.  Then, for every PL+ sentence, Y, HΠ |= Y if/f Y
∈ Π.
• Proof: We will prove this by the Principle of Complete Induction (PCI) on 

the number of connective (and quantifier) occurrences in a given sentence.  
• Base Step: 
• 1) Let the complexity of X be 0.  Then X is an atomic sentence of the form 

Rna1, a2, a3, …, an, where Rn is an n-place PL predicate (n >1) and t1,t2, … 
tn are (perhaps not distinct) PL singular terms. (Remember that there is no 
identity predicate.)

Henkin Model of Γ

• 2) Rna1, a2, a3, …, an is true on HΠ just in case <(HΠ(t1), HΠ(t2),…
HΠ(tn))> ∈ HΠ(Rn).

• 3) By the definition of HΠ, <(HΠ(t1), HΠ(t2),… HΠ(tn))> ∈ HΠ(Rn) just 
in case <t1,t2, … tn> ∈ HΠ(Rn), since HΠ assigns terms to themselves.  
And <t1,t2, … tn> ∈ HΠ(Rn) just in case Rnt1,t2, … tn∈ Π, as desired.

• Inductive Step: 

• Assume that the Truth-Membership Theorem is true for any 
sentence, X, with complexity m (0 ≤ m < k).  We show that, under this 
assumption, it also holds for any sentence of complexity k as well.
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Henkin Model of Γ

• 4) Since k > 0, X must be a complex sentence, i.e., a negation, 
conditional, or a universally quantified sentence. Therefore, to begin, 
let X be a negation, i.e., of the form ~Y, for some PL+ sentence Y.

• 5) Since Y has a complexity less than k, the Induction Hypothesis
applies to Y, meaning that HΠ |= Y if/f Y ∈ Π.

• 6) But Π is Henkin set.  So, it is maximal consistent.  Thus, Y ∈ Π if/f 
~Y ∉ Π, and either Y ∈ Π or ~Y ∈ Π.

• 7) By 5) & 6), Y is not true, and so (by bivalence) false, on HΠ just in 
case ~Y ∈ Π.  That is, HΠ |= X if/f X ∈ Π, as desired.

Henkin Model of Γ

• 8) So, let X be a conditional, i.e., of the form (Y  Z), for some PL+ 
sentences Y and Z, where Y and Z have complexities < k.
• 9) Then, by the Inductive Hypothesis, HΠ |= Y if/f Y ∈ Π, and HΠ |= Z 

if/f Z ∈ Π.
• 10) Either HΠ |= X or not.  So, suppose first that HΠ |= X = (Y  Z).
• 11) Then, by the truth-conditions for , either HΠ |= ~Y or HΠ |= Z.
• 12) Since the Inductive Hypothesis applies to Y.  Then Y is false on 

HΠ just in case HΠ |= ~Y just in case Y ∉ Π.
• 13) Since Π maximal, ~Y ∈ Π, in which case (Y  Z) ∈ Π, since Π is 

deductively closed (Lemma 3.2.2a).
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Henkin Model of Γ

• 14) So, suppose that HΠ |= Z.

• 15) Since the Inductive Hypothesis applies to Z, HΠ |= Z just in case Z ∈
Π.  Since HΠ |= Z, (Y  Z) ∈ Π, again by the deductive closure of Π.

• 16) Thus, from 10) – 15), if HΠ |= (Y  Z), then (Y  Z) ∈ Π.

• 17) Now suppose (Y  Z) is false on HΠ, i.e., HΠ |= ~(Y  Z). 

• 18) Then HΠ |= Y, and Z is false on HΠ, i.e., HΠ |= ~Z.

• 19) Since the Inductive Hypothesis applies to Y and Z, Y ∈ Π and Z ∉ Π.

• 20) By the maximality of Π, ~Z ∈ Π.

Henkin Model of Γ

• 21) As both Y ∈ Π and ~Z ∈ Π, ~(Y  Z) ∈ Π by its deductive closure, 
and (Y  Z) ∉ Π by its consistency.

• 22) Thus, from 10) – 21), HΠ |= (Y  Z) just in case (Y  Z) ∈ Π.

• 23) Finally, let X be the universally quantified sentence, (∀z)Y, where 
the inductive hypothesis applies to Y[s], for every name in LN – i.e., 
Y[s] ∈ Π just in case HΠ |= Y[s], for every LN name, s.

• 24) Either HΠ |= (∀z)Y or not.  So, suppose first that HΠ |= (∀z)Y.

• 25) By the truth-conditions of the universal quantifier, HΠ |= Y[s], for 
every LN name, s.
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Henkin Model of Γ

• 26) Since the Inductive Hypothesis applies to each such instance, Y[s] ∈ Π
for every s in LN.

• 27) But Π is a Henkin Set.  So, (∀z)Y ∈ Π just in case Y[t] ∈ Π for every 
PL+ singular term, t.

• 28) Moreover, on the Henkin Interpretation, LN = UD = {x : x is a PL+ 
singular term}.

• 29), So, by 26) – 28), (∀z)Y ∈ Π, as desired.

• 30) What if (∀z)Y is false on HΠ?  Then, by the truth-conditions for ∀, Y[s] 
is false on HΠ for some name, s*, in LN.

Henkin Model of Γ

• 30) Since the Inductive Hypothesis applies to each instance, Y[s], for 
every s in LN, Y[s*] ∉ Π.
• 31) By the maximality of Π, ~Y[s*] ∈ Π, for every s* such that Y[s*] 
∉ Π.
• 32) So, by the deductive closure of Π, ~(∀z)Y ∈ Π.
• 33) Finally, by the consistency of Π, (∀z)Y ∉ Π, as desired.
• 34) By 4), 8) & 23), HΠ |= Y if/f Y ∈ Π (i.e., the Truth-Membership 

Theorem is true) for any sentence, Y, with complexity k whenever it is 
true of any sentence, X, with complexity m, where 0 ≤ m < k.
• 35) Hence, by PCI, the Truth-Membership Theorem is established.
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Summary

• We have shown that a sentence of PL+, which includes the language of 
PL, is true in the Henkin Model, HΠ, just in case it is a member of a 
Henkin Set Π.  So, the Henkin Model is a model of a Henkin Set.

• But we also showed that every consistent set of sentences, Γ, can be 
extended to a Henkin Set, Π.  Since every Henkin set has a model, and a 
model of a set is also a model of all its subsets, Con(Γ) ∃M |= Γ.

• This is just the Model Existence Theorem which we proved was 
equivalent to the Completeness Theorem, i.e., that for every set Γ of 
PL sentences and every sentence X of PL, if Γ |= X, then Γ |– X.

• We have, therefore, proved the Completeness Theorem.

Loose End: Identity

• We proved the Completeness Theorem for PL without an identity predicate.  
There is no difficulty with logical truths, like (a = a).  Our assignment of 
names to themselves poses no problem in the case of such logical truths.
• The problem is with identity statements that are not logical truths, like a = b.  

The Henkin Interpretation that we constructed assigns a and b to themselves.  
But a and b are distinct names!  So, (a = b) is false on such an interpretation.
• A natural fix recommends itself: we should partition the set of PL+ singular 

terms into equivalence classes of terms that the theory regards as ‘equal’.
• Recall: A partition of a set, A, is a family, F, that is exhaustive -- i.e., such 

that ∪F = A -- and such that all of its members are disjoint -- i.e., for all A ∈
F and B ∈ F, {x : x ∈ A & x ∈ B} = ∅.  The last condition is written: ∩F = ∅.
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Loose End: Identity
• So, let us partition the universe of discourse (UD) of our original Henkin

Interpretation thus: E[t] = {r : r is a PL+ singular term & (t = r) ∈ Π*}.

• Note: We use * to designate the new theory, universe of discourse, and so on.

• Given our partition, we may collect the equivalence classes, E[t] where t is a 
PL+ singular term, to form: U = {E[t] : t is a PL+ singular term}.

• Why is this a partition?  Each E[t] is nonempty, since it includes t.  Now 
suppose that E[t] ∩ E[r] ≠ ∅. Then ∃q with q ∈ E[t] and q ∈ E[r].  So, q = t ∈
Π* and q = r ∈ Π*.  By the deductive closure of Π* t = r ∈ Π* and E[t] = E[r].  
Finally, for each t, E[t] ⊆ UD, so ∪U ⊆ UD.  To show that UD ⊆ ∪U, let t be 
any PL+ singular term in UD.  Then t = t ∈ Π*, so t ∈ E[t], and, thus, t ∈ ∪U.
• To get a model, HΠ*, of any sentence in the Henkin Set, Π*, of a set, Γ*, 

language of PL that includes the identity predicate, =, we modify HΠ thus:

HΠ* Interpretation

• A) UD* = U = {E[t] : t is a PL+ singular term}.  (That is, we replace UD with 
the family, U, i.e., the set of equivalence classes of PL+ singular terms.)

• B) LN* = LN = The set of all the PL+ singular terms.

• C) Assign every name, q, in LN to the E[t] such that q ∈ E[t].

• D) Assign every n-place predicate, n ≥ 1, Rn to the set of n-tuples {<E[t1], 
E[t2], E[t3], …, E[tn]> : Rnt1t2t3…tn∈ Π*}

• E) Assign every n-place function symbol, fn, the set of n+1 tuples {<E[t1], 
E[t2], E[t3], …, E[tn], E[fnt1 t2t3…tn]> : t1, t2, t3, …, tn are PL+ singular terms}.
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Revised Proof
• Using our revised Henkin Interpretation*, HΠ*, we can obtain a model of any 

PL theory, Γ*, incorporating the equality symbol, =, where Γ* ⊆Π* and Π* is 
a PL+ Henkin Set* with the equality symbol.  The only change to the proof of 
the Truth-Membership Theorem that is required concerns the Base Case.

• 1) First, let X be of the form r = t where r and t are any PL+ terms.

• 2) Suppose that r = t |= HΠ*.

• 3) Then E[r] = E[t], where E[r] = {q: q = r ∈ Π*} and E[t] = {q: q = t ∈ Π*}.  

• 4) So, r = t  ∈ Π*, as desired.

• 5) Conversely, let r = t  ∈ Π*.

• 6) Then r ∈ E[t] = {q: q = t ∈ Π*}.

• 7) Since, r ∈ E[r], E[r] = E[t], by our partition argument.

Revised Proof

• 8) Second, let X be of the form Rnt1, t2, t3, …, tn.

• 9) Suppose that Rnt1, t2, t3, …, tn is true on HΠ*.

• 10) Then <E[t1], E[t2], E[t3], …, E[tn]> ∈ {<E[t1], E[t2], E[t3], …, 
E[tn]> : Rnt1t2t3…tn∈ Π*}.

• 11) Hence, Rnt1t2t3…tn∈ Π*.

• 12) Conversely, suppose that Rnt1t2t3…tn∈ Π*.

• 13) Then E[t1], E[t2], E[t3], …, E[tn]> ∈ {<E[t1], E[t2], E[t3], …, 
E[tn]> : Rnt1t2t3…tn∈ Π*}.

• 14) So, X, which is of the form Rnt1, t2, t3, …, tn, is true on HΠ*.
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Compactness Theorem

• We have proved the Truth-Membership Theorem*.  So, given a 
consistent PL set in a language with or without the equality symbol, Γ* , 
we may expand it to a maximal consistent Henkin Set*, Π*, and specify 
a Henkin Interpretation*, HΠ*, such that HΠ* |= Y just in case Y ∈ Π*.

• Since the Henkin Model* is a model of a Henkin Set*, along with all of 
its subsets, we have proved that every consistent set has a model, i.e., the 
Model Existence Theorem which (we proved) is equivalent to the 
Completeness Theorem.  This has two important corollaries.

• 3.3.1 The Compactness Theorem: For every PL set Γ (in a language 
with or without equality) and every PL sentence X, if X is a logical 
consequence of Γ, then X is a logical consequence of a finite subset of Γ.

Compactness Theorem

• Note: We already know that if X is derivable from Γ, then X is a 
derivable of a finite subset of Γ.  The Completeness Theorem is now 
telling us that a corresponding fact holds of (semantic) validity as well.

• Proof:  

• 1) Suppose that Γ is any set of PL sentences and X is any PL sentence 
such that Γ |= X.

• 2) By the Completeness Theorem, Γ |- X.

• 3) Then there is a (finite) derivation, D, of X from Γ and a finite set, 
ΣD, containing all of the members of Γ that occur in D.



4/26/2024

128

Finite Satisfiability Theorem

• 4) So, ΣD |- X.
• 5) So, by the Soundness Theorem, ΣD |= X.
• Note: All that mattered for this proof was that the PL provability 

relation, |-, was Sound and Complete for the semantic consequence 
relation, |=.  So, the same argument works for any other Sound and 
Complete formal system, such as propositional or modal logical ones.
• Another theorem that is equivalent to the Compactness Theorem is:
• Finite Satisfiability Theorem: If every finite subset of a PL set, Γ, has 

a model, then Γ itself has a model.  We will call a set, Γ, with the 
property that every finite subset of Γ has a model, finitely satisfiable.

Compactness  Finite Satisfiability

• Metatheorem: The Compactness Theorem and the Finite 
Satisfiability Theorem are equivalent (in a classical metatheory).

• Proof (Compactness Finite Satisfiability):

• 1) Suppose for reductio that Γ is finitely satisfiable, but not satisfiable.

• 2) Then, vacuously, for any PL sentence, X, Γ |= X and Γ |= ~X.

• 3) By Compactness, these implications are witnessed by finite subsets
of Γ, ΣX and Σ~X, respectively.  If we let Σ = ΣX ∪ Σ~X, then Σ is a 
finite subset of Γ such that Σ |= X and Σ |= ~X.

• 4) But, by 1), Γ is finitely satisfiable – i.e., ∃M |= Σ.
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Finite Satisfiability  Compactness

• 5) If M fails to interpret the vocabulary of X, expand M to a model, 
M*, that is just like M but does interpret this vocabulary.

• 6) Then M* |= Σ ∪{X} and M* |= Σ ∪{~X}.

• 7) But no model can satisfy a sentence and its negation.

• 8) So, if Γ is finitely satisfiable, then it must be satisfiable – i.e., the 
Finite Satisfiability Theorem is true.

• Proof (Finite Satisfiability Compactness):

• 9) For the converse, suppose for reductio that Γ |= X, but that Σfin ⊭ X
for every finite subset Σfin of Γ.

Finite Satisfiability  Compactness

• 10) So, ∀Σfin ⊆ Γ, ∃M |= Σfin ∪ {~X}.

• 11) Hence, for every finite subset of Γ ∪ {~X}, Σ~Xfin, ∃M |= Σ~Xfin.

• 12) By the Finite Satisfiability Theorem, Γ ∪ {~X} is satisfiable, i.e., 
∃M |= Γ ∪ {~X}

• 13) So, by the definition of logical consequence, Γ ⊭ X, contrary to 1).
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Illustration: Undefinability of Finiteness

• The Compactness / Finite Satisfiability Theorem betray an expressive 
limitation of first-order logic.  In particular, finiteness is not definable.

• Note: We will talk later about second-order logic, PL2, for which this is 
not the case.  But second-order logic does not solve the philosophical 
problem that is raised, that of explaining the determinacy of our concept of 
finite. PL2 takes it for granted that finite, and even P(ℕ), is determinate.

• The identity predicate, =, understood as a logical constant allows us 
express many things about (finite) size.  For example, we can say that 
there are exactly two things as follows: (∃x)(∃y)[x ≠ y & ∀z(z = x v z = y)].

Undefinability of Finiteness

• However, while we can force the Universe of Discourse (UD) to be 
finite, and we can force it to be infinite, we cannot concoct a sentence 
that is true in all and only finite (or infinite) models.  In other words, 
(in)finiteness is (first-order) undefinable – inexpressible or ineffable.  

• This follows from the Compactness / Finite Satisfiability Theorem:

• A) Suppose that Φ is a sentence true in every model with a finite UD.

• B) Then each finite subset of the following set, Γ, of sentences is 
consistent because it has a model (this follows from Soundness).
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Undefinability of Finiteness

• 0. Φ
• 1. ~(∃x)[∀z(z = x)]  [‘It’s not the case that there is at most one thing.’]
• 2. ~(∃x)(∃y)[(∀z(z = x v z = y)]   [‘It’s not the case that there are at 

most two things.’]
• …
• n. ~(∃x)(∃y)…v z = y)]  [‘It’s not the case that there are at most n

things.’]
• …
• Since Φ is true in every model with a finite UD, in order to generate a 

model of sentences 0. – n. we just require that UD have n+1 elements.

Undefinability of Finiteness

• C) Since each finite subset of Γ is consistent, Γ itself must be 
consistent, by the Compactness / Finite Satisfiability Theorem.
• D) But, then, every sentence, Φ, that is true is all finite models fails to 

rule out that there are more than n things, for every natural number, n!
• E) Hence, every sentence, Φ, that is true is all finite models must be 

true in some infinite models as well.
• F) So, finiteness is not (first-order) definable.
• Observation: If there were a sentence, Φ*, true in all and only the 

infinite models, then ~Φ* would be true in all and only the finite 
models.  Since there is no such ~Φ*, infinitude is not definable either!
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Elementary Equivalence & Isomorphism

• We now introduce a few additional important concepts going forward.

• Elementary Equivalence: If Γ is a set of PL sentences, and IΓ and JΓ
are two interpretations of Γ, then IΓ and JΓ are elementary equivalent 
with respect to Voc(Γ) if/f for every PL sentence, X, whose vocabulary 
is limited to that of Voc(Γ): I |= X  J |= X. (Recall that a model of 
X is merely an interpretation, like I or J, under which X is true.)

• When IΓ and JΓ are elementary equivalent, we will write: IΓ = Γ JΓ.

• Isomorphism: A function h is an isomorphism between IΓ and JΓ if/f 
h is a bijection between UDI and UDJ such that the following holds:

Isomorphism

• (1) For every name c in Voc(Γ), h(IΓ(c)) = JΓ(c).

• (2) For each 1-place predicate P1 in Voc(Γ), and for each individual, β, 
in UDI , β ∈ IΓ(P1) iff h(β) ∈ JΓ(P1).

• (3) For every n-place predicate Pn in Voc(Γ), where n > 1, and for each 
n-tuple <β1, β2, β3, …, βn> of individuals in UDI, <β1, β2, β3, …, βn> ∈
IΓ(Pn) iff <h(β1), h(β2), h(β3),…, h(βn)> ∈ JΓ(Pn).

• (4) For every n-place function symbol gn in Voc(Γ), and for each n-
tuple <β1, β2, β3, …, βn> of individuals in UDI , h(IΓ(gn)(β1, β2, β3, …, 
βn)) = JΓ(gn)(h(β1), h(β2), h(β3), …, h(βn)).
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Isomorphism

• Two interpretations, IΓ and JΓ, of Voc(Γ) are isomorphic when there is 
an isomorphism between them.  We write IΓ≅ ΓJΓ or just I ≅ ΓJ.

• Isomorphism is strictly stronger than elementary equivalence.  We 
will see that there can be elementary equivalent interpretations that are 
not isomorphic.  But there cannot be isomorphic interpretations that are 
not elementary equivalent.  Isomorphic interpretations do not merely
make the same sentences true.  If IΓ≅ ΓJΓ, then IΓ and JΓ are 
‘structurally identical’, at least in the way that they interpret Voc(Γ).

• Note: While constituents of I and J that interpret Γ are structurally 
identical, those interpretations need not be so identical in general!

Properties of PL Sets

• In light of the Soundness and Completeness theorems, deductive and 
logical closure come to the same thing.  Therefore, we can say:

• A PL set, Σ, is (semantically or syntactically) complete if/f for every 
sentence, X, such that Voc(X) ⊆ Voc(Σ), either Σ |- X or Σ |- ~X. 

• Note: The Completeness Theorem concerns a different kind of 
completeness, the relationship between provability and implication.

• A PL set Σ with the following feature is called a PL theory: 

• For every sentence, X, such that Voc(X) ⊆ Voc(Σ), if Σ |= X, then Σ ∈ X.

• Note: This is just semantic closure limited to the vocabulary of Σ.



4/26/2024

134

Corollaries 3.5.1a - 3.5.1d

• The following corollaries are immediate consequences of the Soundness
and Completeness theorems, in tandem with the definition of a theory:

• Corollary 3.5.1a: For every PL set Σ, Σ is a theory if/f for every PL
sentence X such that Voc(X) ⊆ Voc(Σ), if Σ |– X, then Σ ∈ X.

• Corollary 3.5.1b: For every sentence, X, such that Voc(X) ⊆ Voc(Σ), 
either Σ |= X or Σ |= ~X.

• Corollary 3.5.1c: For every PL set Σ, the set of all the logical 
consequences of Σ, X, such that Voc(X) ⊆ Voc(Σ) is a theory, written 
Th(Σ).

• Corollary 3.5.1d: For every PL set Σ, Th(Σ) = {X: Voc(X) ⊆ Voc(Σ) & 
Σ |- X}.

Corollary 3.5.1e

• Corollary 3.5.1e: If Voc(Σ) is a PL vocabulary containing the logical 
vocabulary of PL and some (maybe not all) of the non-logical vocabulary
interpreted by interpretation J, then the following set is consistent and 
complete: 
• ThΣ(J) = {X: X is a sentence in Voc(Σ) that is true on J} = the set all the 

sentences composed of Voc(Σ) that are true on interpretation, J.
• Note: We simply write Th(J) if Voc(Σ) is the all of Voc(J), i.e., the logical 

vocabulary of PL plus all the extra-logical vocabulary interpreted by J.
• Proof: 
• 1) Let J be a PL interpretation and Voc(Σ) and ThΣ(J) as above.
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Corollary 3.5.1e

• 2) Then ThΣ(J) is a PL theory because models are closed under logical 
consequence.
• Suppose that X is sentence in the language of Voc(Σ) and ThΣ(J) |= X.
• Since J is a model of ThΣ(J), X is true on J (by the definition of logical implication).
• Hence, by the definition of ThΣ(J), X ∈ ThΣ(J), as desired.

• 3) ThΣ(J) is complete because models are bivalent.
• Either X or ~X is true on J.
• Since ThΣ(J) is a theory, either X ∈ ThΣ(J) or ~X ∈ ThΣ(J).
• So, ThΣ(J) |- X or ThΣ(J) |- ~X, by Reiteration.

• 4) Finally, ThΣ(J) is consistent because it is (by definition) satisfiable.  (This 
is just an application of the Soundness Theorem.)

Corollary 3.5.1f

• 3.5.1f Every deductively or semantically closed PL set is a PL theory. 
(The converse is not true.)

• Proof: If a PL set, Σ, is semantically closed, then it must contain all of 
its logical consequences, including the ones expressed in Voc(Σ). So, it 
is a PL theory. By Completeness, the same is true of deductive closure.
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Axiomatic Theories

• We mentioned that one motive for formal logic was to supply an 
ultimate court of appeals for questions about the validity of a proof.
• We prove things in mathematics.  But we also prove things in physics, 

economics, computer science, linguistics, and ordinary philosophy.
• How do we decide whether an alleged theorem of, say, number theory 

is a theorem in fact?  In practice, we ask other number theorists to 
check!  But what if there is recalcitrant dispute among them (as there 
is with the ABC Conjecture)?  Then we translate the (informal) proof 
into a sequence of PL sentences (in the vocabulary of number theory) 
and check that every line of the result is either an axiom or follows 
from the previous lines by a rule of MDS (equivalently: GDS or MDS).

Axiomatic Theories

• Note: By the Completeness Theorem, this is the same as checking that 
every line is either an axiom or provable from the previous lines.

• What counts as an axiom of a mathematical, physical, or other theory, 
Σ?  Not all the members of Σ.  It is trivial that every member of a 
theory, Σ, follows from itself!  Maybe any proper subset of Σ from 
which all other members of Σ follow?  This is too lax.  Maybe any 
finite subset of Σ from which all other members of Σ follow?  This is 
too demanding.  Few axioms systems of interest, including those of 
arithmetic and set theory, are finite when regimented in (first-order) PL.  
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Axiomatic Theories

• A set of sentences in Voc(Σ), Γ, counts as a set of axioms for the set, Σ,
when it is a subset of Σ from which all other members of Σ follow and
there is an effective decision procedure to check membership in Γ – an 
algorithm which delivers the verdict ‘yes’ or ‘no’ after a finite number of  
deterministic steps depending on whether the string is or is not in Γ.
• Example: Although ZFC has infinitely-many axioms (e.g., one for each 

formula instance of the Subsets Scheme), there is an effective decision 
procedure to check whether a string of PL symbols is a ZFC axiom.
• Note: This procedure need not be ‘feasible’!  Many effective decision 

procedures are not.  Measures of feasibility are studied in computational 
complexity theory, where questions like the famous ‘P = NP?’ arise.

Axiomatic Theories

• We mentioned at the start of the semester that effective decision 
procedures are different from (mere) effective ‘yes’ or ‘no’ procedures.
• Any effective procedure is, by definition, mechanical in a sense that 

we will make precise in two ultimately extensionally equivalent ways.
• However, an effective ‘yes’ procedure merely promises confirmation of 

membership in a set.  It may fail to confirm lack of membership!
• Example: Let us write Th(Γ) for the set {X : Γ |= X}.  Then Th(∅) = {X : ∅

|= X} = {P : ∅ |- X} is just the set of of PL validities, i.e., logical truths.
• The Church-Turning Theorem, which we will prove later, says that, 

while there is an effective ‘yes’ procedure for testing membership in 
Th(∅), there is no effective decision procedure for testing this.



4/26/2024

138

Axiomatic Theories

• Sets membership in which admit of effective decision procedures are 
called decidable or recursive.  Concepts are labeled analogously.

• Sets (concepts) membership in (application of) which merely admit of 
effective ‘yes’ procedures are called semidecidable or recursively 
enumerable.  The latter phrase is apt because there is an effective 
procedure for listing the members of any semidecidable set.

• Observation*: Th(Γ) is semidecidable whenever membership in Γ is 
decidable, since membership in Th(∅) is semidecidable.  Therefore, we 
can effectively enumerate all the theorems of any axiomatized theory.

Axiomatic Theories

• Summing Up:

• 3.5.1a For any PL theory Σ with Voc(Σ), Γ is a set of axioms for Σ
just in case Γ is a decidable set of sentences in Voc(Σ) and Σ = Th(Γ) 
={X : X is in Voc(Σ) and Γ |= X} ={X : X is in Voc(Σ) and Γ |– X}.

• 3.5.1b A PL theory is axiomatizable just when it has a set of axioms.

• 3.5.1c A PL theory is finitely axiomatizable just in case it has a finite
set of axioms.

• Given these definitions, we have the following theorem:
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Completeness & Decidability

• Theorem 3.5.1: Every complete axiomatizable PL theory is decidable.
• Proof: Let Σ be a complete axiomatizable PL theory.  
• 1) By Corollary 3.5.1a (for every PL set Σ, Σ is a theory if/f for every

PL sentence X such that Voc(X) ⊆ Voc(Σ), if Σ |– X, then Σ ∈ X), Σ |- X
if/f Σ ∈ X.
• 2) Either Σ is consistent or not.  
• 3) If Σ is not consistent, then Σ is decidable simply because Σ is the set 

of all PL sentences, and the set of all PL sentences is decidable.
• 4) So, suppose that Σ is consistent.  Then if Σ |- ~X, then X ∉ Σ and vice 

versa (since, in that case, Σ ∈ ~X, by 1).

Completeness & Decidability

• 5) But Σ is also complete.  So, Σ |- X or Σ |- ~X for every PL sentence 
in Voc(Σ).

• 6) Moreover, Σ is axiomatizable.  So, there is a decidable set of 
axioms, Τ, such that Σ = Th(Γ) ={X : X is in Voc(Σ) and Γ |= X} ={X : 
X is in Voc(Σ) and Γ |– X}.

• 7) Hence, there is an effective procedure for enumerating the 
derivations from Τ, and, hence, the members of Σ, by Observation*.

• 8) This gives the following decision procedure for checking 
membership in Σ :
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Completeness & Decidability

• It is decidable which PL sentences are in Voc(Σ).  So, first check whether 
X is in Voc(Σ).  If it is not, conclude that X does not belong to Σ. 

• If X is in Voc(Σ), check whether X is the last line (i.e., the conclusion) of 
the first derivation in our enumeration of derivations from Τ.

• If X is the last line of the first derivation, conclude that that X ∈ Σ. 

• If ~X is the last line instead, conclude that X ∉ Σ.

• Continue in this way.  After a finite number of steps, we must see X or 
~X as the last line of a derivation, since Σ is complete.  And since Σ is 
consistent, we know that if we see ~X, then X ∉ Σ and vice versa.

Axiomatizability, Completeness, Decidability

• Theorem 3.5.1 illustrates an important fact to which we will return:

• If a theory is axiomatizable and undecidable, then it is incomplete.

• If a theory is complete and undecidable, then it is not axiomatizable.

• Upshot: The triad of axiomatizability, completeness and undecidability
is inconsistent.  
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Completeness & Elementary Equivalence

• Before clarifying what we mean by ‘mechanical’ (and ‘effective’), we 
conclude with some concepts from model theory.  First, a theorem:
• Theorem 3.5.2: A set of PL sentence in Voc(Σ) is complete just in 

case all of its models are elementary equivalent with respect to 
Voc(Σ).
• Proof:
• (Completeness  Elementary Equivalence)
• 1) Let Σ be a complete PL set in Voc(Σ), let IΣ and JΣ be models of Σ, 

and assume that Con(Σ) (if ~Con(Σ), then Σ has no models).  
• Consider a sentence, X, in Voc(Σ) that is true in IΣ.

Completeness & Elementary Equivalence

• 2) As Σ is complete, either Σ |- X or Σ |- ~X, and, hence, by Soundness, 
either Σ |= X or Σ |= ~X.

• 3) But it cannot be that Σ |= ~X, since then ~X would be true on IΣ (since 
it would true on all models of Σ), contradicting the assumption that X is 
true on IΣ.

• 4) So, it must be that Σ |= X.

• 5) So, X is true on every model in which Σ is true, including JΣ.

• 6) Since IΣ and JΣ are arbitrary and the reasoning is symmetric, IΣ = Σ JΣ
– i.e., all models of Σ are elementary equivalent with respect to Voc(Σ).
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Completeness & Elementary Equivalence

• (Elementary Equivalence  Completeness):
• 7) Now suppose that all models of Σ are elementary equivalent, and let X be 

any sentence in Voc(Σ).
• 8) Since models are bivalent, either M |= X or M |= ~X, and not both, for any 

model, M.
• 9) So, suppose that M |= X.  Then for every other model of Σ, N, N |= X, since all 

models of Σ are elementary equivalent.
• 10) Hence, by the definition of logical consequence, if M |= X, then Σ |= X.
• 11) A symmetric argument holds in the case that M |= ~X.
• 12) Hence, by the Completeness Theorem, if all models of Σ are elementary 

equivalent, then Σ is complete (i.e., Σ |- X or Σ |- ~X), as desired.

Completeness & Elementary Equivalence

• Since isomorphism implies elementary equivalence, and elementary 
equivalence implies completeness -- and vice versa -- isomorphism implies 
completeness.  However, completeness does not imply isomorphism!
• A set of PL sentences, Σ, all of whose models are isomorphic with respect 

to Voc(Σ) is very special.  We call such a set categorical.  We also say:
• For any cardinal, κ, the PL set, Σ, is κ-categorical if/f all its models 

whose cardinality is κ are isomorphic with respect to Voc(Σ).
• A categorical set, Σ, that is consistent defines, or ‘captures’, a certain 

structure, relative to Voc(Σ), since, intuitively, any of its models can be 
obtained from any of the others by simply ‘relabeling’ the elements.
• Unfortunately, categoricity is very hard to come by, as we will discover.
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The Löwenheim-Skolem Theorem

• We are now in position to state a fundamental result of (first-order) logic 
concerning the sizes of models of a PL sets in a countable language.
• The (downward) Löwenheim-Skolem Theorem: If Σ is a PL set with a 

model, and the language of PL is countably infinite, then Σ has a countable 
model.
• Proof: Every set with a model is consistent (by the Soundness Theorem), 

and every consistent set of sentences has a countable model – namely, a 
Henkin model – by our proof of the Completeness Theorem.  
• So, every set with a model has a countable model.
• Skolem’s Paradox: Some sets of PL sentences (e.g., the ZFC axioms) 

imply the existence of uncountable sets.  By the Löwenheim-Skolem
Theorem, these sets must have countable models.  Hence, some countable
models contain uncountably-many things.  But this is a contradiction!

Skolem’s Paradox
• What is wrong with the argument of Skolem’s Paradox?  

• It confuses the perspective of the model with the perspective of our 
metatheory.

• Think about what it means for ‘the real numbers are uncountable’ to be 
true in a model, M.  It means that there is no bijection in M between 
M’s natural numbers and M’s real numbers.  But this is consistent with 
M’s being countable.  Just because M is countable does not mean that 
it contains a bijection between its natural numbers and its real 
numbers.  It could be that, in our metatheory, we have access to 
bijections that inhabitants of M do not!  We understand a countable 
model, M, in which ‘the real numbers are uncountable’ is true to be 
missing some functions between M’s natural numbers and M’s reals.
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Skolem’s Paradox
• Although Skolem’s Paradox is not literally a paradox, it does make salient 

an additional (quite dramatic!) expressive limitation of (first-order) logic.
• We already observed that ‘finite’ (correlatively, ‘infinite’) is not (first-

order) definable.  There is no sentence in the (first-order) language of PL
whose models are all and only the finite (infinite) ones.
• We now see that the situation with ‘uncountable’ (‘has cardinality ℵ2’, 

etc.) is much worse.  There is not even a sentence, or a set of them (even if 
it is not recursive or not recursively enumerable!) that is true in only
uncountable (or of cardinality ℵ2, etc.) models.  Set aside the ‘all’!
• Remaining Philosophical Problem: How could we determinately mean

finite by ‘finite’ -- a fortiori uncountable by ‘uncountable’ -- given that 
there is nothing that we can say in a formal language than pins this down?

Symbolic Logic
Computability
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Effective Procedures

• We have been discussing effective procedures, which operate 
‘mechanically’.  But what do these words really mean?  

• The problem is one of conceptual analysis, which is a characteristic 
activity of philosophers since antiquity.  Plato’s dialogues famously 
analyze normative concepts like goodness, knowledge, and justice.

• The general method of conceptual analysis is to propose a definition
and then look for counterexamples.  A correct analysis takes the form:
• For any object, a, a is C just in case a is F, for some independently 

specifiable property, F.  However, we also require that ‘C’ has the same 
meaning as ‘F’ (where C is the analysandum, the concept to be analyzed).

Effective Procedures

• Example: Plato proposed the following analysis of the concept of 
knowledge: a belief is knowledge just in case it is justified and true. 

• Amazingly, three philosopher-logicians, Gödel, Turing, and Church, 
proposed superficially very different analyses of the concept of an effective 
procedure, and they all turned out to be extensionally equivalent!

• If they are all correct analyses, and sameness of meaning is transitive, 
then they must also mean the same thing – which is doubtful.

• Even if they are not all correct as conceptual analyses, however, they agree 
on what procedures count as effective.  Hence, for typical mathematical 
purposes, they are equivalent.  We will focus on Gödel’s and Turing’s.
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Effective Procedures
• Both Gödel’s and Turing’s analyses treat procedures as partial mathematical 

functions, variously called computable or recursive.

• Moreover, strictly speaking, such functions just act on natural numbers.  They take 
n-tuples of numbers (which we will see can themselves be coded, if need be, as 
single natural numbers) and output at most one natural number.

• This is no real limitation since it turns out that every non-number can be coded as a 
number, an idea that we will illustrate with Gödel’s Theorems.

• There is no known function that is intuitively computable but not computable 
according to Gödel et al.’s criteria.  It is more doubtful that every Turing computable 
function is intuitively computable – as with Plato’s analysis of knowledge.

• The philosophical claim that all and only intuitively computable functions are 
Church-Gödel-Turing computable is the Church-Turning Thesis.

Turing Machines

• The first definition of computable functions, f: ℕn ℕ, is Turing’s.  It 
is the most natural, and has the strongest claim to giving the correct 
conceptual analysis of effective procedure, as even Gödel conceded.

• It makes use of a theoretical device, called a Turing Machine, which 
is stipulated to have unlimited memory, hardware material, and time.

• It represents inputs and outputs (n-tuples of numbers and individual 
numbers, respectively) as tallies on an infinite tape.  Here is a picture:
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Turing Machines

• A Turing Machine, TM, then consists of the following components: 

• (1) an infinite tape that is divided into identical squares.  Each of these 
squares contains the numeral 0 or a tally, i.e., the numeral, 1.

• (2) a pointer that points at one square at a time.  
• This pointer can do any of the following (but nothing else): 
• read the numeral on the square, erase what is on it, write 0 or 1, 

move one square to the left, or move one square to the right.

• (3) a register that keeps track of the internal states of the machine.

• (4) a set of instructions that represents the program of the machine.

Turing Machines

• A Turing Machine, TM, is uniquely defined, and so often simply 
identified with, its program – i.e., by its set of instructions.

• The set of instructions for a Turning Machine consists of an even
number of instruction lines,{l1, l2, l3, l4,…lm}, each of the form qiXYqk. 

• If ls is qiXYqk, then:

• X is the input of line ls, and is either 0 or 1

• Y is output of line ls, and is either 0, 1, R (for ‘right’), or L (for ‘left’) 

• qi is the initial state of ls

• qk is the terminal state of ls
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Turing Machines

• If TM is the Turing Machine with the set of instruction lines, {l1, l2, l3, 
l4,…lm}, then TM’s initial state (as opposed to the initial state of a 
line) is just the initial state of the first instruction line, written: q0.

• Similarly, TM’s terminal state is the terminal state of at least one of 
the instruction lines (not necessarily the last in the list of instructions), 
but it cannot be the initial state of any of them. This state is written: qe.

• The set of internal states of TM, {q0, q1, q2,… qe}, is then the set of all 
initial and terminal states of the instruction lines: {l1, l2, l3, l4,…lm}.

• Note: No two instruction lines share the same first two symbols.

Turing Machines

• Any Turing Machine, TM, begins in internal state, q0, with its pointer 
at the leftmost square with a 1 in it if its first input is 1, as illustrated.

• If its first input is instead 0, then its pointer is at some square with a 0.

• If TM halts, it always halts in the internal state qe, with its pointer at the 
leftmost square with a 1, or at a square with a 0 in it if the output is 0. 

• However, TM may not halt.  If it does not, then its output is undefined.
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Four Kinds of Instruction

• There are four kinds of instruction that a Turing Machine can follow:  

• qiX0qk : If TM is in state qi and the pointer reads X (where X is either 1
or 0), then the pointer writes 0 and TM enters state qk.

• qiX1qk : If TM is in state qi and the pointer reads X, then the pointer 
writes 1 and TM enters state qk.

• qiXRqk : If TM is in state qi and the pointer reads X, then the pointer 
moves one square to the right and TM enters state qk.

• qiXLqk : If TM is in state qi and the pointer reads X, then the pointer 
moves one square to the left and TM enters state qk.

Diagram Cell

• Turing Machines can be represented by diagrams consisting of a number 
of cells. With the exception of the qe cell, every diagram cell is a triangle
with two instruction lines exiting that begin with the same initial state. 

• The inside of the triangle specifies the initial state of the two lines.  

• Existing arrows represent the inputs, outputs, and terminal states of one of 
the two instruction lines.  These arrows, in turn, connect to other cells.

• Note: The instructions of the left-hand arrows are arranged in the 
reverse order of the instructions of the lines that they represent.
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Diagram Cell

• Here is an example of a diagram cell:

• If lS is the instruction line, qi0Lqk, and lT is the instruction line, qi10qn, then 
the above diagram cell represents the following two commands: 
• Right-Hand Arrow: If the internal state is qi and the pointer reads 1, write 

0 in place of 1 and enter state qn. 
• Left-Hand Arrow: If the internal state is qi and the pointer reads 0, move

the pointer one square to the left and enter state qk.

Example: The Zero Function

• The zero function, ∀n, f(n) = 0: ℕ  ℕ, is intuitively computable.  
So, on the strength of the Church-Turing Thesis, it must be Turing 
Computable.  What is a Turing Machine, T0, that computes it?

• Here is one:

• l1 : q010q0 

• l2 : q00Rq1

• l3 : q111q0

• l4 : q100qe
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Example: The Zero Function

• Let us illustrate T0’s action on the input, 3.
• a) The machine is in the state q0. There are three consecutive squares

(encoding the input, the number 3) containing a stroke, 1. The rest have 0’s 
in them. The pointer is positioned at the leftmost square that contains 1.

• The state above is q0 and the input is 1.  So, the right-hand arrow of the q0-
cell applies.  It tells the machine to replace 1 with 0 and stay at state q0.

Example: The Zero Function

• b) Now the state is q0 and the input is 0.  Hence, the left-hand arrow of the 
q0-cell tells T0 to move one square to the right and enter state q1.

• c) After executing b), the state is q1 and the input is 1.  Consequently, the 
applicable arrow is the right-hand arrow of the q1-cell.  This arrows tells T0 
to leave the tally, 1, that it reads as it is but change the state back to q0.
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Example: The Zero Function

• d) Since T0  is back at the q0-cell, step a) is repeated. The input is again 
1.  Hence, the instruction of the right-hand arrow again applies.  This 
arrow tells T0  to replace the tally, 1, with 0 and to remain in state q0.

• e) Step b) repeats.  The input is 0, so the left-hand arrow of the q0-cell
tells T0 to move one square to the right and change the state to q1. 

Example: The Zero Function

• d) T0 is back at the q1-cell, and step c) repeats. The pointer stays at the same 
square, leaving it unchanged.  But T0 changes its state to q0, as before.
• e) T0 repeats step a). It replaces 1 with 0 and remains in state q0. We have:

• d) Step b) repeats: T0 moves a square to the right and changes to state q1

• e) Finally T0 is in state q1 with an input of 0 instead of 1.  The left arrow 
applies. T0 leaves the 0 alone and enters the terminal state, qe, thus halting.
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Fancier Machines
• Turing Machines are primitive. But once you have one, you can build more 

sophisticated machines by incorporating it into the construction.  For example, the 
following machine, TS, computes the Successor Function, ∀n, f(n) = n+1: ℕ  ℕ:

• Given TS, we can construct a machine that computes addition, since addition is just 
repeatedly taking the successor.  Given a machine for addition, we can construct a 
machine for multiplication, since multiplication is repeated addition.  And so on.

Notation
• With the idea of a Turing Machine, TM, we can define what it is for a 

function (from n-tuples of natural numbers to natural numbers) to be 
Turing Computable.  This is important in order to show that certain 
functions are not computable, not to show that they are.  The direction 
of the Church-Turing Thesis that is hard to deny is that if a function is 
intuitively computable, then it is Church-Gödel-Turing computable.

• We write →m for the n-tuple, <m1, m2, m3, …, mn>, and treat the 
expression, ‘TM ’ as a function symbol.  TM(<m1, m2, m3, …, mn>) = 
TM(→m) = ↓ means that TM halts on input <m1, m2, m3, …, mn>, and 
TM(<m1, m2, m3, …, mn>) = TM(→m) = ↑ means that it fails to so halt.

• As with functions, TM(<m1, m2, m3, …, mn>) denotes the output of TM
when its input is <m1, m2, m3, …, mn>, assuming that TM(→m) = ↑.
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Turing Computability
• Turing-Computable Function: A (partial) function f: ℕn ℕ is Turing-

Computable if/f there is a Turing Machine, Tf, that computes f.  Formally:

• ∀→m ∈ ℕn, Tf (→m) = f(→m) = f(<m1, m2, m3, …, mn>), if →m ∈ dom(f).

• ∀→m ∈ ℕn , Tf (→m) = ↑ = undefined, if →m ∉ dom(f).

• What about decidable and semidecidable sets?  These concepts are 
defined in terms of characteristic functions and listing functions, 
respectively. Suppose that K ⊆ ℕn.  Then χK is the characteristic 
function of K just when χK is the total function, ℕn ℕ, such that: 

• ∀→m ∈ ℕn, χK(→m) = 1 if →m ∈ K

• ∀→m ∈ ℕn, χK(→m) = 0 if →m ∉ K

Turing Computability
• λK is a listing function of K if/f λK is the partial function, ℕn ℕ, such that:

• ∀→m ∈ ℕn, λK(→m) = 1 if →m ∈ K
• ∀→m ∈ ℕn, λK(→m) = ↑ if →m ∉ K

• A set K is decidable just when its characteristic function is (Turing) 
computable.  It is semidecidable just when its listing function computable.  

• We say that K is effectively enumerable when there is a total computable 
function, f : ℕn ℕ, with ran(f) = K.  (Semidecidable sets and effectively 
enumerable sets are the same thing.)  But how can we allow Turing Machines 
to output n-tuples of numbers, not just individual ones?  Instead of altering the 
definition of a Turing Machine, we can simply use the Fundamental 
Theorem of Arithmetic to encode n-tuples as numbers.  The scheme is: <m1, 
m2, m3, …, mn>  2m1*3m2*5m3*…pn

mn (where pn is the nth prime number).
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Kleene’s Theorem
• There is a connection between decidability and effective enumerability.
• Kleene’s Theorem: For any K ⊆ ℕn, K is decidable just in case both K and its 

complement, ℕn – K, are effectively enumerable (equivalently, semidecidable).
• (Effective Enumerability Decidability)
• 1) Suppose that K and ℕn – K are both effectively enumerable.  
• 2) Then there are Turing Machines, TM1 and TM2, that enumerate each, respectively.  
• 3) Using TM1 and TM2, define another machine DM, which decides, for any n-tuple, 

<m1, m2, m3, …, mn>, whether <m1, m2, m3, …, mn> ∈ K or <m1, m2, m3, …, mn> ∉ K 
as follows.  
• 4) Run TM1 and TM2 in parallel.  For any input, <m1, m2, m3, …, mn> ∈ ℕn , wait some 

finite number of steps to see which of TM1 and TM2 outputs <m1, m2, m3, …, mn>.  
(One of them must because <m1, m2, m3, …, mn> is either in K or not.) 
• 5) If TM1 outputs <m1, m2, m3, …, mn>, then <m1, m2, m3, …, mn> ∈ K.  If instead TM2

outputs <m1, m2, m3, …, mn>, then <m1, m2, m3, …, mn> ∉ K.
• 6) So, K is decidable.

Kleene’s Theorem

• (Decidability  Effective Enumerability)
• 7) Suppose that there exists a Turing Machine, DM, which decides, for 

any n-tuple, <m1, m2, m3, …, mn>, whether <m1, m2, m3, …, mn> ∈ K 
or <m1, m2, m3, …, mn> ∉ K.  
• 8) Let T* be a Turing Machine that enumerates all n-tuples whatever, 

<m1, m2, m3, …, mn>.
• 9) Apply DM to each <m1, m2, m3, …, mn>.  
• 10) If DM decides that <m1, m2, m3, …, mn> ∈ K, let TM1 outputs <m1, 

m2, m3, …, mn>. If DM decides that <m1, m2, m3, …, mn> ∉ K, let TM2
outputs <m1, m2, m3, …, mn>.  
• 11) Thus, K and ℕn – K are both effectively enumerable.
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Halting Problem

• The basic limitative results of theoretical computer science is another 
diagonal argument, like Cantor’s or Russell’s.  At first approximation, 
the Halting Problem is to decide whether, for any Turing Machine, T 
(henceforth dropping the subscript on T for readability), and any input, 
m, whether or not T(m) halts -- where m is the n-tuple of only ms.

• We will prove that this problem is not Turing Computable.  So, 
assuming the Church-Turing Thesis, not computable by any machine.

• Note: The problem amounts to computing a precisely defined 
function! So, the Halting Problem shows that merely precisely 
defining a function is insufficient for establishing its computability.  

Coding Turing Machines

• Turing Machines take numbers as input.  So, in order to assess the 
Turing Computability of a function that takes Turing Machines 
themselves as arguments, we first must code the latter as numbers.

• Since every Turing Machine is uniquely characterized by its program, 
i.e., set of instructions, we need merely to settle on codes for those.

• Recall that every line of such a set takes the form qiXYqj, where i is 
any natural number, j is any natural number or the letter, ‘e’ (qe is the 
terminal state of a Turing Machine), X is either 0 or 1, and Y is either 
0, 1, R, or L.  So, we first associate basic codes with these symbols.
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Coding Turing Machines

• Let us write, [α] for the code numeral (not number!) of the object, α. Then:

• [qm] = 1…(insert m 0-numerals)…0

• [0] = 2

• [1] = 3

• [R] = 4

• [L] = 5

• [qe] = 7

Coding Turing Machines

• If {l1, l2, l3, l4,…lj}, be the instruction lines of Turing Machine, T and li
is qkXYqs, then the code numeral, [li], is the sequence, [qk][X][Y][qs], 
and the code numeral, [Tm], is the sequence, [l1][l2][l3]… [lj].

• [qk][X][Y][qs] is not [qk] * [X] * [Y] * [qs].  Nor is [l1][l2][l3]… [lj] the 
product of the [li]s.  The objects, [qk], [X], and so on are numerals. 

• Illustration: Recall T0 given by the following instruction lines:
• l1 : q010q0 

• l2 : q00Rq1

• l3 : q111q0

• l4 : q100qe
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Coding Turing Machines

• The entire machine program, T0, can then be coded as follows:

• [l1] = [q010q0] = [q0][1][0][q0] = 1321

• [l2] = [q00Rq1] = 12410

• [l3] = [q111q0] = 10331

• [l4] = [q100qe] = 10227

• [T0] = [l1][l2][l3][l4] = 1321124101033110227

Coding Turing Machines

• Why does this result in an effective decoding as well as coding scheme?

• Because, given any numeral, we can effectively check if its digits represent 
basic codes and whether the set of instructions obtained from those codes 
is a Turing Machine program.  If it is such a program, then we can go on to  
determine what Turing Machine program the set is.  Consider again:

• [T0] = [l1][l2][l3][l4] = 1321124101033110227

• This code is the following numerals in sequence: 1321 12410 10331 10227

• But 1321 codes q010q0; 12410 codes q00Rq1; 10331 codes q111q0; and 
10227 codes 10227.  These are just the codes of l1, l2, l3, and l4 of T0.
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Halting Function

• We can now specify a function, f, from the set of all Turing Machines, 
TM, into the set of natural numbers (not numerals!), such that for every T
∈ TM, f(T) = the number picked out by the numeral, [T]. 

• This function is well defined, since every Turing Machine has a unique 
numerical code, and every such code picks out a unique number. It is also 
a one-to-one function, as no distinct Turing Machines have the same
numerical code, and no two numerals pick out the same number.

• This function is, however, not onto, since infinitely-many natural 
numbers fail to correspond to any Turing Machine in the mapping.

• Given this coding of Turing Machines, we specify the Halting Function:

Halting Function
• The Halting Function, H(m, n), is a total function from the set of pairs of natural 

numbers, ℕ2, into the set of natural numbers, ℕ, such that for all pairs of natural 
numbers, <n, m> ∈ ℕ2, H(n, m) =

• 1 if ∃T ∈ TM such that n = the number picked out by the numeral [T] and 
T(m) halts (where m is a k-tuple of ms, for k = T’s number of inputs)

• 2 if not

• Summary:
• If n is not the number picked out by the numerical code of any Turing Machine, T, 

H(m, n) = 2.
• If n is the number picked out by the numerical code of a Turing Machine, T, then 

either T(m) halts or not.  If it does not, then, again, H(m, n) = 2.
• If T(m) does halt, then H(m, n) = 1. 
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Halting Problem

• Turing’s Theorem: The Halting Function, H(m, n), is not computable. 

• Proof:

• 1) On the strength of the Church-Turing Thesis, it suffices to prove 
that H(m, n) is not Turing Computable.

• 2)  Suppose for reductio that H(m, n) is Turing Computable.

• 3) Then ∃TH ∈ TM that computes it, i.e. 
• TH(m, n) = 1 just in case H(m, n) = 1
• TH(m, n) = 2 just in case H(m, n) = 2

• 4) We may now use TH to construct another Turing Machine, TH*:

Halting Problem
• ∀n ∈ ℕ:

• TH*(n, n) = ↑ (fails to halt) if/f TH(n, n) = 1 if/f H(n, n) = 1

• TH*(n, n) = 2 if/f TH(n, n) = 2 if/f H(m, n) = 2

• Idea: 
• TH* reverses the action of TH. TH halts with an output 1, for the input, 

<n, n>, where n is the code of a Turing Machine T that halts for the 
input n. So, TH(n, n) halts with output 1 when T(n) does. 
• By contrast, TH*(n, n), fails to halt when T(n) halts. TH*(n, n) halts

when and only when n is not the numerical code of any Turing 
Machine, T, or, alternatively, when n is the code of a Turing Machine, 
T, but T does not halt on the input n.
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Halting Problem

• 5) Since TH* is a Turing Machine, it has a numerical code r = [TH*].

• 6) By stipulation, either H(r, r) = 1 or H (r, r) = 2.  So, suppose first 
that H(r, r) = 1.

• 7) Then, since r is the numerical code of TH*, TH* must halt when 
applied to <r, r>. 

• 8) But TH* only halts with the output 2. 

• 9) By the definition of TH*, H(r, r) = 2, which contradicts our 
assumption that H(r, r) = 1.

• 10) So, suppose instead that H(r, r) = 2.

Halting Problem

• 11) As r is the numerical code of TH*, TH* fails to halt when for the 
input <r, r>. 

• 12) So, by the definition of TH*, H(r, r) = 1 ≠ 2, contrary to our 
assumption.

• 13) The Reductio Assumption is false; the Halting Function, H(m, n), 
is not Turing Computable.

• 14) On the strength of the Church-Turing Thesis, H(m, n) is not 
computable. 
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Diagonal Arguments Again
• We noted that Cantor’s Theorem, and even Russell’s Paradox, are kinds of 

diagonal argument.  But Turing’s Theorem is a more vivid example.

• By the definition of TH*, TH* acts on the diagonal of the function H(n, m). 

• If n is the numerical code of a Turing Machine, T, H applies T to input m.

• If T(m) halts, H outputs 1, and if T(m) does not halt, H outputs 2. 

• H(n, n) is called the diagonal value of H.  If n is the numerical code of a 
Turing Machine, T, then H takes T and applies it to its own code.

• TH* then applies to these diagonal values: for any Turing Machine with code, 
n, if T halts on n, TH* does not halt; and if T does not halt on n, TH* halts. 

• The trick is, as before, to ask about the diagonal value of TH* itself. 

Partial Recursive Functions

• We have been discussing one analysis of the notion of an effective 
procedure, in terms of Turing Machines.  There are several others, 
like Church’s.  But, historically, the first was actually due to Gödel. 

• Gödel defined a class of functions (which, amazingly, turn out to be 
exactly the Turing & Church computable functions) as follows.

• First, he specified basic functions: the zero function, the successor 
function, and the projection functions (there are infinitely-many).

• The zero function, Z, is a total function, ℕ into ℕ, such that ∀n ∈ ℕ, 
Z(n) = 0. 
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Partial Recursive Functions

• The successor function, S, is a total function, ℕ into ℕ, such that ∀n ∈ ℕ, 
S(n) = the successor of n (where ‘successor of’ is conceptually primitive).

• The projection functions, Ji
n, are total functions, ℕn into ℕ, such that 

Ji
n(<m1, m2, m3, …, mn>) = mi.

• Next, Gödel specified some operations.  The first is composition: 
• If G is an m-place function, and H1, H2, …, and Hm are at most m

distinct n-place functions, then the composition of G and H1, H2, …, 
and Hm is the n-place function, F, defined as follows: 
• F(m1, m2, m3, …, mn) = G(H1(m1, m2, m3, …, mn), H2(G(H1(m1, m2, 

m3, …, mn), …, Hm(m1, m2, m3, …, mn)).

Primitive Recursion

• The second operation on recursive functions is primitive recursion.
• Let G be an n-place function and H an n+2-place function. Then we 

may define an n+1-place function, F, from G and H as follows: 
• F(m1, m2, m3, …, mn, 0) = G(m1, m2, m3, …, mn), and
• F(m1, m2, m3, …, mn, S(k)) = H(m1, m2, m3, …, mn, k, F(m1, m2, m3, 

…, mn, k))
• If n = 0, F is defined from the function H as follows:
• F(0) = p (where p is some constant, p ∈ ℕ), and
• F(S(k)) = H(k, F(k))

• In this case, F is said to be defined by primitive recursion.
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Primitive Recursion

• Primitive Recursion can appear more technical than Composition.  However, 
it is actually familiar.  It is just generalized induction. The value of a function, 
F, is defined for the argument 0 and then its value is defined for the argument 
S(q) in terms of its value for q; F is thereby defined for every natural number.
• The only sense in which Primitive Recursion generalizes the inductive manner 

of definition is that it concerns functions with any number of arguments. 
• Note: In set theory, one generalizes recursion (and hence induction) in another way –

namely, from natural numbers to well-orderings, including the class of all ordinals.

• When we only consider functions generated by composition and primitive 
recursion the resulting functions are called primitive recursive functions.
• All primitive recursive functions are total, since all the basic recursive 

functions are total and these two operations yield total functions when applied 
to total functions. But Gödel’s final operation can yield partial functions.

Minimization

• The final operation is called minimization.  Let F be an n+1-place 
function, where n > 0, and suppose that for some k1, k2, k3, …, kn, there 
exists a natural number m such that F(k1, k2, k3, …, kn, m) = 0.  
• Moreover, for every natural number t < m, F(k1, k2, k3, …, kn, t) > 0.
• We say that m is the least zero for F.

• Then we may define an n-place function μF by minimization from the n+1-
place function F such that μF(k1, k2, k3, …, kn) = m.  That is:
• μF(k1, k2, k3, …, kn) = 
• m if/f F(k1, k2, k3, …, kn, m) = 0 and for ∀t < m, F(k1, k2, k3, …, kn, t) > 0 
• ↑ (undefined) otherwise
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Partial Recursive Functions

• We may finally define the class of Gödel’s Partial Recursive Functions:
• Partial Recursive Functions: A function F from ℕn into ℕ is a partial 

recursive function just in case F is a basic recursive function (a zero, 
successor, or projection function), or F is obtained from the basic recursive 
functions by finitely many applications of one or more of the operations 
(composition, primitive recursion, and minimization).
• Terminology: The primitive recursive functions are those obtainable from 

the basic ones via composition and primitive recursion alone.
• And instead of speaking of Turing computable or enumerable sets and 

relations, we will (up to extensional equivalence) speak of recursive sets 
and relations, and recursively enumerable sets and relations, respectively.

Symbolic Logic
Incompleteness
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Complete Theories

• We have been discussing the system PL, its metalogical properties, and the 
notion of decidable and semidecidable sets, relations, and so on.  

• In the final section of this class, all of these concepts come together in the 
context of some further concepts which we have yet to introduce.

• Recall that a PL set Σ is a theory just in case Σ contains all its logical 
consequences that are in Voc(Σ).  Likewise, Σ is complete just when, for 
every PL sentence, X, in Voc(Σ), either Σ |- X or Σ |- ~X.

• Reminder: This is distinct from the completeness of the Completeness 
Theorem, which says that, for any set, Σ, and sentence, X, Σ |- X if Σ |= X.

Arithmetic

• By the Soundness and Completeness theorems, we can speak 
ambiguously between syntactic and semantic consequences. 
• Σ is a theory just in case Σ = {X : X is in Voc(Σ) & Σ |- X} just in case 

{X : X is in Voc(Σ) & Σ |= X}.
• Perhaps the most important theory in all of mathematics is the theory of 

natural number arithmetic.  It underlies the most rudimentary 
mathematical thought in which we engage concerning cardinalities and 
ordinalities of finite things.  But it is also in the background of nearly all 
formal theorizing.  We pervasively applied the arithmetic principle of 
Mathematical Induction when proving Soundness.  And we have hinted 
that the theory of PL proofs and even Turing Machines is arithmetic in 
disguise (insofar as we can code symbols and instructions as numbers).
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Peano Arithmetic

• What is the canonical theory of natural number arithmetic?  It is is
Th(PA) = {X : X is in Voc(PA) & PA |- X} ={X : X is in Voc(PA) & PA
|= X}.  That is, it is the set of consequence of the Peano Axioms.
• We rehearsed the Peano Axioms when discussing the Resources of the 

Metatheory.  But we did not write them in the language of (first-order) 
PL.  Even now, we will not be quite so particular.  Officially, we said 
that the non-logical predicates in a PL language take the form: A1, B1, 
C1, …, X1, Y1, Z1; A2, B2, C2, …, X2, Y2, Z2; A3, B3, C3, …, X3, Y3, Z3; 
….  Being humans (!), we will not write the predicates for addition
and multiplication in this robotic way.  We will write them as we do 
ordinarily, regarding this as an abbreviation of the official expressions.

Peano Arithmetic

• Before specifying the (first-order) Peano Axioms (PA), we should 
carefully distinguish Th(PA) from Th(ℕ).  Recall that ThΣ(J) = {X: X is 
a sentence in Voc(Σ) that is true on J}.  So, Th(ℕ), known as True 
Arithmetic, is the set, {X: X is a sentence in Voc(PA) that is true on ℕ}.

• If Con(PA), then certainly Th(PA) ⊆ Th(ℕ).  But whether the converse 
holds, or holds for any (recursively) axiomatizable extension of Th(PA), 
is a matter which will occupy us repeatedly throughout this section.

• ℕ is called the Standard Model, the assumption being that it is a 
model of PA, and, therefore, that Con(PA).  Let us assume as much.
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Peano Arithmetic
• Voc(PA) includes the constant, 0 (‘zero’), the monadic function symbol, s(x) 

(‘the successor of x’), and the binary function symbols, + (‘plus’) and *
(‘times’), along with the logical vocabulary, including =.

• We can now describe the interpretation, i.e., (we assume) model, ℕ.

• UD: {0, 1, 2, 3, …}

• LN: 0, c1, c2, …cn… 

• Semantical assignments:

• ℕ(0): 0; ℕ(c1): 1; ℕ(c2): 2; …; ℕ(cn): n; …

• ℕ(s(x)): the successor of x: S(x)

• ℕ(x + y): the sum of x and y: x + y  (N.B. metalanguage vs. object language!)

• ℕ(x * y): the product of x and y: x * y

Peano Arithmetic
• Th(ℕ), i.e., True Arithmetic, is then simply the set of sentences in Voc(PA) that 

are true under the aforementioned interpretation.  
• What about PA?  Like the ZFC axioms, it has infinitely-many members:
• Ax1 (∀x) 0 ≠ s(x)
• Ax2 (∀x)(∀y)(s(x) = s(y)  x = y)
• Ax3 (∀x)(x + 0) = x
• Ax4 (∀x)(∀y)(x + s(y)) = s(x + y)
• Ax5 (∀x)(x * 0) = 0
• Ax6 (∀x)(∀y)(x * s(y)) = ((x * y) + x)
• IS If X[z] is formula in Voc(PA) that contains exactly one variable with all and 

only free occurrences, z, and it does not contain occurrences of the variables v or 
y, then the following is an axiom: X[0] & ((∀v)(X[v]  X[s(v)]) (∀y)X[y]).
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Peano Arithmetic

• The axioms, PA, form an infinite set because IS is a metalinguistic 
schema giving one axiom for each PL formula, X.  Since there are 
infinitely-many formulas in Voc(PA), there are so many IS axioms.

• Crucially, however, PA is a set of axioms in our sense.  Recall that Γ is a 
set of axioms for Σ just when Γ is a decidable set of sentences in 
Voc(Σ) and Σ = Th(Γ) ={X : X is in Voc(Σ) and Γ |= X} ={X : X is in 
Voc(Σ) and Γ |– X}.  PA is a set of axioms because it is decidable 
whether a string is any of Ax1 – Ax6 and whether it is an instance of IS.

• Note: To say that it is decidable whether a string is a member of PA is 
not to say that it is decidable whether it is a member of Th(PA)!

Peano Arithmetic

• We have assumed Con(PA), and, hence, by the Soundness Theorem, 
Con(Th(PA)). Th(PA) is by definition axiomatizable.  But is it complete?  
Is it the case that for every X in Voc(PA), PA |- X or PA |- ~X?

• Ordinary mathematical practice suggests that completeness is at least 
presupposed.  When attacking a problem, number theorists expect there to 
be an answer, however difficult it may be to deduce.  Strictly speaking, 
they may allow that the answer only follows from stronger axioms than the 
PA axioms, perhaps even all of ZFC and a bit more.  

• We will find that every consistent recursively axiomatized theory 
extending PA is incomplete, even as it concerns natural number arithmetic.
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Peano Arithmetic

• Lemma 5.1.1: Suppose that, for every X ∈ Σ, Γ |– X, and Σ |– Z.  Then 
Γ |– Z.

• Proof: 

• 1) Since Σ |– Z, there is a finite subset Σfin ⊆ Σ such that Σfin |– Z.  

• 2) Since for every X ∈ Σ, Γ |– X, and Σfin ⊆ Σ, for every X ∈ Σfin, Γ |–
X.  

• 3) From 2), for every X ∈ Σfin, there is a derivation DX of X from Γ.

• 4) Since Σfin is a finite set, there is a finite set consisting, for each X ∈
Σfin, of a derivation of X from Γ.

Peano Arithmetic

• 5) Similarly, there is also a derivation derivation Dz of Z from Σfin. 

• 6) We may now combine all of the aforementioned into one derivation 
of Z from Γ. 

• 7) So, by Soundness, Γ |– Z.

• Upshot: PA is complete if Th(PA) is.  So, we can focus on PA.

• Let us henceforth avail ourselves of additional abbreviations.  We use 
of the full vocabulary of and inference machinery of NDS, recalling 
that its connectives are truth-functionally equivalent to {∀, ~, }, and 
its inference rules our proof-theoretically equivalent to those of MDS.
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Representability in PA

• We will also abbreviate numerals (not numbers!). 
• We let s00 abbreviate 0, 
• s10 abbreviate s0, 
• s20 abbreviate ss0;
• …
• In general, sn0 abbreviates sss…(n times)…0, and write n for an arbitrary 

numerical term whose referent is n in the standard model of arithmetic, ℕ.
• We also rely on the following conventions: 
• 5.2a For all terms in Voc(PA), t and s, t < s abbreviates (∃z)(z ≠ 0 & (t + z) = s). 
• 5.2b For all terms in Voc(PA), t and s, t ≤ s abbreviates t < s v t = s.

Representability in PA

• In light of these conventions, we can state the following theorems:
• Theorem 5.2.1: For all natural numbers n and m, n = m just in case PA |– sn0 = sm0, 

and n ≠ m just in case PA |– sn0 ≠ sm0.
• Theorem 5.2.2: ℕ(sn0) = n, for every natural number n (i.e., for every numeral sn0

in Voc(PA), its referent on ℕ is the natural number, n).
• 5.2c For all natural numbers n and m, if n < m, then PA |– n < m.
• 5.2d For all natural numbers n and m, if n ≤ m, then PA |– n ≤ m.
• 5.2e For every natural number n, if n is even, then PA |– (∃z)(z ≤ n & n = (z + z)).
• 5.2f For every natural number n, if n is odd, then PA |– (∃z)(z ≤ n & n = (z + z)).
• 5.2g For all natural numbers n, m, and k, if (n + m) = k, then PA |– (n + m) = k.
• 5.2h For all natural numbers n, m, and k, if (n * m) = k, then PA |– (n * m) = k.
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Representability in PA

• All of these theorems are proved by routine applications of Mathematical 
Induction.  But let us look at the proof of one half of Theorem 5.2.1. 

• Theorem 5.2.1a For all natural numbers n and m, n = m just in case PA |–
sn0 = sm0.

• Proof:

• 1) For the base case, suppose that n = 0.  Then if n = m, m = 0 too, by the 
transitivity of equality.

• 2) But PA |– 0 = 0 = s00 = s00, since ∅ |- s00 = s00.

• 3) Conversely, if PA |–s00 = sm0, then m = 0 (since otherwise PA would 
prove that 0 is the successor of some number, contrary to Ax1 (∀x) 0 ≠ s(x)).

Representability in PA

• 4) For the inductive case, suppose that for every m, k = m just in case 
PA |- sk0 = sm0, and assume that sk+10 = sm0.

• 5) Then k = m – 1, and, by the Induction Hypothesis, PA |- sk0 = sm-10.

• 6) So, also, PA |- ssk0 = ssm-10.

• 7) But ssk0 is just sk+10 and ssm-10 is just sm0, i.e. PA |- sk+10 = sm0.

• 8) Conversely, assume that PA |- sk+10 = sm0, that is PA |- ssk0 = ssm-10.

• 9) Then, by Ax2 (∀x)(∀y)(s(x) = s(y)  x = y), PA |- sk0 = sm-10.

• 10), So, by the Induction Hypothesis, k = m -1, and, hence, k + 1 = m.
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Representability in PA

• The upshot of 5.2.1 and 5.2.2 is that simple arithmetic facts are ‘mirrored’ 
in the theory PA.  PA ‘knows’ grade school arithmetic.  More generally:
• Definition 5.2.1
• 5.2.1a For every set of natural numbers, B, B is representable in Th(PA) 

just in case there is a formula in Voc(PA), X[z] with one free variable such 
that, for every natural number, k, if k ∈ B, then PA |- X[k], and if k ∉ B, then
PA |– ~X[k].
• 5.2.1b For every n-place relation, R, on ℕ, R is representable in Th(PA) just 

in case there is a formula in Voc(PA), X[z1, z2, z3, …, zn] with n free 
variables such that for each n-tuple of natural numbers <k1, k2, k3, …, kn>, if
<k1, k2, k3, …, kn> ∈ R, then PA |– X[k1, k2, k3, …, kn], and if <k1, k2, k3, …, 
kn> ∉ R, then PA |– ~X[k1, k2, k3, …, kn].

Representability in PA

• 5.2.1c For every total n-place function, F, ℕn ℕ, F is representable in 
Th(PA) just in case there is formula in Voc(PA), X[z1, z2, z3, …, zn, zn+1] with 
n+1 free variables such that for each n-tuple <k1, k2, k3, …, kn> of natural 
numbers and for each natural number, k, if k1, k2, k3, …, kn) = k, then PA |–
X[k1, k2, k3, …, kn, k] and PA |– (∀x)(X[k1, k2, k3, …, kn, x]  x = k).

• Representability Theorem: Every (total) recursive function is representable
in Th(PA) (and, moreover, it is representable by a so-called Σ1 formula).

• Theorem 5.2.4: Let D ⊆ ℕn, for n ≥ 1.  Then D is representable in Th(PA) 
just in case its characteristic function is representable in Th(PA).

• Upshot: Since characteristic functions of recursive sets and relations are 
recursive, all recursive sets and relations are also representable in Th(PA).
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Representability in PA

• The Representability Theorem is one of the integral components to the proof of 
the Incompleteness Theorems. The proof of this theorem is tedious but routine.  
One argues that the basic recursive functions are representable, and that 
representability is closed under the three operations that we discussed.
• Definition 5.2.1 makes precise the sense in which PA ‘mirrors’ or ‘knows’ 

grade school arithmetic and much more.  Whenever an n-tuple of numbers 
belongs to a recursive set (which may be a relation or a function), PA proves
that a corresponding formula holds of the n-tuple of numerals of those numbers.  
• Conversely, whenever an n-tuple fails to belong to such a set, PA proves that the 

relevant formula fails to hold of the n-tuple of numerals of those numbers.  
• In the function case, it also proves that the last member of the tuple is unique.

Arithmetization of the Metatheory 

• In fact, a function is recursive just in case it is representable in a very 
weak fragment of Th(PA) known as Robinson Arithmetic (RA).  This is 
basically Peano Arithmetic minus IS.  RA is so weak that it does not 
even prove that addition is commutative! But it is already vulnerable to 
the Incompleteness Theorems, as it represents all recursive functions.

• Given the Representability Theorem, the next order of business is to 
establish a Gödel Numbering.  This is an assignment of natural 
numbers to expressions in Voc(PA) meeting the following conditions.
• Every grammatical expression and sequence of sentences in Voc(PA) has a 

unique Gödel number, and that no two different items have the same Gödel 
number.  Finally, the encoding and decoding procedures are effective.
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Arithmetization of the Metatheory 

• Although Gödel’s technique was revolutionary in 1931, it is now familiar with 
the advent of computers.  These routinely code the expressions that we type as 
numbers.  There are many different Gödel numberings the choice of which is 
immaterial.  Therefore, we ignore the details of any particular coding.
• What is important is that facts about the syntax of PA – and, hence, PL –

correspond to facts about the natural numbers, via Gödel numberings.
• Moreover, whenever those facts are recursive, Th(PA), ‘knows’ them.  
• In other words, Th(PA) proves many facts about its own syntax.
• Example: Consider Ax1 (∀x)(0 ≠ sx).  We will write [(∀x)(0 ≠ sx)] for the Gödel 

number (GN) of Ax1 and ⌜(∀x)(0 ≠ sx)⌝ for the numeral in Voc(PA) of that 
Gödel number.  If SENTPA is the set of GNs of sentences in Voc(PA), and 
[(∀x)(0 ≠ sx)] = m, then m∈ SENTPA, and PA |- sentPA(m), for some 
corresponding predicate in Voc(PA) sentPA(x), because SENTPA is recursive.

Arithmetization of the Metatheory 

• There are three different concepts to keep in separated:
• Syntactic items
• Numbers
• Numerical terms for those numbers in Voc(PA)

• Here is the picture:
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Arithmetization of the Metatheory 

• What syntactic functions, relations, and sets are recursive?  They include:

• The set of basic symbols of Voc(PA) 
• The set of terms of Voc(PA) 
• The set of atomic formulas of Voc(PA) 
• The set of complex formulas of Voc(PA) 
• The set of sentences of Voc(PA) (just illustrated)
• The set of proofs from PA

• Upshot: There are predicates in Voc(PA) representing each, as with sentPA (x), namely:

Arithmetization of the Metatheory 

• The set of basic symbols = SYMPA.  Since this is recursive, there is a 
predicate in Voc(PA), symPA(x), such that PA |- sym(k) if k is the GN of a 
basic symbol, and PA |- ~symPA(k) if k is not the GN of a basic symbol.

• The set of terms = TERMPA.…there is a predicate in Voc(PA), termPA(x), 
such that PA |- termPA(k) if k is the GN of a term, and PA |- ~termPA(k) if 
not.

• The set of atomic formulas = AFORMPA.…there is a predicate, aformPA
(x), such that PA |- aformPA(k) if k is the GN of an atomic formula, and 
PA |- ~aformPA(k) if not.
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Arithmetization of the Metatheory 

• The set of formulas = FORMPA.…there is a predicate formPA(x), such 
that PA |- formPA(k) if k is the GN of a formula, and PA |- ~formPA(k) 
if not.

• The relation of proof = PROOFPA (alternatively: the set of proof-
proved pairs).…there is a predicate proofPA(x, y) such that PA |-
proofPA(m, n) if m is the GN of a proof whose conclusion has GN n, 
and PA |- ~proofPA(m, n) if not.

• However, we will see that the property of being provable from PA (set 
of GNs of provable sentences, i.e., theorems of PA) is not recursive.

Arithmetization of the Metatheory 

• Why is PROOFPA recursive?  Because given any finite sequence, S, of 
sentences Voc(PA) and any sentence X, there is an effective decision 
procedure to check whether S is a PL derivation of X from PA or not.
• The set of PA axioms, and the MDS rules, are decidable by definition.
• So, we can examine every sentence in S.  First, check the terminal

sentence Xn to see if it X. If it is not, then S is not a derivation of X. If 
it is, check the first sentence X1 to see if it is a PA axiom or is 
introduced by one of the rules of MDS.  If X1 passes the test, examine 
X2 to check whether it is a PA axiom or is introduced by one of the 
MDS rules. And so on.  Since S is finite, we only have to apply this 
procedure finitely many times before we know whether S is a proof.
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Arithmetization of the Metatheory 

• Terminology (Quantifier Complexity): 

• A Σ1 formula is of the form (∃1x)(∃2x)....(∃nx)∆0, where ∆0 is a formula 
with only bounded quantifiers.  

• A Π1 formula is of the form (∀1x)(∀2x)....(∀nx)∆0.  

• Upshot: The negation of a Σ1 formula is Π1, while the negation of a Π1
formula is Σ1.

• The recursive relation, PROOFPA, is of special interest.  On the basis of 
it, we can define the set of Gödel numbers of a theorems of PA:

• THEOREMPA(n) ≝ (∃x)PROOFPA(x, n)

Arithmetization of the Metatheory 
• THEOREMPA(n) can be expressed or defined (not represented!) using a Σ1

predicate, (∃x)proofPA(x, n), in Voc(PA):

• ThrmPA(n) ≝ (∃x)proofPA(x, n)

• THEOREMPA(n) is expressed by ThrmPA(n) in that if n ∈ THEOREMPA, 
then ℕ |= ThrmPA(n), and if n ∉ THEOREMPA, ℕ |= ~ThrmPA(n).  (That is, 
the predicate is true of a singular term picking out the number n just in case that 
number is the GN of a theorem.  Whether PA ‘knows’ this, however, is a 
different matter.)
• Some authors distinguish strong and weak representability.  In those terms, 

THEOREM(n) is weakly, but not strongly representable, in Th(PA).  That is:
• If n ∈ THEOREMPA, then PA |- ThrmPA(n)
• However, it is not the case that: If n ∉ THEOREMPA, PA |- ~ThrmPA(n)!
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Arithmetization of the Metatheory 

• Weakly representable properties (sets), like THEOREMPA, are 
recursively enumerable, but not recursive.   Why is this the case?

• Consider the set, THEOREMPA to which k belongs just in case 
(∃x)PROOFPA(x, k). The problem with this condition is its unbounded
existential quantifier.  Suppose we are given a number k, and we want to 
check whether k ∈ THEOREMPA or not.  We look through ordered 
pairs of numbers, <a, k>, checking each a to see if it is the GN of a 
proof of the sentence whose GN is k.  If there is such a number, then <a, 
k> ∈ PROOFPA, and k ∈ THEOREMPA.  We will eventually find this a.

• But what if there is no such number?  Then we will search forever.  

Arithmetization of the Metatheory 

• If the existential quantifier in (∃x)PROOFPA(x, k) were bounded, then we 
would have a decision procedure for checking provability in PA.

• But proofs in PA have no (finite) bound.  They can be of any length.  So, 
there is no limit on the GNs of possible proofs of the sentence with GN, k –
for arbitrary k.  

• Even if we place a bound on possible proof lengths – say, 2^(100)^(100), 
and call the resulting set, THEOREMPA#, THEOREMHOODPA# may 
remain effectively undecidable by humans -- despite being decidable (i.e., 
recursive), and so representable in PA by some predicate, ThrmPA#(n).  
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Arithmetization of the Metatheory 

• Illustration: If the shortest proof of the Twin Primes Conjecture in PA
has more lines than there are fundamental particles in the universe, then 
there is a sense in which this conjecture is not provable – by us, at least.

• This returns us to the controversial direction of the Church-Turing 
Thesis: is every Turing computable function really computable in any 
theoretically interesting sense?

• Setting aside this matter for another day (next Spring at the 
Ultrafinitism conference!), let us turn to the central idea of the proof of 
the First Incompleteness Theorem.

Diagonalization

• It is not clear exactly how exactly Gödel came upon the proof of his 
Incompleteness Theorems.  He later cited his philosophical belief in Frege’s
and Russell’s platonism and his repudiation of Hilbert’s formalism (as well 
as Carnap’s so-called ‘conventionalism’).
• Platonism is – roughly! -- the view that what we can prove in mathematics is 

one thing, and what is true is another.  Moreover, mathematical truths obtain 
independent of human minds and languages (just like, most would say, facts 
about quarks or dinasaurs do).  So, platonism allows (but does not require) 
that truth outstrips provability from any (recursive) set of axioms, like PA.
• The formalist says that truth and provability are the same thing.  There is only 

truth-relative-to-PA, truth-relative-to-ZFC, and so forth for any set of axioms.  
And truth-relative-to-PA = provability-from-the-PA-axioms.  Truth simpliciter, 
divorced from any formal system, makes no sense in mathematics, at least. 
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Diagonalization

• For the formalist, mathematics is like a game (e.g., chess or Go), and the only 
factual question is whether you followed the rules. There is no such question 
of whether the rules (of, say, PA) themselves are right.  Some may be more 
useful for a purpose.  But the axioms of, say, elliptic geometry and Euclidean 
geometry are equally legitimate, understood as pure mathematical theories.
• Compare: relativism in ethics.

• Hence, according to the formalist, if PA fails to imply either X or ~X, then X
has no truth-value (in the context of number theory).  
• Gödel managed to show that key claims ‘about’ formal systems that the 

formalist takes to be factual are undecidable in those systems -- since they 
amount, via Gödel numbering, to undecidable number-theoretic claims!
• Therefore, the position that there are objective facts about formal systems

(e.g., that they are consistent) but not objective facts about what those 
systems represent (e.g., numbers) is -- arguably -- incoherent.

Diagonalization

• It is also said that Gödel was thinking about the liar paradox.  
Consider the following sentence:
• (1) Sentence (1) is false.

• If (1) is false, then what is says is false.  But what (1) says is that (1) 
is false.  Thus, if (1) is false, (1) is true, which is a contradiction.

• If (1) is true, then what it says is true.  But, again, (1) says is that (1) 
is false.  So, if (1) is true, then (1) is false, which is also a 
contradiction.

• We will return to this paradox in connection with Tarski’s Theorem.
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Diagonalization

• For now, Gödel’s idea was to replace the paradoxical sentence, (1), with the 
unparadoxical sentence, ‘(1) Sentence (1) is unprovable in in T.’, where ‘T’ 
refers to the relevant formal system, like (first-order) PA.
• A simple argument for incompleteness stems from the semantic assumption 

that PA is sound, i.e., only proves truths. 
• Construct a sentence, GPA, that codes its own unprovability in PA.  
• Now suppose that GPA is provable in PA.  Then it is false, and PA unsound.
• So, if PA is sound, then GPA is not provable in PA.  But if GPA is not

provable in PA, then GPA is a truth that is not provable in PA.  
• Similarly, since PA is sound, ~GPA is a falsehood that is not provable in PA.  
• Hence, if PA is sound, then it is incomplete, i.e., fails to prove S or ~S for 

an S in Voc(PA).

Diagonalization

• Gödel did not rest content with this argument.  It assumes the falsity of 
formalism and conventionalism, which were dominant conceptions of 
mathematics in the 1920s, under the influence of the Vienna Circle.
• Gödel’s task was to prove that PA (and any recursively axiomatizable

extension of it) was incomplete without relying on ‘semantic’ ideas, like 
soundness (which implies truth).  We will see that, whether he actually 
accomplished this is open to dispute.  However, J. Barkley Rosser fixed the 
vulnerability in Gödel’s proof, resulting in a uncontroverisally syntactic 
argument for Incompleteness.  
• If Con(PA), then there is a sentence, GPA, such that PA ⊬ GPA, and PA ⊬

~GPA.  Moreover, we will discover that PA |- GPA Con(PA)!  
• First, however, we will prove Gödel weaker result.
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Diagonalization
• The general trick that Gödel exploited is due to philosopher, Rudolf 

Carnap, who discovered the crucial lemma, as we will see shortly.

• Let X[z] be an open formula in Voc(PA) that contains only free variable, 
z, but no z-quantifiers. Then the sentence, X[k], where k is the Gödel 
number of the open formula, X[z], is called the diagonalization of X[z].

• Why is X[k] called the diagonalization of X[z]?  Consider the array:

Diagonalization

• In the previous picture, X1, X2, X3, …, Xn, … is a complete list of formulas
in Voc(PA) with only one free variable, and k1, k2, k3, …, kn, … are the 
Gödel numbers of X1, X2, X3, …, Xn, …, respectively.
• In other words, using our convention: ∀n ≥ 1, kn = [Xn[z]]. 
• Now note that the left-to-right diagonal sequence, X1[k1], X2[k2], X3[k3], …, 

Xn[kn] is the sequence of diagonalizations of X1, X2, X3, …, Xn….
• Theorem 5.4.1: There is a (total) recursive function, DIAG, ℕ into ℕ, such 

that for every natural number, k, if k is the Gödel number of a formula X[z] 
in Voc(PA) with exactly one free variable, z, then DIAG(k) is the Gödel 
number (GN) of the diagonalization of X[z] (i.e., the GN of X[k], where k
is the GN of X[z]).  
• If k is not the GN of a formula X[z] in Voc(PA) with only one free variable, 

then DIAG(n) = 0.
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Diagonalization: Picture

Diagonalization: Illustration

• Suppose that the Gödel number of the formula, (x + ss0) = (ss0 * x), 
is k.  

• In our notation: [(x + ss0) = (ss0 * x)] = k.

• Then the diagonalization of this formula is the sentence: (k + ss0) = 
(ss0 * k). 

• So, writing, DIAG for the diagonalization function, we have:

• DIAG([(x + ss0) = (ss0 * x)]) = DIAG(k).
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Diagonalization: Illustration

• Now let the Gödel number of the diagonalalization of the Gödel number of 
formula, (x + ss0) = (ss0 * x) -- i.e., of (k + ss0) = (ss0 * k) -- be m.  

• That is:  DIAG(k) = [(k + ss0) = (ss0 * k)] = m.  So, <k, m> ∈ DIAG.

• Since DIAG is recursive, and representable in Th(PA), there is a formula 
diag(x, y), with two free variables such that, for all natural numbers k and m:

• If DIAG(k) = m, then PA |– diag(k, m), and 

• PA |– (∀x)[diag(k, x)x = m].

Carnap Lemma

• The Diagonalization Lemma (Carnap Lemma): If W[z] is a formula in 
Voc(PA) with only one free variable, z, then there is an sentence, G, Voc(PA)
with the property that PA |– GW[g], where g = [G].

• What is this theorem saying? Every one-place formula has a fixed point, a 
point where you ‘get out what you put in’.  That is, for any formula with one 
free variable, W[z], there is a sentence, G, such that G is provably equivalent 
in PA to a sentence obtained by applying W to the Gödel number of G itself. 

• Intuition: Think of the Gödel number, g, of G as a name of G.  Then the 
lemma is saying that PA proves that G is true just in case a sentence that 
applies W to G is true.  If we imagine that provably equivalent sentences say 
the same thing, then the lemma says that PA proves that G says: I am W.
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Carnap Lemma: Proof

• 1) Let W[z] be any formula in Voc(PA) with one free variable, z, let 
diag(x, y) be some formula that represents DIAG in Th(PA), and let W[y] 
be the formula that results from replacing all the occurrences of z in W[z] 
with occurrences of y (if y occurs in W[z], use a different variable). Then 
the formula, (∃y)(diag(x, y) & W[y]), contains only x as a free variable.

• 2) Let G be the diagonalization of (∃y)(diag(x, y) & W[y]), i.e., 
(∃y)(diag(n, y) & W[y]), where n is the Gödel number of (∃y)(diag(x, y) 
& W[y]). 

• 3) Let [G] = g.  Then since [(∃y)(diag(x, y) & W[y])] = n, DIAG(n) = g.

• 4) From 1) – 3): PA |– diag(n, g) and PA |– (∀v)(diag[n, v]  v = g).

Carnap Lemma: Proof

• 5) Hence, there are PA derivations D1 and D2 of diag(n, g) and of 
(∀v)(diag[n, v]  v = g), respectively, from PA.  So, let Σ1 and Σ2 be 
the finite subsets of PA that occur in D1 and D2, respectively, so that Σ1
|– diag(n, g) and Σ2 |– (∀v)(diag[n, v]  v = g).

• 6) We can now union the two finite subsets of PA from which diag(n, 
g) and (∀v)(diag[n, v]  v = g) follow, respectively, to get another 
finite subset of PA from which they both follow – i.e., Σ1 ∪ Σ2 = Σ, and 
Σ |- diag(n, g) and Σ |- (∀v)(diag[n, v]  v = g).

• 7) Using D1 and D2, both from Σ, there exists a derivation of G
W[g] from Σ.  Here is one:
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Carnap Lemma: Proof

Carnap Lemma: Proof
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First Incompleteness Theorem

• Definition: A PL set Σ is ω-consistent just in case it is not the case that there 
is a formula X[z] composed of Voc(Σ) with one free variable, z such that Σ |–
~X[n], ∀n ∈ ℕ, but also Σ |– (∃z)X[z]. 
• Note: If Σ is ω-consistent then Σ is consistent, but not conversely.  

Equivalently, if Σ is inconsistent, then it is ω-inconsistent, but not conversely.
• Gödel’s First Incompleteness Theorem: If Th(PA) is ω-consistent, then it is 

incomplete.
• Proof:
• 1) Assume that Th(PA) is ω-consistent.
• 2) The relation PROOF is recursive, so it is representable in Th(PA), and there 

is a formula in Voc(PA) proof(x, y) with two free variables that represents
PROOF in Th(PA).

First Incompleteness Theorem

• 3) Let Thrm(y) be the formula in Voc(PA), (∃x)proof(x, y), with one free 
variable, y. 

• 4) By the Diagonalization (Carnap) Lemma, there is a sentence in 
Voc(PA), GPA, such that PA |– GPA ~Thrm(g), where g is the Gödel 
number of GPA.  (‘PA proves: GPA says that GPA is not a theorem of PA.’)

• 5) Assume for reductio that PA |- GPA. 

• 6) Then there is a derivation, D, of GPA from PA with some Gödel number, d.

• 7) If g = [GPA], then since d = [D], the ordered pair <d, g> ∈ PROOF.

• 8) Since PROOFPA is representable in Th(PA), PA |– proofPA(d, g) .
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First Incompleteness Theorem

• 9) By 4) PA |– ~ThrmPA(g).

• 10) From the definition of ThrmPA(x), PA |– ~(∃x)proofPA(x, g).

• 11) Equivalently, PA |– (∀x)~proofPA(x, g).

• 12) So, by Universal Instantiation in PA, PA |– ~proofPA(d, g).

• 13) From 8) and 12), ~Con(PA), so, a fortiori, PA is not ω-consistent.

• 14) Hence, the first reductio assumption is false – i.e., PA ⊬ GPA. 

• 15) Now assume, for the second reductio assumption, that PA |- ~GPA. 

• 16) Since PA |– GPA ~ThrmPA(g), PA |- ThrmPA(g). 

First Incompleteness Theorem

• 17) By the definition of ThrmPA(y), PA |- (∃x)proofPA(x, g).

• 18) Since PA ⊬ GPA, and g = [GPA], <m, g> ∉ PROOFPA, ∀m ∈ ℕ. 

• 19) Since PROOFPA is representable in PA, PA |- ~proofPA(m, g), ∀m ∈
ℕ.

• 20) So, by 16) and 19), PA |- ~proofPA(m, g), ∀m ∈ ℕ and PA |-
(∃x)proofPA(x, g).

• 21) Since, PA ⊆ Th(PA), Th(PA) is not ω-consistent, contrary to 1).

• 22) So, by reductio ad absurdum, it is also not the case that PA |- ~GPA.

• Upshot: If Th(PA) is ω-consistent, then PA ⊬ GPA and PA ⊬ ~GPA.
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First Incompleteness Theorem

• Assuming that PA is ω-consistent (and, hence, consistent), the 
Completeness Theorem (in the form of the Model Existence Theorem)
promises the existence there are two models of PA.
• One of these is a model of PA + GPA while the other is a model of PA + 

~GPA. 
• Hence these two models are not elementarily equivalent. 
• A fortiori, the models are not isomorphic. 
• Therefore, Th(PA) is not categorical. 
• Moreover, by the Lowenheim-Skolem Theorem, every theory has a 

countable model.  So, PA is not ℵ0-categorical.

Rosser’s Improvement of the First Theorem

• We only needed to assume that Con(PA) to argue that PA ⊬ GPA.  But 
we had to assume ω-consistent in order to argue that PA ⊬ ~GPA.
• Is the assumption of ω-consistency avoidable?  Yes, as Rosser showed.
• We first define a 1-place function, NEG, from the Gödel number of X

to the Gödel number of ~X.
• Second, we define the 2-place relation DISPROOF as follows: ∀n,m ∈
ℕ, <n, m> ∈ DISPROOF just in case <n, NEG(m)> ∈ PROOF.
• DISPROOF is recursive because both NEG and PROOF are.
• Let proof(x, y), disproof(x, y) and (x < y) represent PROOF, 

DISPROOF, and < in Th(PA), respectively.
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Rosser’s Improvement of the First Theorem

• Then the following formula contains only the one free variable, y: 
• (∀x)(proof(x, y))  (∃z)(z < x & disproof(z, y)))

• By the Diagonalization Lemma, there is a sentence, RPA, called a Rosser 
Sentence, with Gödel number, r, such that:
• PA |– RPA (∀x)(proof(x, r))  (∃z)(z < x & disproof(z, r)))

• What does RPA ‘say’?  Roughly: that if there is a derivation of RPA from 
PA, then there is an earlier derivation of ~RPA  from PA (where the order in 
question concerns that sizes of the Gödel numbers of the derivations).

• One can now prove that if Con(PA), then PA ⊬ RPA and PA ⊬ ~RPA.

Rosser’s Improvement of the First Theorem

• We will not give a rigorous proof of Rosser’s improved version of the First 
Incompleteness Theorem.  But the basic idea is straightforward.
• RPA promises that it is not provable in PA before ~RPA (in the ordering).
• So, suppose that PA is (merely) consistent, and that PA |- RPA.  Then there is a 

derivation of RPA, and no earlier derivation of ~RPA (on pain of inconsistency).
• However, a derivation of RPA along with all those ordered before it would 

amount to a derivation of RPA is provable before ~RPA -- and thus of ~RPA 
itself.  This contradicts the assumption that Con(PA).
• Suppose, then, that PA |- ~RPA. Then there is a derivation of ~RPA, and no 

earlier derivation of RPA.  A derivation of ~RPA along with all those ordered 
before it would amount to a derivation that RPA is not provable in PA before 
~RPA, i.e., that RPA.  This again contradicts the assumption that Con(PA).
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Is GPA true? 

• It is routinely said (even by experts) that Gödel’s theorems demonstrate that 
there are truths of arithmetic that are not provable in any (recursively) 
axiomatizable formal system, like Peano Arithmetic – or, more carefully, that 
there are such truths if the system is consistent.
• Every such system has a Gödel sentence, like GPA, and these seem true.
• But this is actually too quick for reasons to which we will return.  What is 

hard to deny is that GPA is true in in the model, ℕ, if Con(PA).
• Theorem 5.4.2: GPA is true in ℕ.
• Proof:
• 1) Suppose that ℕ |= PA.
• 2) By the Carnap Lemma, PA |– GPA ~ThrmPA(g).

Is GPA true? 

• 3) By the definition of ThrmPA(x), PA |– GPA ~(∃x)proofPA(x, g).
• 4) By the Soundness Theorem, PA |= GPA ~(∃x)proofPA(x, g).
• 5) So, in particular, ℕ |= GPA ~(∃x)proofPA(x, g).
• 6) By the First Incompleteness Theorem, PA ⊬ GPA, i.e. there is no 

derivation of GPA from the Peano Axioms.
• 7) Hence, ∀m ∈ ℕ, <m, g> ∉ PROOFPA.
• 8) Since PROOFPA is recursive, and represented in PA by proof(x, y), 
∀m ∈ ℕ, PA |– ~proofPA(m, g).
• 9) So, again by Soundness, ∀m ∈ ℕ, PA |= ~proofPA(m, g), and, hence, 
ℕ |= ~proofPA(m, g).
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Is GPA true? 

• 10) So, ℕ |= ~proofPA(t, g) for every name t in LN (since, on ℕ, we explicitly 
correlated LN with the natural numbers), i.e., ℕ |= ~(∃x)proofPA(x, g).
• 11) Since, ℕ |= GPA ~(∃x)proofPA(x, g), we have that ℕ |= GPA.

• What is tendentious about the claim that GPA is true simpliciter?
• That ℕ |- PA!  For all Gödel’s Theorem says, we may have ~Con(PA)!
• What if we assume that Con(PA), or that PA is ω-consistent?
• Still, we only get something negative about what PA implies: that PA ⊬ GPA

and PA ⊬ ~GPA.
• What if we add, not only that Con(PA), but that ℕ |= PA?  This only shows that 
ℕ |= GPA assuming that our natural numbers are those of ℕ – that is, that we are 
‘living’ in the Standard Model.  By Skolem’s Paradox, this needs argument!

A Potpourri of Implications

• Theorem 5.5.1: Th(PA) ⊂ ThPA(ℕ).

• Proof:

• 1) ThPA(ℕ) = {X: is a sentence in Voc(PA) such that ℕ |= X}.

• 2) Hence, by Theorem 5.4.2, GPA ∈ ThPA(ℕ).

• 3) But by the First Incompleteness Theorem, GPA ∉ Th(PA).

• 5) So, since ℕ |= Th(PA), Th(PA) ⊂ ThPA(ℕ).
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A Potpourri of Implications

• Theorem 5.5.2: If Σ is a consistent PL theory in which all recursive 
functions are representable, then the set of the Gödel numbers of the 
sentences in Σ is not representable in Σ.

• Proof:

• 1) Suppose that the antecedent is true – i.e., that Con(Σ), that Σ is a 
theory, and that Σ represents all recursive functions.

• 2) Since Σ is a theory, Σ = {X : X is in Voc(Σ) and Σ |- X} = {X : Σ |= X}.

• 3) Let GNΣ = {n : n is the GN of X such that X ∈ Σ} = {[X] : X ∈ Σ}.

• 4) Suppose for reductio that GNΣ is representable in Σ.

A Potpourri of Implications

• 4) Then there is a formula X[z] in Voc(Σ) with one free variable such 
that, for every natural number, k, if k ∈ GNΣ, then Σ |– X[k], and if k ∉
GNΣ, then Σ |– ~X[k].

• 5) Since DIAG is recursive, it is representable in Σ (by 1).

• 6) By the proof of the Diagonalization Lemma, there is a sentence G∑
in Voc(Σ) such that Σ |– G∑ ~X[g], where g is the Gödel number 
of G∑ (and X[z] is the formula representing GNΣ in Σ).

• 7) Now suppose for reductio that Σ ⊬ G∑.

• 8) By the definitions of GNΣ and G∑, g ∉ GNΣ (since g = [G∑]).
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A Potpourri of Implications

• 9) Since X[z] represents GNΣ in Σ, Σ |- ~X[g].

• 10) So, by 6), Σ |– G∑, which contradicts 7).

• 11) Hence, by reductio, Σ |– G∑, and g ∈ GNΣ (since g = [G∑]).

• 12) Since X[z] represents GNΣ in Σ, Σ |- X[g], and, so, Σ |- ~~X[g].

• 13) But, then, by 6), Σ |– ~G∑, and ~Con(Σ), by 12), contrary to 1).

• 14) So, our first reductio assumption is false: GNΣ is not representable 
in Σ.

A Potpourri of Implications

• Note: It follows from Theorem 5.5.2 that THEOREMPA (i.e., the set of GNs 
of theorems of PA) is not recursive, if Th(PA) is consistent. Th(PA) represents 
all recursive functions.  So, the fact that it fails to represent THEOREMPA
shows that this set is not recursive.
• Theorem 5.5.3: If Σ is a consistent PL theory in which all recursive functions 

are representable, then Σ is undecidable.
• Proof:
• 1) Let Σ be a consistent theory in which all recursive functions are 

representable.
• 2) Again, let us write GNΣ for the set, {n : n is the GN of X such that X ∈ Σ} = 

{[X] : X ∈ Σ}, and assume for reductio that Σ is decidable.
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A Potpourri of Implications

• 3) Then there is an effective decision procedure, DΣ, for deciding 
membership in Σ.

• 4) Using DΣ, we can construct a decision procedure for membership in GNΣ.  
• ∀k ∈ ℕ, check whether or not k = [X] for a sentence X in Voc(Σ). 
• If k is not the Gödel number of a sentence in Voc(Σ), k ∉ GNΣ. 
• If k is the Gödel number of a sentence in Voc(Σ), k ∈ GNΣ, apply DΣ to X.
• If X ∈ Σ, k ∈ GNΣ, and if X ∉ Σ, k ∉ GNΣ. 

• 5) By Church’s Thesis (invoked for simplicity only!), the characteristic 
function of GNΣ is Turing computable, and, hence, recursive.  

A Potpourri of Implications

• 6) Since all recursive functions are representable in Σ, all recursive sets and 
relations are also representable in Σ.
• 7) So, by 5), GNΣ is representable in Σ, contradicting Theorem 5.5.2.
• 8) Thus, by reductio ad absurdum, Σ is undecidable.

• Theorem 5.5.4: If Σ is a consistent axiomatizable PL theory in which all 
recursive functions are representable, then Σ is incomplete.
• Proof: If Σ is a consistent PL theory that represents all recursive functions, 

then, by Theorem 5.5.3, Σ is undecidable.  However, we learned from 
Theorem 3.5.1 (that every complete axiomatizable PL theory is decidable) 
that if Σ is complete and axiomatizable, then it must be decidable. So, 
assuming that Σ is axiomatizable, it be incomplete (because it is undecidable).
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A Potpourri of Implications

• Theorem 5.5.5: No consistent extension of Th(PA) is decidable (where 
a consistent extension of Γ is any set Γ* of sentences in Voc(Γ) such 
that Con(T*) and Γ ⊆ Γ*).

• Proof: All recursive functions are representable in Th(PA), and, hence, 
in any consistent extension of Th(PA), Th(PA*). 

• Therefore, all recursive functions are representable in Th(PA)*.  

• So, by Theorem 5.5.3, Th(PA*) is undecidable.

• Corollary: Both Th(PA) and ThPA(ℕ) are undecidable, since each is a 
consistent extension of Th(PA).

A Potpourri of Implications

• Theorem 5.5.6: Th(PA) is semidecidable, i.e., recursively enumerable.
• Proof:
• 1) Recall that PROOFPA is the set of Gödel numbers of all PA proofs, i.e., m
∈ PROOFPA just in case there is a PL derivation from PA, D, and GN(D) = 
m.
• 2) Since (by definition) membership in PROOFPA is decidable, we can 

arrange all such D according to the magnitude of their Gödel numbers (as 
with Rosser’s Theorem).
• 3) By the definition of theorem, for or any sentence in Voc(PA), Z, Z ∈

Th(PA) just in case ∃m ∈ PROOFPA such that Z is the last sentence of the 
derivation that it numbers, D.
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A Potpourri of Implications

• 3) Hence, by sequentially checking the members of PROOFPA, we can 
find a proof of Z whenever Z a theorem of PA, enumerating Z in turn.

• 4) By contrast, ~∃m ∈ PROOFPA such that GN(D) = m and the last 
line of D is Z, then this sequential check will never terminate.

• 5) So, by the definition of semidecidability (recursive enumerability), 
Th(PA) is semidecidable, i.e., recursively enumerable.

• Theorem 5.5.7 (Incompletability Theorem): Arithmetic, i.e., 
ThPA(ℕ), is not axiomatizable.

A Potpourri of Implications

• Proof: Immediate from Theorem 3.5.1 (that any PL theory that is 
complete and axiomatizable is decidable). By Theorem 5.5.5 ThPA(ℕ) is 
undecidable.  So, since ThPA(ℕ) is complete, it is not axiomatizable.
• Note: We have now proved what we earlier anticipated: the triad of (1) 

completeness, (2) axiomatizability, and (3) undecidability is 
inconsistent.
• Theorem 5.5.8: For any decidable set Ω of sentences in the full Voc(PA), if 
Ω ⊆ ThPA(ℕ), then Th(Ω) is incomplete.
• Proof: Suppose that Th(Ω) is complete.  Then Th(Ω) = ThPA(ℕ).  Since Ω is 

decidable, ThPA(ℕ) would be axiomatizable.  This is impossible, by 
Theorem 5.5.7. 
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Presburger Arithmetic

• Note: For the previous theorem, it is essential that the vocabulary of 
Th(Ω) encompasses the full vocabulary of Th(PA), including + and *.

• It turns out that one can construct a complete and axiomatizable (and 
thus, we know, decidable) arithmetic theory without multiplication.  

• One such theory has the standard axioms for successor and addition 
and induction for all its formulas.  But it cannot define, a fortiori
prove, its own consistency.  The theory is Presburger Arithmetic.

Definability in ℕ 

• We introduced the concept of definability when describing some 
implications of the Compactness Theorem (which itself, recall, is a 
consequence of the Soundness and Completeness Theorems).
• A property, F is definable simpliciter just in case there is a formula, Φ, 

such that, for every model, Φ is true of all and only the F things.
• Example: Being 5-membered is definable, but being finite is not.

• It is more common to consider definability in a fixed model, M.
• A property or relation (set of D of n-tuples) is definable in the Standard 

Model of arithmetic, ℕ, just in case there is an n-variable formula in 
Voc(PA), D[x1, x2, x3, …, xn] such that for all natural numbers n1, n2, n3, …, 
nn, < n1, n2, n3, …, nn > ∈ D just in case ℕ |= D[n1, n2, n3, …, nn ].
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Definability in ℕ 

• We discovered that a great deal of arithmetic properties (sets and 
functions) are definable in ℕ, and recursive ones are even representable.
• Example 1: Consider PROOFPA, i.e., the set of ordered pairs of Gödel

numbers <m, n>, such that m is the Gödel number of a proof from PA
whose conclusion has Gödel number n.  This is clearly definable in ℕ. 
• There is a formula, proofPA(x, y), such that proofPA(m, n) is true in ℕ of 

all and only the pairs, <m, n>, where m is the Gödel number of a proof
from PA whose conclusion has Gödel number n. 
• Moreover, if <m, n> ∈ PROOFPA, then PA |- proofPA(m, n), and if <m, 

n> ∉ PROOFPA, then PA |- ~proofPA(m, n).  So, PROOFPA is 
representable too.

Definability in ℕ 

• Example 2: Now consider provability, i.e., theoremhood, in PA.  We know that 
this is not representable in PA, so is not recursive.  But it is definable in ℕ. There 
is a formula, (∃x)proofPA(x, y), such that (∃x)proofPA(x, n) is true in ℕ -- ℕ |= 
(∃x)proofPA(x, n) -- when there is a natural number that is the Gödel number of a 
proof of a sentence with Gödel number, n.  Likewise, (∃x)proof(x, n) is false in 
ℕ when there is no such number. 
• We say that PL in Voc(PA) can define the property of theoremhood in ℕ.
• Note: Provability-in-PA is representable in True Arithmetic, ThPA(ℕ).  It is 

definable in ℕ, and representability and definability are the same in ThPA(ℕ). 
• In general, many syntactic properties (like being a sentence, proof, or term) are 

recursive, so are both representable and definable in ℕ.  Other such properties, 
like provability, which are just  recurisively enumerable and not representable, 
are still definable in ℕ.  Question: What about semantic properties, like truth?
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Definability in ℕ 

• Undefinability of Truth Theorem: The set of Gödel numbers of 
sentences, X, in Voc(PA) such that ℕ |= X, written #ThPA(ℕ), is not 
definable in ℕ (“arithmetical truth is not arithmetically definable”).

• 1) ThPA(ℕ) is a theory, so for every X, in Voc(PA), X ∈ ThPA(ℕ) if/f 
ThPA(ℕ) |= X if/f ThPA(ℕ) |- X (by the Completeness Theorem).

• 2) By the definition of ThPA(ℕ), for every every X in Voc(PA), ℕ |= X 
if/f ThPA(ℕ) |- X. 

• 3) A set, D ⊆ ℕ, is definable in ℕ if/f there is a 1-variable formula in 
Voc(PA), D, such that for all natural numbers n, n ∈ D if/f ℕ |= D[n].

Definability in ℕ 

• 4) So, D is definable in ℕ if/f there is a 1-variable formula in Voc(PA), 
D, such that for all natural numbers n, if n ∈ D then ThPA(ℕ) |– D[n], 
and if n ∉ D then ThPA(ℕ) |– ~D[n].
• 5) That is, D is definable in ℕ if/f D is representable in ThPA(ℕ).
• 6) Since Th(PA) ⊂ ThPA(ℕ), and since all recursive functions are 

representable in Th(PA), all recursive functions are representable
ThPA(ℕ).
• 7) But ThPA(ℕ) is also consistent (by definition), so Theorem 5.5.2

precludes that #ThPA(ℕ) is representable in ThPA(ℕ).
• 8) So, by 5), #ThPA(ℕ) is not definable in ℕ either.
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Robinson Arithmetic, Th(Q)

• We have seen (Theorem 5.5.3) that any consistent PL theory representing all 
recursive functions is undecidable and (Theorem 5.5.4) incomplete.  How weak can 
a theory be while still representing all recursive functions?  Very!  Robinson 
Arithmetic suffices.

• Robinson Arithmetic Th(Q) is the closure of the Peano Axioms minus all instances
of IS, plus one axiom:

• Ax1 (∀x) 0 ≠ s(x)

• Ax2 (∀x)(∀y)(s(x) = s(y)  x = y)

• Ax3 (∀x)(x + 0) = x

…

Robinson Arithmetic, Th(Q)

• Ax4 (∀x)(∀y)(x + s(y)) = s(x + y)

• Ax5 (∀x)(x * 0) = 0

• Ax6 (∀x)(∀y)(x * s(y)) = ((x * y) + x)

• +

• Ax7 (∀x)(x ≠ 0 (∃y)x = sy)
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From Q to the Church-Turing Theorem

• Not only is Q exceptionally weak, it is finitely-axiomatized.  Hence, 
we can conjoin its axioms into a single sentence, QAX. If the set, TQ, 
of conditionals, (QAX P), where P is arbitrary, is undecidable, then 
the set of logical truths, Th(∅) must be too – since TQ ⊂ Th(∅).

• Lemma 5.5.1 (Deduction Theorem): For any PL sentences Z and W, 
Z |– W just in case |– ZW.

• Proof (left-to-right):

• 1) Assume that Z |– W, i.e., that there is a PL derivation of W from Z.

From Q to the Church-Turing Theorem

• 2) Then, using Conditional Proof (CP), we can obtain a derivation, D, 
of (ZW) from the empty set, ∅, i.e., |– ZW.

• 3) So, by Conditional Proof in the metatheory, for any PL sentences Z
and W, if Z |– W then |– ZW.

• Proof (right-to-left):
• 4) Now assume that |– ZW, i.e. that there is a PL derivation, D*, of 

W  Z from the empty set, ∅.
• 5) Now, with Z as the only premise, use D* to derive the conclusion 

W, by modus ponens.  This establishes that Z |– W.
• 6) So, again by Conditional Proof, if |– ZW, then Z |– W.
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From Q to the Church-Turing Theorem

• We are now in a position to prove another landmark of logic:

• Church-Turing Theorem: Th(∅) is undecidable.
• Proof: 
• 1) By the Deduction Theorem, for every PL sentence, X, |- (QAX  X) just in 

case QAX |- X.
• 2) So, for every sentence, X, in Voc(PL), X ∈ Th(Q) just in case (QAX  X) ∈

Th(∅). 
• 3) Now suppose for reductio that Th(∅) is decidable.
• 4) Then Th(Q) is decidable.
• 5) But Th(Q) is represents all recursive functions and its axiomatizable, so is 

undecidable by Theorem 5.5.4. 
• 6) Hence, the reductio assumption is false: Th(∅) is undecidable.

Recursive Enumerability of Th(∅)

• While Th(∅) is undecidable, it must be semidecidable, i.e., 
recursively enumerable, because any theory is closed under logical 
consequence, so must weakly represent the set of logical truths.

• For any X ∈ Th(∅), there is a PL derivation, D, of X from ∅. Let LD = 
{D: D is a PL derivation from ∅}. Then LD is a decidable set.  So, to 
check whether X ∈ Th(∅), we wait to see X or ~X as the last line of 
some D ∈ LD, concluding that X ∈ Th(∅) or X ∉ Th(∅), respectively.

• But if X ∉ Th(∅), and not contradictory, we will wait forever.  So, this 
procedure returns the answer Yes just in case X ∈ Th(∅).  But it might 
not return an answer if the correct answer is No, i.e., if X ∉ Th(∅).
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Summing Up

• We have found that first-order validity (= theoremhood by Soundness and 
Completeness) is not decidable.  It follows that neither is inconsistency (i.e., 
contradictoriness).  Moreover, while each concept is semidecidable
(recursively enumerable), contingency is not even semidecidable.
• If there were a Yes-procedure, P, for contingency, then we could combine it 

with the Yes-procedure, P*, for Th(∅) resulting in a decision procedure for 
Th(∅). 
• For any sentence, X, apply P and P* to it concurrently. If P returns ‘Yes’, 

then X is contingent, and so X ∉ Th(∅). If instead R returns ‘Yes’, then X ∉
Th(∅), and if R returns ‘Yes’ when applied ~X, not X, then X ∉ Th(∅). 
• Note: It follows that invalidity (i.e., not-validity) is not semidecidable either.

Summing Up

• Upshot: If the set of contingent sentences were even semidecidable, then since 
the set of (first-order) validities is semidecidable too, we could form a decision 
procedure for the latter – contravening the Church-Turing Theorem.  

• What about arguments?  An argument, Γ / X, is valid just when the 
conditional, (Γfin X) ∉ Th(∅), for some finite subset of Γ, Γfin.  So, a 
decision procedure for validity of arguments would induce a decision 
procedure for validity of conditionals – including those of the form (QAX 
X).  Since we saw that this is impossible, the question of whether an argument
from zero or more premises to an arbitrary conclusion is valid is undecidable.  

• Note: The set of arguments of special kinds (e.g., those only involving 
monadic predicates) is decidable.  But the set of all arguments is not.
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Second-Order Logic (PL2)

• We have so far been discussing first-order logic.  This lets us quantify over 
things, and ascribe predicates to them.  But it does not let us quantify into 
the position of the predicates.  It merely lets us quantify into the position of 
names, like ‘Lebron James’, or, in the case of arithmetic, 0, sss0 + s0, etc.

• What happens if we allow for quantification into predicate position?  Given 
a ‘full’ or ‘standard’ semantics, metalogic changes dramatically!

• Consider the following argument:

• 1) The Evening Star has every property that the Morning Star has.

• 2) The Morning Star is a planet in the solar system.

• 3) Therefore, the Evening Star is a planet in our solar system.

Second-Order Logic (PL2)

• Argument 1) – 3) seems valid.  But it quantifies into predicate position
in premise 1).  Hence, it is not readily formalizable in first-order PL.

• A first-order quantifier applies to a variable that occupies a slot that 
could be occupied by a name, like ‘Lebron James’, if the quantifier 
were not present.  By contrast, a second-order quantifier applies to a 
variable that occupies a slot that could be occupied by a (first-order) 
predicate, like ‘red’, if the quantifier were not present.

• We use the uppercase variable letters as second-order variables, and 
use uppercase constant letters to serve as second-order constants.
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Second-Order Logic (PL2)

• Example: (∃Z)(Za & Zb) says, intuitively, that there is a property that 
is had by individuals a and b.  If we removed the second-order 
quantifier, so that the second-order variables were no longer bound, 
we would obtain an open sentence – exactly as in the first-order case.

• A difference with the first-order case is that, in second-order logic, 
predicates can apply to other predicates, as well as to individuals.  

• Example: We can say that there is a property that is a color and is had 
by the text on this slide.  We could write: (∃Z)(CZ & Zt).

• Having outlined the basic idea of second-order logic (albeit not the 
recursive syntactic definitions), PL2, how can we formalize 1) – 3)?

Second-Order Logic (PL2)

• First, we specify a second-order interpretation, extending a first-order one:

• e: The Evening Star

• m: The Morning Star

• Pz: z is a planet in the solar system

• Next, we formalize the argument:

• 1) (∀Z)(Zm Ze)

• 2) Pm

• 3) Pe
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Second-Order Logic (PL2)

• This argument is valid assuming second-order Universal Instantiation.

• The predicate P can (presumably) be substituted for the second-order
variable, Z, in the formula Zm Ze to obtain Pm Pe.  The sentence 
Pm can then be inferred from Pe and Pm Pe by modus ponens. 

• How, though, should we think of properties for the purposes of 
semantic interpretation?  In the first-order case, individual predicates
corresponded to subsets of the Universe of Discourse (UD).  The 
crucial choice point is whether to interpret the second-order universal 
quantifier, ∀Z, as ranging over the full powerset of that universe.  It is 
only if we do that we get radically different metalogical properties.

Second-Order Logic (PL2)

• We will adopt this so-called full semantics for the second-order 
quantifiers.  Accordingly, a second-order sentence like (∀Z)(Zm Ze) 
is interpreted to say something about every subset of UD.

• It says that for every subset of UD, S, of UD, if the referent of the 
name, m, belongs to the set, S, then the referent of e belongs to S too. 
That is: every subset of UD that contains J2(m) also contains J2(e). 

• Note: The vocabulary of a second-order theory is the first-order one but 
with second-order variables included among the logical vocabulary. 
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Second-Order Peano Arithmetic (PA2)

• One interesting application of second-order logic suggests itself: replace 
the schemas occurring in first-order formulations of our mathematical 
theories with (single sentence) second-order counterparts.

• Example: Rather that adjoining infinitely-many axioms (given by the 
Induction schema) to the first six axioms of PA (one for each formula in 
the language), we may state directly: for any property, P, if 0 has P and 
n+1 has P whenever n has P, then all natural numbers have P.  In symbols:

• Induction Axiom (IA): (∀Z)(Z0 & (∀v)(Zv Zsv))  (∀y)Zy)

Second-Order Peano Arithmetic (PA2)

• Whereas the Induction Schema (IS) of PA says that any formula in the 
language that is true of 0 and that is true of sv whenever it is true of v is 
true of every natural number, IA says that any property that is had by 0 and 
that is had by sv whenever it is had by v is had by every natural number.

• Interpreted in a model (where properties are sets), M2, IA says that any 
subset, A, of UD that contains M2’s 0, and contains M2’s successor of a
number whenever it contains the number, contains everything in M2.

• We will write ℕ2 for the model of PA2 that is just like the Standard Model
of Peano Arithmetic (PA), except that it interprets quantification of subsets
of (its) natural numbers as well.
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Second-Order Peano Arithmetic (PA2)

• PA2 is thought to be special because it is categorical, all its models are 
isomorphic.  Hence, unlike PA, its axioms ‘pin down’ what we mean.

• Theorem 5.6.1: PA2 is categorical.

• Writing Th(PA2) for the set of all sentences that are semantically
implied by PA2, we now have the following (dramatic?) results:

• Theorem 5.6.2a Th(PA2) is semantically complete.

• Theorem 5.6.2b Th(PA2) = ThPA2(ℕ2).

• Theorem 5.6.2c ThPA2(ℕ2) is finitely axiomatizable.

• Let us survey the proofs and explore their philosophical significance.

Second-Order Peano Arithmetic (PA2)

• Theorem 5.6.2a Th(PA2) is semantically complete.
• Proof:
• 1) For any sentence in Voc(PA2), X, either ℕ2 |=2 X or ℕ2 |=2 ~X, by the 

definition of a model.
• 2) By Theorem 5.6.1, any two models of Th(PA2) are isomorphic.  

That is, for any model of Th(PA2), M2, ℕ2 is isomorphic with M2 with 
respect to Voc(PA2), written: ℕ2 ≅ M2.
• 3) By Theorem 3.4.1, isomorphism implies elementary equivalence.  

So, by 2), ℕ2 and M2 are elementary equivalent, written: ℕ2 = M2.
• 4) So, if ℕ2 |=2 X, then M2 |= X, and if ℕ2 |=2 ~X, then M2 |=2 ~X.



4/26/2024

211

Second-Order Peano Arithmetic (PA2)

• 5) By the definition of logical consequence, Th(PA2) |=2 X or Th(PA2) 
|=2 ~X depending on whether ℕ2 |=2 X or ℕ2 |=2 ~X.

• 6) So, by Conditional Proof (in the metatheory), if ℕ2 |= X, then 
Th(PA2) |=2 X, and if ℕ2 |=2 ~X, Th(PA2) |=2 ~X.

• 7) Hence, any sentence in Voc(PA2), X, either Th(PA2) |=2 X or Th(PA2) 
|= ~X, i.e., Th(PA2) is semantically complete. 

• Theorem 5.6.2b Th(PA2) = ThPA2(ℕ2).

Second-Order Peano Arithmetic (PA2)

• Proof:

• 1) ℕ2 |=2 Th(PA2), so Th(PA2) ⊆ ThPA2(ℕ2).

• 2) By Theorem 5.6.1, for every model of Th(PA2), M2, ℕ2 ≅ M2 with 
respect to Voc(PA2), and, hence, ℕ2 = M2 (by Theorem 3.4.1).

• 3) So, if ℕ2 |=2 X, then, for any model of Th(PA2), M2, M2 |=2 X.

• 4) Thus, Th(PA2) |=2 X, and, by the definition of a theory, X ∈ Th(PA2).

• 5) So, if X ∈ ThPA2(ℕ2), then X ∈ Th(PA2).

• 6) Hence, Th(PA2) ⊆ ThPA2(ℕ2) and ThPA2(ℕ2) ⊆ Th(PA2), i.e., Th(PA2) 
= ThPA2(ℕ2).
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Second-Order Peano Arithmetic (PA2)

• Theorem 5.6.2c ThPA2(ℕ2) is finitely axiomatizable.
• Proof: We just saw that Th(PA2) = ThPA2(ℕ2).  But PA2 is a finite set.  Since 

any finite set is decidable, PA2 qualifies as a set of axioms.  Consequently, 
there exists a finite set of axioms from which all the members of ThPA2(ℕ2) 
logically (semantically) follow, i.e., ThPA2(ℕ2) is finitely axiomatizable.
• Theorem 5.6.3: The Compactness Theorem holds for any (decidable) sound 

and complete deductive system for PL2 whose derivations are finite.
• Proof: Let |-2 be a (decidable) sound, complete, and finite proof relation on 

Voc(PA2), and let Σ be a set of sentences in Voc(PL2) and X any sentence in 
Voc(PA2) such that Σ |=2 X.  Since Σ |=2 X, and |-2 is complete and finite, Σfin
|-2 X for some finite subset of Σ, Σfin.  And since |-2 is sound, Σfin |=2 X.

Second-Order Peano Arithmetic (PA2)

• We will now show that the Compactness Theorem does not hold for 
|=2, from which it follows that there is no (decidable) sound and 
complete deductive system for PL2 whose derivations are finite.

• Theorem 5.6.4: There exists a set of sentences in Voc(PL2) (with 
whatever non-logical vocabulary we wish), Σ, and sentence X such that 
Σ |=2 X but for no finite subset of Σ, Τ, Τ |=2 X.

• Proof Sketch:

• 1) Expand Voc(PA2) with one additional name, e.  Now define Θ = {e ≠ 
sn0 : n is a positive integer}. Since PA2 is finite, we can construct the 
conjunction of these axioms, PA2

AX.  So, let Σ = {PA2
AX} ∪ Θ. 
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Second-Order Peano Arithmetic (PA2)

• 2) Σ, and, thus, PA2
AX and Θ, are satisfiable because an interpretation, M2, 

just like ℕ2 except that e is interpreted as the number, 0, is a model of  Σ.
• 3) Since each numerical term, sn0, picks out the number, n, for any 

positive integer (we proved), n, e ≠ sn0 is true on M2.
• 4) Since M2 is a model of PA2, it is isomorphic to ℕ2 with respect to 

Voc(PA2), by Theorem 5.6.1.  Hence, M2(sn0) = n, ∀n ∈ ℕ, so for the 
additional vocabulary, e,  we must have M2(e) = 0.
• 5) But no finite subset, Τ, of Θ implies this, by a variation on the 

Compactness argument that we gave in the first-order case.
• 6) So, Σ |=2 e = 0, but for no finite subset, Τ, do we have Τ |=2 e = 0, i.e., 

the Compactness Theorem fails for (full) second-order consequence, |=2.

Second-Order Peano Arithmetic (PA2)

• Theorem 5.6.5: There is no (decidable) sound and complete deductive 
system for PL2 whose derivations are finite.

• Proof: Immediate from Theorem 5.6.3 and Theorem 5.6.4.

• Note: The same holds even of (decidable) sound and complete
deductive systems for PL2 whose derivations may be infinite.

• Second-order logic is sometimes thought to vindicate Russell’s 
logicism, the view that math is just logic.  Crispin Wright even showed 
that PA2 is derivable from Hume’s Principle in a standard (sound and 
incomplete) system of second-order logic.  So, if Hume’s Principle is 
analytic, then arithmetic is indeed provable from definitions alone.
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Second-Order Peano Arithmetic (PA2)

• The problem is that second order logic is not logic in the sense that has been 
central to philosophy since Aristotle.  Since there is no (sound and) 
complete proof theory for PL2, there are infinitely-many ‘logical truths’ 
without proofs – no matter which (decidable) proof theory we adopt. 

• Moreover, the semantics of second-order logic is inseparable from the 
metatheoretic set theory.  There is a sentence in Voc(PL2) (with no non-
logical vocabulary) that has a model just in case CH holds, and another 
sentence that has a model just in case it does not hold!  So, doubts about the 
clarity of set-theoretic concepts become doubts about the clarity of second-
order quantification.  Perhaps the categoricity argument is a mirage.

Second Incompleteness Theorem

• Hilbert’s Program was an influential agenda in the philosophy of 
mathematics around the turn of the 20th century. The key idea was to 
vindicate (what we called) formalism, the view that most of mathematics 
is a meaningless game with symbols.  So, there is no need to explain how 
we know it, or what it is about.  The philosophical mysteries dissolve.
• Why ‘most’?  Because the theory of symbol manipulation itself had better 

not be meaningless!  There must be a fact as to whether or not, e.g., one 
can produce the string ‘0 = 1’ using just the rules of NDS from PA.
• Hilbert aimed to prove, in a ‘finitary’ (first-order) metatheory, which 

Th(PA) extends, that one cannot derive a contradiction from standard 
mathematics, ZFC.  If this can be done, then PA |- Con(PA) a fortiori.
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Second Incompleteness Theorem

• Gödel’s Second Incompleteness Theorem shows that this is impossible, if PA is 
consistent.  More carefully, PA ⊬ Con(PA), if Con(PA), where ‘Con(PA)’ 
abbreviates, ~(∃x)proof(x, ⌜0 = s0⌝), or, equivalently, (∀x)~proof(x, ⌜0 = s0⌝), 
and proof(x, y) is a standard proof predicate, in a sense to be defined.

• One nonstandard proof predicate is due to Rosser.  According to it, a sequence, 
D, of sentences in Voc(PA) is only a PA proof if its last line does not contradict 
the last line of a PA proof whose Gödel number is smaller than the Gödel number 
of D.  The Second Incompleteness Theorem fails for Rosser’s proof predicate.

• The intensionality of the Second Incompleteness Theorem refers to the 
sensitivity of the Second Incompleteness Theorem – as opposed to the First 
Incompleteness Theorem – to the choice of proof predicate in its formulation.

Second Incompleteness Theorem

• Let introduce a predicate in the metalanguage, ThrmPA*(y), that refers 
to any provability predicate for PA meeting the following conditions:

• HB1 For every sentence, X, in Voc(PL), if PA |– X, then PA |-
ThrmPA*(⌜X ⌝).
• If PA proves X, then PA proves that it proves X.

• HB2 For every sentence, X, in Voc(PL), if PA |- ThrmPA*(⌜X Y⌝) 
 [ThrmPA*(⌜X⌝)  (ThrmPA*(⌜ Y ⌝)]
• PA proves that: if PA proves both X Y and X, then it also proves Y.

• HB3 For every sentence, X, in Voc(PL), PA |– ThrmPA*(⌜X ⌝) 
ThrmPA*(⌜ThrmPA*(⌜X ⌝)⌝) .
• If PA proves that it proves X, then PA also proves the fact that it proves this.
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Second Incompleteness Theorem

• Let us call any ThrmPA*(y) a standard provability predicate, and any 
proof predicate out of which it is built, proofPA*(x, y), a standard proof 
predicate.  Finally, let us write Con*(PA) for ~ThrmPA*(⌜0 = s0⌝) = 
~(∃x)proofPA*(x, ⌜0 = s0⌝) = (∀x)~proofPA*(x, ⌜0 = s0⌝).  

• Gödel’s proof, and, hence, provability predicate was standard.  Using 
his provability predicate, or any other standard one, we have:

• Gödel’s Second Incompleteness Theorem: If Con*(PA), PA ⊬
Con*(PA) (where Con*(PA), and, hence, ThrmPA*(y) is standard, i.e., 
satisfies HB1, HB2, and HB3).

Second Incompleteness Theorem

• 1) Suppose that Con*(PA), and, for reductio, that PA |– Con*(PA).

• 2) Apply the Diagonalization (Carnap) Lemma to the formula, 
ThrmPA*(y)  (0 = s0), to get a sentence, B, such that PA |- B
ThrmPA*(⌜B⌝)  (0 = s0).

• 3). So, PA |– ~ThrmPA*(⌜0 = s0⌝) and PA |- B ThrmPA*(⌜B⌝) 
 (0 = s0).

• 4) We can now use the properties of standard proof predicates to 
combine derivations of ~ThrmPA*(⌜0 = s0⌝) and of B
ThrmPA*(⌜B⌝)  (0 = s0) to get a derivation of 0 = s0.
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Second Incompleteness Theorem
• Yaqub illustrates this with the following lengthy but routine PL proof:

Second Incompleteness Theorem
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Second Incompleteness Theorem

• 5) So, PA |– 0 = s0.

• 6) But Universally instantiating Ax1 (∀x) 0 ≠ s(x) gives 0 ≠ s0.

• 7) So, ~Con*(PA), contradicting 1).

• 8) Hence, by reductio ad absurdum, PA ⊬ Con*(PA) if Con*(PA).

Henkin Sentence

• We have discovered that there is a sentence, G, intuitively expressing 
its own unprovability from PA, such that PA ⊬ G and PA ⊬ ~G, if 
Con(PA).  What about a sentence, H, expressing its own provability?

• By the Carnap Lemma, there must be fixed point for ThrmPA*(x), i.e.:

• PA |- H  ThrmPA*(⌜H⌝)

• Is H provable from PA?  H intuitively ‘says’ that it is true just in case 
it is provable from PA.  So, reflection on H’s meaning is of no use.
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Löb's Theorem

• Martin Löb solved the problem by establishing a general result:

• Löb’s Theorem: If PA |- ThrmPA*(⌜P⌝)  P, then PA |- P.

• (You are asked to derive this theorem using HB1 – HB3 on your exam.)

• In particular, if PA |- ThrmPA*(⌜H⌝)  H, then PA |- H.

• We can also use Löb’s Theorem to give a different proof of the Second 
Incompleteness Theorem:

Löb's Theorem

• Proof:

• 1) By Löb’s Theorem: If PA |- ThrmPA*(⌜0 = s0⌝)  0 = s0, then PA
|- 0 = s0.

• 2) So, suppose that PA |- ~ThrmPA*(⌜0 = s0⌝), i.,e, PA |- Con*(PA).

• 3) Then PA |- ThrmPA*(⌜0 = s0⌝)  0 = s0.

• 4) So, by Löb’s Theorem, PA |- 0 = s0.

• 5) But PA |- 0 ≠ s0. 

• 6) So, if Con*(PA), then PA ⊬ ~ThrmPA*(⌜0 = s0⌝), i.e. PA ⊬
Con*(PA).


