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The purpose of this article is to review instances of fallacious
reasoning that were made in the calculus of probability when
the discipline was being developed. The historical context of
these mistakes is also provided.
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1. INTRODUCTION

This article outlines some of the mistakes made in the cal-
culus of probability, especially when the discipline was being
developed. Such is the character of the doctrine of chances
that simple-looking problems can deceive even the sharpest
minds. In his celebrated Essai Philosophique sur les Proba-
bilités (Laplace 1814, p. 273) the eminent French mathemati-
cian Pierre-Simon Laplace (1749–1827) said:

. . . the theory of probabilities is at bottom only common
sense reduced to calculus.

There is no doubt that Laplace was right, but the fact remains
that blunders and fallacies persist even today in the field of prob-
ability, often when “common sense” is applied to problems.

The errors I describe here can be broken down into three
main categories: (i) use of “reasoning on the mean” (ROTM),
(ii) incorrect enumeration of sample points, and (iii) confusion
regarding the use of statistical independence.

2. USE OF “REASONING ON THE MEAN” (ROTM)

In the history of probability, the physician and mathematician
Gerolamo Cardano (1501–1575) was among the first to attempt
a systematic study of the calculus of probabilities. Like those
of his contemporaries, Cardano’s studies were primarily driven
by games of chance. Concerning his 25 years of gambling, he
famously said in his autobiography (Cardano 1935, p. 146):

. . . and I do not mean to say only from time to time during
those years, but I am ashamed to say it, everyday.
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Cardano’s works on probability were published posthu-
mously in the famous 15-page Liber de Ludo Aleae 1 consisting
of 32 small chapters (Cardano 1564). Cardano was undoubtedly
a great mathematician of his time but stumbled on several ques-
tions and this one in particular: “How many throws of a fair die
do we need in order to have a fair chance of at least one six?”
In this case, he thought the number of throws should be three.2

In Chapter 9 of his book, Cardano says of a die:

One-half of the total number of faces always represents
equality3; thus the chances are equal that a given point will
turn up in three throws. . .

Cardano’s mistake stems from a prevalent general confusion
between the concepts of probability and expectation. Let us dig
deeper into Cardano’s reasoning. In the De Ludo Aleae, Car-
dano frequently makes use of an erroneous principle, which Ore
called a “reasoning on the mean” (ROTM) (Ore 1953, p. 150;
Williams 2005), to deal with various probability problems. Ac-
cording to the ROTM, if an event has a probability p in one
trial of an experiment, then in n trials the event will occur np
times on average, which is then wrongly taken to represent the
probability that the event will occur in n trials. In our case, we
have p = 1/6 so that, with n = 3 throws, the event “at least a
six” is wrongly taken to occur an average np = 3(1/6) = 1/2
of the time. But if X is the number of sixes in three throws,
then X ∼ B(3, 1/6), the probability of one six in three throws
is 0.347, and the probability of at least one six is 0.421. On
the other hand, the expected value of X is 0.5. Thus, although
the expected number of sixes in three throws is 1/2, neither the
probability of one six or at least one six is 1/2.

We now move to about a century later when the Chevalier
de Méré4 (1607–1684) used the Old Gambler’s Rule leading to

1 The Book on Games of Chance. An English translation of the book and a
thorough analysis of Cardano’s connections with games of chance can be found
in Ore’s Cardano: The Gambling Scholar (Ore 1953). More bibliographic de-
tails can be found in Gliozzi (1980, pp. 64–67) and Scardovi (2004, pp. 754–
758).

2The correct answer is four and can be obtained by solving for the smallest
integer such that 1− (5/6)n = 1/2.

3 Cardano frequently uses the term “equality” in the Liber to denote half of
the total number of sample points in the sample space. See Ore (1953, p. 149).

4Real name Antoine Gombaud. Leibniz describes the Chevalier de Méré as
“a man of penetrating mind who was both a player and a philosopher” (Leibniz
1896, p. 539). Pascal biographer Tulloch also notes (1878, p. 66): “Among the
men whom Pascal evidently met at the hotel of the Duc de Roannez [Pascal’s
younger friend], and with whom he formed something of a friendship, was the
well-known Chevalier de Méré, whom we know best as a tutor of Madame de
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fallacious results. As we shall see, the Old Gambler’s Rule is
an offshoot of ROTM. The Chevalier de Méré had been win-
ning consistently by betting even money that a six would come
up at least once in four rolls with a single die. However, he
had now been losing on a new bet, when in 1654 he met his
friend, the amateur mathematician Pierre de Carcavi (1600–
1684). De Méré had thought the odds were favorable on bet-
ting that he could throw at least one sonnez (i.e., double-six)
with 24 throws of a pair of dice. However, his own experi-
ences indicated that 25 throws were required.5 Unable to re-
solve the issue, the two men consulted their mutual friend, the
great mathematician, physicist, and philosopher Blaise Pascal
(1623–1662)6. Pascal himself had previously been interested in
the games of chance (Groothuis 2003, p. 10). Pascal must have
been intrigued by this problem and, through the intermediary of
Carcavi,7 contacted the eminent mathematician, Pierre de Fer-
mat (1601–1665),8 who was a lawyer in Toulouse. In a letter
Pascal addressed to Fermat, dated July 29, 1654, Pascal says
(Smith 1929, p. 552):

He [De Méré] tells me that he has found an error in the
numbers for this reason:

If one undertakes to throw a six with a die, the advantage of
undertaking to do it in 4 is as 671 is to 625.

If one undertakes to throw double sixes with two dice the
disadvantage of the undertaking is 24.

But nonetheless, 24 is to 36 (which is the number of faces
of two dice) as 4 is to 6 (which is the number of faces of
one die).

This is what was his great scandal which made him say
haughtily that the theorems were not consistent and that
arithmetic was demented. But you can easily see the rea-
son by the principles which you have.

De Méré was thus distressed that his observations were in
contradiction with his mathematical calculations. His erroneous

Maintenon, and whose graceful but flippant letters still survive as a picture of
the time. He was a gambler and libertine, yet with some tincture of science and
professed interest in its progress.” Pascal himself was less flattering. In a letter
to Fermat, Pascal says (Smith 1929, p. 552): “. . . he [de Méré] has ability but
he is not a geometer (which is, as you know, a great defect) and he does not
even comprehend that a mathematical line is infinitely divisible and he is firmly
convinced that it is composed of a finite number of points. I have never been
able to get him out of it. If you could do so, it would make him perfect.” The
book by Chamaillard (1921) is completely devoted to the Chevalier de Méré.

5Ore (1960) believes that the difference in the probabilities for 24 and 25
throws is so small that it is unlikely that de Méré could have detected this dif-
ference through observations.

6 Of the several books that have been written on Pascal, the biographies by
Groothuis (2003) and Hammond (2003) are good introductions to his life and
works.

7Carcavi had been an old friend of Pascal’s father and was very close to
Pascal.

8Fermat is today mostly remembered for the so-called “Fermat Last Theo-
rem,” which he conjectured in 1637 and which was not proved until 1995 by
Andrew Wiles (1995). The theorem states that no three positive integers a, b,
c can satisfy the equation an + bn = cn for any integer n greater than 2. A
good introduction to Fermat’s Last Theorem can be found in Aczel (1996). The
book by Mahoney (1994) is an excellent biography of Fermat, whose probabil-
ity work appears on pp. 402–410 of the book.

mathematical reasoning was based on the erroneous Old Gam-
bler’s Rule (Weaver 1982, p. 47), which uses the concept of the
critical value of a game. The critical value C of a game is the
smallest number of plays such that the probability the gambler
will win at least one play is 1/2 or more. Let us now explain
how the Old Gambler’s Rule is derived. Recall Cardano’s “rea-
soning on the mean” (ROTM): if a gambler has a probability p
of winning one play of a game, then in n plays the gambler will
win an average of np times, which is then wrongly equated to
the probability of winning in n plays. Then, by setting the latter
probability to be half, we have

C × p =
1

2
.

Moreover, given a first game with (p1,C1), then a second game
which has probability of winning p2 in each play must have
critical value C2, where

C1 p1 = C2 p2 or C2 =
C1 p1

p2
(Old Gambler’s Rule).

(1)
That is, the Old Gambler’s Rule states that the critical values

of two games are in inverse proportion as their respective prob-
abilities of winning. Using C1 = 4, p1 = 1/6, and p2 = 1/36,
we get C2 = 24. However, with 24 throws, the probability of at
least one double-six is 0.491, which is less than 1/2. So C2 = 24
cannot be a critical value (the correct critical value is shown be-
low to be 25), and the Old Gambler’s Rule cannot be correct.
It was thus the belief in the validity of the Old Gambler’s Rule
that made de Méré wrongly think that, with 24 throws, he should
have had a probability of 1/2 for at least one double-six.

Let us see how the erroneous Old Gambler’s Rule should
be corrected. By definition, C1 = dx1e, the smallest integer
greater or equal to x1, such that (1 − p1)

x1 = 0.5, that is,
x1 = ln(0.5)/ ln(1 − p1). With obvious notation, for the sec-
ond game: C2 = dx2e, where x2 = ln(0.5)/ ln(1 − p2). Thus
the true relationship should be

x2 =
x1 ln(1− p1)

ln(1− p2)
. (2)

We see that Equations (1) and (2) are quite different from each
other. Even if p1 and p2 were very small, so that ln(1 − p1) ≈
−p1 and ln(1 − p2) ≈ −p2, we would get x2 = x1 p1/p2 ap-
proximately. This is still different from Equation (1) because the
latter uses the integers C1 and C2, instead of the real numbers
x1 and x2.

The Old Gambler’s Rule was later investigated by the French
mathematician Abraham de Moivre (1667–1754), who was a
close friend to Isaac Newton. Thus, in the Doctrine of Chances
(de Moivre 1718, p. 14), Problem V, we read:

To find in how many Trials an Event will Probably Happen
or how many Trials will be required to make it indifferent
to lay on its Happening or Failing; supposing that a is the
number of Chances for its Happening in any one Trail, and
b the number of chances for its Failing.

De Moivre solves (1 − p)x = 1/2 and obtains x =
− ln(2)/ ln(1− p). For small p,

x ≈
0.693

p
(De Moivre’s Gambling Rule). (3)
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Table 1. Critical values obtained using the old gambling rule, de Moivre’s gambling rule, and the exact formula for different values of p, the
probability of the event of interest

Critical value C using the Critical value C using
old gambling rule de Moivre’s Critical value C using

C = C1 p1/p (assuming gambling rule the exact formula
Value of p C1 = 4 for p1=1/6) C = d0.693/pe C = d− ln(2)/ ln(1− p)e

1/216 144 150 150
1/36 24 25 25
1/6 4 5 4
1/4 3 3 3
1/2 2 2 1

Let us see if we obtain the correct answer when we apply
de Moivre’s Gambling Rule for the two-dice problem. Using
x ≈ 0.693/p with p = 1/36 gives x ≈ 24.95 and we obtain
the correct critical value C = 25. The formula works only be-
cause p is small enough and is valid only for such cases.9 The
other formula that could be used, and that is valid for all val-
ues of p, is x = − ln(2)/ ln(1− p). For the two-dice problem,
this exact formula gives x = − ln(2)/ ln(35/36)= 24.60 so that
C = 25. Table 1 compares critical values obtained using the
Old Gambler’s Rule, de Moivre’s Gambling Rule, and the exact
formula.

3. INCORRECT ENUMERATION OF SAMPLE POINTS

The Problem of Points10 was another problem de Méré asked
Pascal in 1654 and was the question that really launched the
theory of probability in the hands of Pascal and Fermat. It goes
as follows: “Two players A and B play a fair game such that the
player who wins a total of 6 rounds first wins a prize. Suppose
the game unexpectedly stops when A has won a total of 5 rounds
and B has won a total of 3 rounds. How should the prize be
divided between A and B?” To solve the Problem of Points,
we need determine how likely A and B are to win the prize if
they had continued the game, based on the number of rounds
they have already won. The relative probabilities of A and B
winning thus determine the division of the prize. Player A is
one round short, and player B three rounds short, of winning the
prize. The maximum number of hypothetical remaining rounds
is (1+ 3)− 1 = 3, each of which could be equally won by A or
B. The sample space for the game is

�={A1, B1 A2, B1 B2 A3, B1 B2 B3}. (4)

Here B1 A2, for example, denotes the event that B would win
the first remaining round and A would win the second (and then
the game would have to stop since A is only one round short).
However, the four sample points in � are not equally likely.

9For example, if we apply de Moivre’s Gambling Rule to the one-die prob-
lem, we obtain x = 0.693/(1/6) = 4.158 so that C = 5. This cannot be correct
because we showed in the solution that we need only four tosses.

10 The Problem of Points is also discussed by Todhunter (1865, Chap. II),
Hald (2003, pp. 56–63), Petkovic (2009, pp. 212–214), Paolella (2006, pp. 97–
99), Montucla (1802, pp. 383–390), de Sá (2007, pp. 61–62), Kaplan and Ka-
plan (2006, pp. 25–30), and Isaac (1995, p. 55).

For example, event A1 occurs if any one of the following four
equally likely events occurs: A1 A2 A3, A1 A2 B3, A1 B2 A3, and
A1 B2 B3. In terms of equally likely sample points, the sample
space is thus

� = {A1 A2 A3, A1 A2 B3, A1 B2 A3, A1 B2 B3,

B1 A2 A3, B1 A2 B3, B1 B2 A3, B1 B2 B3} . (5)

There are in all eight equally likely outcomes, only one of
which (B1 B2 B3) results in B hypothetically winning the game.
Player A thus has a probability 7/8 of winning. The prize should
therefore be divided between A and B in the ratio 7:1.

The Problem of Points had already been known hundreds of
years before the times of these mathematicians.11 It had ap-
peared in Italian manuscripts as early as 1380 (Burton 2006,
p. 445). However, it first came in print in Fra Luca Pacioli’s
Summa de Arithmetica, Geometrica, Proportioni, et Propor-
tionalita12 (1494). Pacioli’s incorrect answer was that the prize
should be divided in the same ratio as the total number of games
the players had won. Thus, for our problem, the ratio is 5:3. A
simple counterexample shows why Pacioli’s reasoning cannot
be correct. Suppose players A and B need to win 100 rounds to
win a game, and when they stop Player A has won one round
and Player B has won none. Then Pascioli’s rule would give the
whole prize to A even though she is a single round ahead of B
and would have needed to win 99 more rounds had the game
continued!13

Cardano had also considered the Problem of Points in the
Practica arithmetice (Cardano 1539). His major insight was that
the division of stakes should depend on how many rounds each
player had yet to win, not on how many rounds they had already
won. However, in spite of this, Cardano was unable to give the
correct division ratio: he concluded that, if players A and B are
a and b rounds short of winning, respectively, then the division
ratio between A and B should be b(b + 1) : a(a + 1). In our
case, a = 1, b = 3, giving a division ratio of 6:1.

Pascal was at first unsure of his own solution to the prob-
lem, and turned to a friend, the mathematician Gilles Personne
de Roberval (1602–1675). Roberval was not of much help, and

11 For a full discussion of the Problem of Points before Pascal, see Coumet
(1965).

12Everything about Arithmetic, Geometry, and Proportion.
13 The correct division ratio for A and B here is approximately 53:47.
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Table 2. The possible combinations when A, B, and C are 1, 2, and 2 rounds short of winning the game, respectively. The ticks and crosses indi-
cate the combinations that Pascal incorrectly chose to correspond to A winning the game. However, the crosses cannot be winning combinations
for A because B1 B2 A3 results in B winning and C1C2 A3 results in C winning.

A1 A2 A3 B1 A2 A3 C1 A2 A3
A1 A2 B3 B1 A2 B3 C1 A2 B3
A1 A2C3 B1 A2C3 C1 A2C3

A1 B2 A3 B1 B2 A3 C1 B2 A3
A1 B2 B3 B1 B2 B3 C1 B2 B3
A1 B2C3 B1 B2C3 C1 B2C3

A1C2 A3 B1C2 A3 C1C2 A3
A1C2 B3 B1C2 B3 C1C2 B3
A1C2C3 B1C2C3 C1C2C3

Pascal then asked for the opinion of Fermat, who was immedi-
ately intrigued by the problem. A beautiful account of the en-
suing correspondence between Pascal and Fermat can be found
in a recent book by Keith Devlin, The Unfinished Game: Pas-
cal, Fermat and the Seventeenth Century Letter That Made the
World Modern (Devlin 2008). An English translation of the ex-
tant letters can be found in Smith (1929, pp. 546–565).

Fermat made use of the fact that the solution depended not
on how many rounds each player had already won but on how
many each player must still win to win the prize. This is the
same observation Cardano had previously made, although he
had been unable to solve the problem correctly. The solution
we provided earlier is based on Fermat’s idea of extending the
unfinished game. Fermat also enumerated the different sample
points like in our solution and reached the correct division ratio
of 7:1.

Pascal seems to have been aware of Fermat’s method of enu-
meration (Edwards 1982), at least for two players. However,
when he receives Fermat’s method, Pascal makes two impor-
tant observations in his August 24, 1654, letter. First, he states
that his friend Roberval believes there is a fault in Fermat’s rea-
soning and that he has tried to convince Roberval that Fermat’s
method is indeed correct. Roberval’s argument was that, in our
example, it made no sense to consider three hypothetical addi-
tional rounds, because in fact the game could end in one, two, or
perhaps three rounds. The difficulty with Roberval’s reasoning
is that it leads us to write the sample space as in (6). Since there
are three ways out of four for A to win, a naı̈ve application of
the classical definition of probability results in the wrong divi-
sion ratio of 3:1 for A and B (instead of the correct 7:1). The
problem here is that the sample points in � above are not all
equally likely, so that the classical definition cannot be applied.
It is thus important to consider the maximum number of hy-
pothetical rounds, namely three, for us to be able to write the
sample space in terms of equally likely sample points, as in (5),
from which the correct division ratio of 7:1 can deduced.

Pascal’s second observation concerns his own belief that Fer-
mat’s method was not applicable to a game with three players.
In a letter dated August 24, 1654, Pascal says (Smith 1929, p.
554):

When there are but two players, your theory which proceeds

by combinations is very just. But when there are three, I be-
lieve I have a proof that it is unjust that you should proceed
in any other manner than the one I have.

Let us explain how Pascal made a slip when dealing with
the Problem of Points with three players. Pascal considers the
case of three players A, B, C who were respectively 1, 2, and 2
rounds short of winning. In this case, the maximum of further
rounds before the game has to finish is (1 + 2 + 2) − 2 = 3.14

With three maximum rounds, there are 33 = 27 possible com-
binations in which the three players can win each round. Pascal
correctly enumerates all the 27 ways but now makes a mistake:
he counts the number of favorable combinations which lead to
A winning the game as 19. As can be seen in Table 2, there
are 19 combinations (denoted by ticks and crosses) for which
A wins at least one round. But out of these, only 17 lead to A
winning the game (the ticks), because in the remaining two (the
crosses) either B or C wins the game first. Similarly, Pascal in-
correctly counts the number of favorable combinations leading
to B and C winning as 7 and 7, respectively, instead of 5 and 5.
Pascal thus reaches an incorrect division ratio of 19:7:7.

Now Pascal again reasons incorrectly and argues that out of
the 19 favorable cases for A winning the game, six of these
(namely A1 B2 B3, A1C2C3, B1 A2 B3, B1 B2 A3, C1 A2C3, and
C1C2 A3) result in either both A and B winning the game or
both A and C winning the game. So he argues the net number
of favorable combinations for A should be 13 + (6/2) = 16.
Likewise he changes the number of favorable combinations for
B and C, finally reaching a division ratio of 16 : 5 1

2 : 5 1
2 . But

he correctly notes that the answer cannot be right, for his own
recursive method gives the correct ratio of 17:5:5. Thus, Pascal
at first wrongly believed Fermat’s method of enumeration was
not generalizable to more than two players. Fermat was quick
to point out the error in Pascal’s reasoning. In his letter dated
September 25, 1654, Fermat explains (Smith 1929, p. 562):

In taking the example of the three gamblers of whom the
first lacks one point, and each of the others lack two, which
is the case in which you oppose, I find here only 17 combi-

14 The general formula is: Maximum number of remaining rounds = (sum of
the number of rounds each player is short of winning) − (number of players −
1).
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nations for the first and 5 for each of the others; for when
you say that the combination acc is good for the first, recol-
lect that everything that is done after one of the players has
won is worth nothing. But this combination having made
the first win on the first die, what does it matter that the
third gains two afterwards, since even when he gains thirty
all this is superfluous? The consequence, as you have well
called it “this fiction,” of extending the game to a certain
number of plays serves only to make the rule easy and (ac-
cording to my opinion) to make all the chances equal; or
better, more intelligibly to reduce all the fractions to the
same denomination.

We next move to the renowned German mathematician and
philosopher Gottfried Wilhelm Leibniz (1646–1716), who is
usually remembered as the coinventor of differential calculus
with archrival Isaac Newton. However, he was also interested
in probability and famously made a similar mistake of incor-
rectly enumerating sample points. When confronted with the
question “With two dice, is a throw of twelve as likely as a throw
of eleven?”, Leibniz states in the Opera Omnia (Leibniz 1768,
p. 217):

. . . for example, with two dice, it is equally likely to throw
twelve points, than to throw eleven; because one or the other
can be done in only one manner.

Thus, Leibniz believed the two throws to be equally likely,
arguing that in each case the throw could be obtained in a single
way. While it is true that a throw of 11 can be realized only with
a five and a six, there are two ways in which it could happen:
the first die could be a five and the second a six, or vice-versa.
On the other hand, a throw of 12 can be realized in only one
way: a six on each die. Thus the first probability is twice the
second. Commenting on Leibniz’s error, Todhunter states (Tod-
hunter 1865, p. 48):

Leibniz however furnishes an example of the liability to er-
ror which seems peculiarly characteristic of our subject.

Nonetheless, this should not in any way undermine some of
the contributions Leibniz made to probability theory. For one
thing, he was one of the very first to give an explicit definition of
classical probability, except phrased in terms of an expectation
(Leibniz 1969, p. 161):

If a situation can lead to different advantageous results rul-
ing out each other, the estimation of the expectation will be
the sum of the possible advantages for the set of all these
results, divided into the total number of results.

In spite of being conversant with the classical definition,
Leibniz was very interested in establishing a logical theory for
different degrees of certainty. He may rightly be regarded as
a precursor to later developments in the logical foundations of
probability by Keynes, Jeffreys, Carnap, and others. Since Ja-
cob Bernoulli had similar interests, Leibniz started a communi-
cation with him in 1703. He undoubtedly had some influence in
Bernoulli’s Ars Conjectandi (Bernoulli 1713). When Bernoulli
communicated to Leibniz about his law of large numbers, the
latter reacted critically. As Schneider explains (2005, p. 90):

Leibniz’s main criticisms were that the probability of con-
tingent events, which he identified with dependence on in-
finitely many conditions, could not be determined by a fi-
nite number of observations and that the appearance of new
circumstances could change the probability of an event.
Bernoulli agreed that only a finite number of trials can be
undertaken; but he differed from Leibniz in being convinced
by the urn model that a reasonably great number of trials
yielded estimates of the sought-after probabilities that were
sufficient for all practical purposes.

Thus, in spite of Leibniz’s criticism, Bernoulli was convinced
of the authenticity of his theorem. This is fortunate because
Bernoulli’s law was nothing less than a watershed moment in
the history of probability.

A few years after Leibniz’s death, Jean le Rond d’Alembert
(1717–1783), who was one of the foremost intellectuals of his
times, infamously considered the following problem: “In two
tosses of a fair coin, what is the probability that heads will ap-
pear at least once?” For this problem, d’Alembert denied that
3/4 could be the correct answer. He reasoned as follows: once
a head occurs, there is no need for a second throw; the possi-
ble outcomes are thus H, T H, T T, and the required probability
is 2/3. Of course, d’Alembert’s reasoning is wrong because he
failed to realize that each of H, T H, T T is not equally likely.
The erroneous answer was even included in his article Croix ou
Pile15 of the Encyclopédie (d’Alembert 1754, Vol. IV, pp. 512–
513). Bertrand (1889, pp. ix–x) did not mince his words about
d’Alembert’s various faux pas in the games of chance:

When it comes to the calculus of probability, D’Alembert’s
astute mind slips completely.

Similarly, in his History of Statistics, Karl Pearson writes
(Pearson 1978, p. 535):

What then did D’Alembert contribute to our subject? I think
the answer to that question must be that he contributed ab-
solutely nothing.

In spite of Bertrand’s and Pearson’s somewhat harsh words,
it would be misleading for us to think that d’Alembert, a man
of immense mathematical prowess, was so naı̈ve that he would
have no strong basis for his probabilistic reasoning. In the Croix
ou Pile article, a sample space of {H H, H T, T H, T T } made
no sense to d’Alembert because it did not correspond to reality.
In real life, no person would ever observe H H , because once
an initial H was observed the game would end. By proposing
an alternative model for the calculus of probabilities, namely
that of equiprobability on observable events, d’Alembert was
effectively asking why his model could not be right, given the
absence of an existing theoretical framework for the calculus
of probabilities. D’Alembert’s skepticism was partly responsi-
ble for later mathematicians seeking a solid theoretical founda-
tion for probability, culminating in its axiomatization by Kol-
mogorov in 1933 (Kolmogorov 1933).

15 Heads or Tails
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4. CONFUSION REGARDING THE USE OF
STATISTICAL INDEPENDENCE

D’Alembert also famously considered the following prob-
lem: “When a fair coin is tossed, given that heads have oc-
curred three times in a row, what is the probability that the next
toss is a tail? When presented with the problem, d’Alembert in-
sisted that the probability of a tail must “obviously” be greater
than 1/2,16 thus rejecting the concept of independence be-
tween the tosses. The claim was made in d’Alembert’s Opus-
cule Mathématiques (d’Alembert 1761, pp. 13–14). In his own
words:

Let’s look at other examples which I promised in the previ-
ous Article, which show the lack of exactitude in the ordi-
nary calculus of probabilities.

In this calculus, by combining all possible events, we make
two assumptions which can, it seems to me, be contested.
The first of these assumptions is that, if an event has oc-
curred several times successively, for example, if in the
game of heads and tails, heads has occurred three times in
a row, it is equally likely that head or tail will occur on the
fourth time? However I ask if this assumption is really true,
and if the number of times that heads has already succes-
sively occurred by the hypothesis, does not make it more
likely the occurrence of tails on the fourth time? Because af-
ter all it is not possible, it is even physically impossible that
tails never occurs. Therefore the more heads occurs succes-
sively, the more it is likely tail will occur the next time. If
this is the case, as it seems to me one will not disagree, the
rule of combination of possible events is thus still deficient
in this respect.

D’Alembert states that it is physically impossible for tails
never to occur in a long series of tosses of a coin, and thus
used his concepts of physical and metaphysical probabilities17

to support his erroneous argument.
D’Alembert’s remarks need some clarification, because the

misconceptions are still widely believed. Consider the following
two sequences when a fair coin is tossed four times:

sequence 1 : H H H H

sequence 2 : H H H T .

Many would believe that first sequence is less likely than the
second one. After all, it seems highly improbable to obtain four
heads in a row. However, it is equally unlikely to obtain the
second sequence in that specific order. While it is less likely to
obtain four heads than to obtain a total of three heads and one
tail,18 H H H T is as likely as any other of the same length, even
if it contains all heads or tails.

A more subtle “mistake” concerning the issue of indepen-
dence was made by Laplace. Pierre-Simon Laplace (1749–
1827) was a real giant in mathematics. His works on in-
verse probability were fundamental in bringing the Bayesian

16 The correct answer is, of course, 1/2.
17 According to d’Alembert, an event is metaphysically possible if its prob-

ability is greater than zero, and is physically possible if it is not so rare that its
probability is very close to zero.

18 Remember the specific sequence HHHT is one of four possible ways of
obtaining a total of three heads and one tail.

paradigm to the forefront of the calculus of probability and of
statistical inference. Hogben says (1957, p. 133):

The fons et irigo of inverse probability is Laplace. For good
or ill, the ideas commonly identified with the name of Bayes
are largely his.

Indeed, the form of Bayes’ Theorem as it usually appears in
textbooks, namely

Pr{A j |B} =
Pr{B|A j } Pr{A j }∑n
i=1 Pr{B|Ai } Pr{Ai }

, (6)

is due to Laplace. In Equation (6) A1, A2, . . . , An is a sequence
of mutually exclusive and exhaustive events, Pr{A j } is the prior
probability of A j , and Pr{A j |B} is the posterior probability of
A j given B. The continuous version of Equation (6) can be writ-
ten as

f (θ |x) =
f (x |θ) f (θ)

∫∞
−∞ f (x|θ) f (θ)dθ

,

where f (θ) is the prior density of θ , f (x|θ) is the likelihood of
the data x, and f (θ |x) is the posterior density of θ .

Before commenting on a specific example of Laplace’s work
on inverse probability, let us recall that it is with him that
the classical definition of probability is usually associated, for
he was the first to have given it in its clearest terms. Indeed,
Laplace’s classical definition of probability is the one that is
still used today. In his very first paper on probability, Mémoire
sur les suites récurro-recurrentes et leurs usages dans la théorie
des hazards (Laplace 1774b), Laplace writes:

. . . if each case is equally probable, the probability of the
event is equal to the number of favorable cases divided by
the number of all possible cases.

This definition was repeated both in Laplace’s Théorie Ana-
lytique and Essai Philosophique.

The rule in Equation (6) was first enunciated by Laplace in his
1774 Mémoire de la Probabilité des Causes par les Evnements
(Laplace 1774a). This is how Laplace phrases it:

If an event can be produced by a number n of different
causes, the probabilities of the existence of these causes,
calculated from the event, are to each other as the prob-
abilities of the event, calculated from the causes; and the
probability of each cause is equal to the probability of the
event, calculated from that cause, divided by the sum of all
the probabilities of the event, calculated from each of the
causes.

It is very likely that Laplace was unaware of Bayes’ previous
work on inverse probability (Bayes 1764) when he enunciated
the rule in 1774. However, the 1778 volume of the Histoire de
l’Académie Royale des Sciences, which appeared in 1781, con-
tains an interesting summary by the Marquis de Condorcet19

(1743–1794) of Laplace’s article Sur les Probabilités which
also appeared in that volume (Laplace 1781). While Laplace’s

19 Condorcet was assistant secretary in the Académie des Sciences and was
in charge of editing Laplace’s papers for the transactions of the Academy.
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article itself makes mention of neither Bayes nor Price,20 Con-
dorcet’s summary explicitly acknowledges the two English-
men21 (Laplace 1781, p. 43):

These questions [on inverse probability] about which it
seems that Messrs. Bernoulli and Moivre had thought, have
been since then examined by Messrs. Bayes and Price; but
they have limited themselves to exposing the principles that
can be used to solve them. M. de Laplace has expanded on
them . . .

Coming back to the 1774 paper, after having enunciated
his principle on inverse probability, Laplace is famous for dis-
cussing the following problem: “A box contains a large number
of black and white balls. We sample n balls with replacement,
of which b turn out to be black and n − b turn out to be white.
What is the conditional probability that the next ball drawn will
be black?” Laplace’s solution to this problem essentially boils
down to the following, in modern notation. Let Xn be the num-
ber of black balls out of the sample of size n and let the proba-
bility that a ball is black be p. Also, let B∗ be the event that the
next ball is black. From Bayes’ Theorem, we have

f (p|Xn = b) = Pr{Xn = b|p} f (p)
Pr{Xn = b}

= Pr{Xn = b|p} f (p)
∫ 1

0
Pr{Xn = b|p} f (p)dp

.

Then the required probability is

Pr{B∗|Xn = b} =
∫ 1

0
Pr{B∗|p, Xn = b} f (p|Xn = b)dp

=

∫ 1

0
p. Pr{Xn = b|p} f (p)dp

∫ 1

0
Pr{Xn = b|p} f (p)dp

.

In the above, it is assumed that Pr{B∗|p, Xn = b} = p, that
is, each ball is drawn independently of the other. Laplace also
assumes that p is uniform in [0, 1], so that

Pr{B∗|Xn = b} =

∫ 1
0 pb+1(1− p)n−bdp
∫ 1

0 pb(1− p)n−bdp
=

b + 1

n + 2
.

In particular, if all of the n balls turn out to be black, then the
probability that the next ball is also black is (n + 1)/(n + 2).
The above problem has been much discussed in the litera-
ture and is known as Laplace’s rule of succession.22 Using the
rule of succession, Laplace considered the following question:

20 Upon Bayes’ death, his friend Richard Price (1723–1791) decided to pub-
lish some of his papers to the Royal Society. Bayes’ Essay was augmented by
an introduction and an appendix written by Price.

21 Laplace’s acknowledgement of Bayes appears in his Essai Philosophique
(Laplace 1814) English edition, p. 189.

22 Laplace’s rule of succession is also discussed by Pitman (1993, p. 421),
Sarkar and Pfeifer (2006, p. 47), Pearson (1900, pp. 140–150), Zabell (2005,
Chap. 2), Jackman (2009, p. 57), Keynes (1921, p. 376), Chatterjee (2003, pp.
216–218), Good (1983, p. 67), Gelman et al. (2003, p. 36), Blom et al. (1994,
p. 58), Isaac (1995, p. 36), and Chung and AitSahlia (2003, p. 129).

given that the sun has risen everyday for the past 5000 years,
what is the probability that it will rise tomorrow? Substituting
n = 5000× 365.2426=1826213 in the above formula, Laplace
obtained the probability 1826214/1826215 (0.9999994). Thus,
in his Essai Philosophique sur les Probabilités23 (1814) English
edition, p. 19, Laplace says:

Thus we find that an event having occurred successively any
number of times, the probability that it will happen again
the next time is equal to this number increased by unity di-
vided by the same number, increased by two units. Placing
the most ancient epoch of history at five thousand years ago,
or at 1826213 days, and the sun having risen constantly in
the interval at each revolution of 24 hours, it is a bet of
1826214 to one that it will rise again tomorrow.

Laplace’s calculation was meant to be an answer to Hume’s
problem of induction. Fifteen years before the publication of
Bayes’ Essay, the eminent Scottish philosopher David Hume
(1711–1776) wrote his groundbreaking book An Enquiry Con-
cerning Human Understanding (Hume 1748). In this work,
Hume formulated his famous problem of induction, which we
now explain. Suppose out of a large number n of occurrences
of an event A, an event B occurs m times. Based on these ob-
servations, an inductive inference would lead us to believe that
approximately m/n of all events of type A is also of type B, that
is, the probability of B given A is approximately m/n. Hume’s
problem of induction states that such an inference has no ratio-
nal justification, but arises only as a consequence of custom and
habit. Earlier in his book, Hume gave the famous “rise-of-the-
sun” example which was meant to illustrate the shaky ground
on which “matters-of-fact” or inductive reasoning rested (Hume
1748):

Matters of fact, which are the second objects of human rea-
son, are not ascertained in the same manner; nor is our ev-
idence of their truth, however great, of a like nature with
the foregoing. The contrary of every matter of fact is still
possible; because it can never imply a contradiction, and is
conceived by the mind with the same facility and distinct-
ness, as if ever so conformable to reality. That the sun will
not rise to-morrow is no less intelligible a proposition, and
implies no more contradiction, than the affirmation, that it
will rise. We should in vain, therefore, attempt to demon-
strate its falsehood. Were it demonstratively false, it would
imply a contradiction, and could never be distinctly con-
ceived by the mind.

Laplace thus thought that his calculations provided a possi-
ble solution to Hume’s problem of induction. However, Laplace,
who so often has been called France’s Newton, was harshly crit-
icized for his calculations. Zabell says (2005, p. 47):

Laplace has perhaps received more ridicule for this state-
ment than for any other.

Somehow, Laplace must have felt that there was something
amiss with his calculations. For his very next sentence reads:

23 Philosophical Essay on Probabilities
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But this number is incomparably greater for him who, rec-
ognizing in the totality of phenomena the principal regu-
lator of days and seasons, sees that nothing at the present
moment can arrest the course of it.

Laplace here seems to warn the reader that his method is cor-
rect when based only on the information from the sample, but
his statement is too timid. To understand the criticism leveled
against Laplace’s calculation, consider the following example
given by the Austro-British philosopher Karl Popper (1902–
1994) (Popper 1957; Gillies 2000, p. 73): Suppose the sun rises
for 1,826,213 days (5000 years), but then suddenly the earth
stops rotating on day 1,826,214. Then, for parts of the globe
(say Part A), the sun does not rise on that day, whereas other
parts (say Part B) the sun will appear fixed in the sky. What
then is the probability that the sun will rise again in Part A of
the globe? Applying the generalized form of the rule of succes-
sion with n =1826214 and l =1826213 gives a probability of
0.9999989, which is almost as high as the original probability
of 0.9999994! The answer is preposterous since it does not give
enough weight to the recent failure.

The rule of succession is perfectly valid as long as the as-
sumptions it makes are all tenable. Applying the rule of succes-
sion to the rising of the sun, however, should be viewed with
skepticism for several reasons (see, e.g., Schay 2007, p. 65). A
major criticism lies in the assumption of independence. More-
over, it is also dubious if the rising of the sun on a given day can
be considered a random event at all. Finally, the solution relies
on the principle of indifference: the probability of the sun rising
is equally likely to take any of the values in [0, 1] because there
is no reason to favor any particular value for the probability. To
many, this is not a reasonable assumption.

5. CONCLUSION

We have outlined some of the more well-known errors that
were made during the early development of the theory of prob-
ability. The solution to the problems we considered would seem
quite elementary nowadays. It must be borne in mind, how-
ever, that in the times of those considered here and even af-
terwards, notions about probability, sample spaces, and sam-
ple points were quite abstruse. It took awhile before the proper
notion of a mathematical model was developed, and a proper
axiomatic model of probability was developed only as late as
1933 by Kolmogorov (1933). Perhaps, then, the personalities
and their errors discussed in this article should not be judged
too harshly.

[Received September 2011. Revised October 2011.]
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