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How wet should be the reaction coordinate for ligand unbinding?
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We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP)
[P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal
1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit
water. This RC is estimated as a linear combination of the multiple available order parameters that
collectively can be used to distinguish the various stable states relevant for unbinding. We pay special
attention to determining and quantifying the degree to which water molecules should be included in
the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct
role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained
to move along an axis of symmetry. This prediction is validated through extensive calculations
of the unbinding times through metadynamics and by comparison through detailed balance with
unbiased molecular dynamics estimate of the binding time. However when the steric constraint is
removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP
identifies a good one-dimensional RC involving various motional degrees of freedom. Published by

AIP Publishing. [http://dx.doi.org/10.1063/1.4959969]

I. INTRODUCTION

The unbinding of ligand-substrate systems is a problem of
great theoretical and practical relevance. To take an example
from the biological sciences, there is now an emerging view
that the pharmacological e�cacy of a drug depends not just
on its thermodynamic a�nity for the host protein, but also,
and perhaps even more so, on when and how it unbinds from
the protein.1,2 While a variety of experimental techniques can
provide unbinding rate constants, gleaning a clear molecular
scale understanding from such experiments into the dynamics
of unbinding is di�cult, and at best indirect. This makes
it in principle very attractive to use atomistic molecular
dynamics (MD) simulations to study the unbinding process.
However, most successful drugs unbind at time scales much
longer than milliseconds.1,2 Even with the fastest available
supercomputers, this makes it virtually impossible to use
MD simulations to obtain statistically reliable insight into
unbinding dynamics.

This time scale limitation makes it crucial to complement
MD with enhanced sampling techniques. These techniques
accelerate the movement between metastable states separated
by high (�kBT) barriers but still allow recovering the
unbiased thermodynamics and kinetics. While in principle one
could construct Markov State Models (MSM)3 to study the
unbinding dynamics from multiple short, unbiased simulations
without any enhanced sampling, the associated high barriers
typical for unbinding make this extremely di�cult. As such,
reported applications of MSM to such problems have been
indirect, and instead of directly studying unbinding, these
studies4,5 have actually looked at the drug binding problem
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where the barriers tend to be smaller. To directly simulate
the unbinding process, it thus becomes unavoidable to use
enhanced sampling methods.6

On the other hand, the use of enhanced sampling methods
to study high barrier systems has its own caveats. Many
such methods involve controlling the probability distribution
along a low-dimensional reaction coordinate (RC), which best
captures all the relevant slow degrees of freedom. Typically
many such order parameters or collective variables (CVs)
are available that can distinguish between various metastable
states of the system at hand. For ligand unbinding, these
CVs could include ligand-host relative displacement, their
conformations, and their hydration states. However, often the
fluctuations in these CVs can be coupled in a non-trivial
manner, and it can be tricky to select a RC without having a
prescience of the CVs whose fluctuations matter the most for
driving the process of interest.

In this work, we aim to answer the following question:
given a certain choice of order parameters (or collective
variables) for a ligand-host system, what is the optimal
1-dimensional RC for unbinding that can be expressed as
a linear combination of these collective variables? We are
especially interested in determining how wet this RC is.
Wetness here denotes the weight ascribed to the descriptor
of the solvation state of the binding site, relative to other
descriptors contributing to the RC. This will indicate how
important biasing water density fluctuations in the host
binding pocket is to the kinetics of ligand unbinding. While
it is well-known through various theoretical, simulation, and
experimental studies that collective water motion into/out
of binding pockets is correlated with unbinding/binding,
respectively,6–12 we wish to have a quantitative measure of the
utility of biasing these water fluctuations in the sampling of
ligand unbinding.
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Here, we investigate this question for ligand unbinding in
a much studied model hydrophobic ligand-host system (Fig. 1)
interacting through Lennard-Jones potential in an aqueous
environment made of explicit TIP4P water molecules.9,11,13

Many excellent methods exist for the purpose of RC
optimization.14–22 However, the energy barrier for unbinding
in this system as reported through previous studies is as
high as 30–35 kBT , making it crucial for the purpose of RC
optimization to use a method that does not rely on accurate
sampling of rare reactive unbinding trajectories. For this
reason, we use a recently proposed method SGOOP (spectral
gap optimization of order parameters)23 that enables us to
determine an optimal RC through relatively short biased
simulations performed using a trial RC (see Fig. 2 and
Sec. II A for details of SGOOP).

We consider two di↵erent scenarios in this work, both of
which are expected to arise in the context of ligand unbinding.
In the first scenario, we sterically constrain the system so that
the ligand can move only along the centro-symmetric axis
z (see Fig. 1). In the second, we lift this steric constraint.
We find that in the presence of the steric constraint, water
density fluctuations in the host cavity must be part of the
optimal RC. This is in excellent agreement with the previous
work on this and related systems9,11,24–28 where for a sterically
constrained setup, there is a bimodal water distribution at a
critical ligand-cavity separation, around which the unbinding
pathway involves moving from dry to wet states. However
we find that when the steric constraint is removed and the
ligand is free to move in any direction, the role of water
in the optimal RC is minimal to none. In this case, water
is less of a driving variable for unbinding, but more of a
driven variable that follows the movement of the ligand. Here
SGOOP identifies how the optimal RC is distorted from the
z-axis (Fig. 1), which turns out to be the minimum free
energy pathway for this system as reported in a previous
work.11

FIG. 1. Cavity-ligand system in explicit water with axes marked. Red:
fullerene shaped ligand atoms. Orange: cavity atoms that interact with the
ligand and with water molecules. Blue: wall atoms. The water molecules
are not shown for clarity. See Section III and the supplementary material for
corresponding interaction potentials and further details.29

FIG. 2. Flowchart summarizing the various key steps in SGOOP.23 The
whole process can in principle be iterated between the second and the last
steps to further improve the sampling.

We validate our results through extensive calculations of
unbinding time statistics for the sterically constrained ligand
using the infrequent metadynamics approach30 and find that
the optimal RC is indeed wet to some extent. In addition,
because the analogous barrier for ligand binding is much
smaller than for unbinding, we use unbiased MD estimates
of the binding time and validate that detailed balance is
satisfied between unbinding and binding rates. We perform the
infrequent metadynamics calculations using the optimal RC
as per SGOOP and two other sub-optimal RCs with no water
content and more than optimal water content, respectively. Our
findings clearly demonstrate the improvement in the quality
and accuracy of the unbinding time statistics by using the
optimized RC predicted through SGOOP. With the optimized
CV, the unbinding time statistics gives a superior agreement
with the binding time statistics obtained through unbiased
MD. Furthermore, it also gives a much improved Poisson fit
for the cumulative distribution function of unbinding times,
as quantified through the Kolmogorov-Smirnov test proposed
in Ref. 31. This shows that the optimized RC predicted
through SGOOP indeed does a better job of capturing
the slow dynamics of the system. Previous applications of
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SGOOP23 were restricted to using the optimized RC for
faster convergence of the free energy. The results reported
in this work comprise the first demonstration of improving
kinetics calculations using SGOOP and mark a step further
towards systematic high-throughput studies of unbinding
dynamics.

II. THEORY

In this section, we summarize the key methods23,30,31 used
in this work and their underlying principles.

A. Spectral gap optimization of order
parameters (SGOOP)

SGOOP23 is a method to optimize low-dimensional
order parameters or collective variables for use in enhanced
sampling biasing methods like umbrella sampling and
metadynamics, when only limited prior information is known
about the system (see Fig. 2 for a flowchart summarizing
the key steps in SGOOP). This optimization is done from
a much larger set of candidate CVs  = ( 1, 2, . . . , d),
which are assumed to be known a priori. SGOOP is based
on the idea that the best order parameter, which we call
the reaction coordinate (RC), is one with the maximum
separation of time scales between visible slow and hidden
fast processes. This time scale separation is calculated as
the spectral gap between the slow and fast eigenvalues of
the transition probability matrix on a grid along any CV.23

The transition probability matrix is calculated in SGOOP
using an approximate kinetic model that can be derived, for
example, through the principle of maximum caliber.23,32,33 Let
{�} denote this set of eigenvalues, with �0 ⌘ 1 > �1 � �2 . . ..
The spectral gap is then defined as �s � �s+1, where s is the
number of barriers apparent from the free energy estimate
projected on the CV at hand that are higher than a user-
defined threshold (typically & kBT). In this case, assuming
overdamped dynamics, the eigenvalues beyond the first s + 1
correspond to relaxation times in each of the individual
wells,34–36 which for an optimal RC should be much smaller
than the escape times from the wells.

The key input to SGOOP as used in this work is an
estimate of the stationary probability density (or equivalently
the free energy) of the system, accumulated through a
biased simulation performed along a sub-optimal trial RC
given by some linear or non-linear function f0( ), where
 denotes the larger set of candidate CVs. Any type of
biased simulation could be used for this purpose, as long as
it allows projecting the stationary probability density estimate
on generic combinations of CVs without having to repeat the
simulation. Metadynamics37 provides this functionality in a
straightforward manner and hence we use it here. Given this
information, we use the principle of maximum caliber23 to set
up an unbiased master equation for the dynamics of various
trial CVs f ( ). Through a post-processing optimization
procedure, we then find the optimal RC as the f ( ) which
gives the maximal spectral gap of the associated transfer
matrix. We refer to Ref. 23 for details of the master equation
and the maximum caliber expression that relates the transfer

matrix to stationary probabilities and facilitates calculation of
the eigenvalues and hence the spectral gap.

As described in the Introduction, for the problem of ligand
unbinding in this work, we take this larger set of CVs to be the
various components of the separation between the ligand and
the host, and the solvation state of the host pocket (Fig. 1).
In more complex systems, further members could be added to
this set. Since counting the number of barriers in a projected
free energy profile could be a↵ected by sampling noise, we
smooth the free energy by averaging over bins. To ensure
that the calculated spectral gaps are robust with respect to the
amount of smoothening, we perform an averaged estimate of
the spectral gaps using di↵erent amounts of smoothing (see
the supplementary material for details).29

Note that the approximate kinetic model used here in
SGOOP is equivalent to the Smoluchowski equation whereby
(i) the dynamics of any CV is described by a forced di↵usion
process and (ii) the di↵usion constant along this CV is
independent of position. This kinetic model is used in SGOOP
to improve the choice of the RC that should be biased given
limited information starting with a trial RC. The calculation
of rates is then done with this improved RC. It is important to
note that the infrequent metadynamics method for calculating
rate constants30

does not assume Smoluchowski dynamics or
constant di↵usivity (see Sec. II B for details).

B. Dynamics from infrequent metadynamics

The infrequent metadynamics approach30,31 is a recently
proposed method which has been used to obtain rate constants
in various molecular systems.11,38 It involves time-dependent
biasing of a few selected (typically one to three) order
parameters or collective variables (CVs) out of the many
available, in order to hasten the escape from metastable
free energy basins.39 By periodically adding repulsive bias
(typically in the form of Gaussians) in the regions of CV
space as they are visited, the system is encouraged to escape
stable free energy basins where they would normally be
trapped for long periods of time. The central idea in infrequent
metadynamics is to deposit bias rarely enough compared to
the time spent in the transition state regions so that dynamics
in the saddle region is very rarely perturbed. Through this
approach, one then increases the likelihood of not corrupting
the transition states and preserves the sequence of transitions
between stable states. The acceleration of transition rates
achieved through biasing can then be calculated by appealing
to generalized transition state theory,40 which yields the
following simple running average for the acceleration:30

↵ = he�V (s, t)it, (1)

where s is the collective variable being biased, � = 1/kBT

is the inverse temperature, V (s, t) is the bias experienced
at time t, and the subscript t indicates averaging under the
time-dependent potential. This approach is expected to work
best in the di↵usion controlled regime.41

The infrequent metadynamics method requires a good and
small set of slow collective variables demarcating all relevant
stable states of interest. Whether this is the case or not can be
verified a posteriori by checking if the cumulative distribution
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function for the transition times out of each stable state is
Poissonian,31 as quantified through the Kolmogorov-Smirnov
test described in detail in Ref. 31. While metadynamics can
still be performed with two, three, or more biasing CVs,
the computational gain obtained by compressing the slow
dynamics into an optimized 1-dimensional RC is immense,
especially given the infrequent nature of biasing (see the
supplementary material for detailed simulation parameters
such as the frequency of biasing used in this work).29 Using
SGOOP (Sec. II A) allows us to select a good 1-dimensional
RC as a function of the many available choices of CVs, as
we show in this work. This choice increases the probability
of passing the test of Ref. 31 once the relatively expensive
infrequent metadynamics runs are performed.

III. SYSTEM DETAILS

The model ligand used in this work is a C60 fullerene
and the binding pocket is an ellipsoidal cavity carved from a
hydrophobic slab, all interacting via Lennard-Jones potentials
and enclosed by a periodic box with explicit water and cubic
edge length 5.96 nm. This system was introduced previously
in works such as Refs. 9 and 11. The pocket sites are fixed and
interact with the model ligand with a Lennard-Jones site-site
potential having � = 0.4152 nm, which is kept the same for
all interactions. The pocket itself comprises 2 types of atomic
species, interacting with the ligand atoms (color red in Fig. 1)
as described below. The system comprised a total of 34 296
atoms, with the total number of ligand, cavity, and solvent
atoms equaling 60, 9020, and 25 216, respectively.

1. Cavity atoms (color orange in Fig. 1), with Lennard-Jones
✏ = 0.008 kJ/mol.

2. Wall atoms (color blue in Fig. 1), with Lennard-Jones
✏ = 0.0024 kJ/mol.

The solute-solvent interactions are represented by
the geometric mean of the respective water and solute
parameters, in accordance with the Optimized Potential for
Liquid Simulations (OPLS) formalism.42 All simulations are
performed in explicit TIP4P water13 with the GROMACS
4.5.4 MD package43 patched with the PLUMED plugin.44

During the equilibration stage, temperature and pressure are
controlled with the stochastic velocity rescaling thermostat45

and Berendsen barostat.46 The production runs were NVT
(constant number, volume, temperature) with a temperature
of 300 K. The PLUMED plugin44 was used to carry out
metadynamics calculations. An integration time step of 2 fs
was used for all runs. All other relevant simulation details are
provided in the supplementary material.29

IV. RESULTS AND DISCUSSION

A. Ligand constrained to move along one direction

In the first investigated case, the system dynamics is
sterically constrained so that the ligand can move only
along the centro-symmetric axis z (Fig. 1). This system and
constraint have already been investigated in studies aimed
at understanding hydrophobic interactions.9,11,24–26 Here we

consider two descriptors; the z-component of the ligand-cavity
separation and the number of water molecules in the host
cavity, denoted w. The number of water molecules is computed
using a sigmoidal function which makes w continuous and
di↵erentiable (see the supplementary material29 for details
including precise definition of w) as implemented in the
enhanced sampling plugin PLUMED.44 We then seek the best
1-d RC f of the following form:

f (z, w) = {z + mww; mw � 0}. (2)

Throughout this paper mw is a measure of the wetness of the
RC, with mw = 0 corresponding to a completely dry RC, and
higher values denoting increasingly wetter RCs.

We first perform a short metadynamics simulation by
biasing f0 = z. This starting run is performed with frequent
biasing since the objective here is to get a sense of the free
energy, and not the kinetics (see the supplementary material
for various biasing frequencies and other parameters).29

Through this, we can obtain an estimate of the stationary
probability density along any f (z, w) by using the reweighting
functionality of metadynamics.37 By using SGOOP, we then
get an estimate of the optimal mw ⇡ 0.075 in Eq. (2) which
maximizes the spectral gap. This is shown in Fig. 3(a) where
an estimate of the spectral gap versus mw for di↵erent lengths
of the starting metadynamics trajectory is provided. Other
trajectories used in SGOOP shown in Figs. 3(b) and 3(c) are
of length 10 ns, 15 ns, and 20 ns, respectively. The results
are extremely robust with respect to simulation time and
parameters. Fig. 3(a) has 3 di↵erent curves calculated which
for all practical purposes collapse into one, indicating that
the spectral gaps estimated with trajectories of three di↵erent
simulation times are virtually indistinguishable and well-

FIG. 3. (a) Spectral gap versus the amount of wetness of the RC, mw (see
Eq. (2)) for the case when the ligand constrained to move along a line. The
optimal RC can be clearly seen to be at mw ⇡ 0.075. Three di↵erent profiles
are provided, which were calculated by using the starting metadynamics tra-
jectories of di↵erent lengths as indicated in legends, performed with biasing
CV z . The spectral gap is normalized so that its value for mw = 0 is 1. (b)
and (c) are the corresponding trajectories for the distance z and the number
of pocket waters w. See Sec. IV A and the supplementary material for precise
definition of w.29 In all sub-figures here, magenta stars, blue diamonds, and
red circles denote results for trajectories of lengths 10 ns, 15 ns, and 20 ns,
respectively.
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converged. Furthermore, using an entirely di↵erent starting
metadynamics trajectory generated using di↵erent Gaussian
width gives the same optimal wetness of the RC (see the
supplementary material).29

The optimal wetness of the RC in Eq. (2) given
by mw ⇡ 0.075 is validated by performing extensive
multiple independent unbinding simulations using infrequent
metadynamics, starting from the bound pose z = 0 (Sec. II B).
The unbinding time is calculated as the time taken to reach
z = 1.4 nm for the first time.11 We perform three independent
sets of 24 simulations (totaling 72 simulations) for (1) mw = 0,
a dry RC, (2) mw = 0.075, the RC with optimal wetness
found from SGOOP, and (3) mw = 0.15, the RC with more
than optimal wetness. The empirical and fitted cumulative
distribution functions for the unbinding time statistics using
the three di↵erent RCs with varying amounts of wetness are
shown in Figs. 4(b)-4(d), along with the respective p-values
for fits to the ideal Poisson distributions, quantified using
the Kolmogorov-Smirnov test from Ref. 31, and mean times
log(2) divided by median ratio for each case. An ideal fit to the
Poisson distribution would result if both these numbers would
be close to 1, and this would suggest that the accelerated time
scales found using metadynamics are reliable. The RC with

optimal water coe�cient mw = 0.075 obtained using SGOOP
gives Poisson metrics closest to 1. Fig. 4(a) shows the mean
unbinding times obtained using the three RCs with di↵erent
values of the wetness parameter mw and these are compared
with the corresponding estimate provided in the literature9

calculated from accurate free energy calculations together
with the principle of detailed balance. While it must be said
that the completely dry RC does a reasonable job in terms of
the p-value and order of magnitude agreement with unbiased
MD, it is very clear from this plot as well that the RC with
optimal wetness gives the best performance as per various
metrics shown in Fig. 4. Thus to summarize, the optimal
RC for this case indeed has a small but distinct amount of
wetness.

B. Ligand free to move in any direction

In this case, we remove the steric constraint forcing the
system to move along z and allow the ligand to freely move
in any direction (see Fig. 1). Because the system is axially
symmetric, we consider 3 order parameters, namely, the z-
component of the ligand-cavity separation, ⇢ =

p
x

2 + y2, and
the number of water molecules in the host cavity, denoted w.

FIG. 4. Unbinding times for the sterically constrained ligand using di↵erent simulation protocols. In (a) the mean unbinding times as obtained through the three
RCs with di↵erent water coe�cients are plotted along with error bars (blue circles). Also plotted is the corresponding estimate of mean unbinding time (solid
black line) with errors (dashed black line) by using the principle of detailed balance with the unbiased estimate of binding time. All error bars correspond to
±standard deviation intervals. (b) to (d) give the empirical (black dashed line) and fitted (solid red line) cumulative distribution functions (CDF) for unbinding
time statistics using di↵erent RCs with varying amounts of wetness mw (see Eq. (2)). From (b) to (d), respectively, mw is 0, 0.075 and 0.15. Also indicated
are respective p-values for fit to the ideal Poisson distribution, quantified using the Kolmogorov-Smirnov test from Ref. 31, and mean times log(2) divided by
median ratio for each case. The closer are both these values to 1, the more ideal is the Poisson distribution fit illustrating the reliability of the dynamics generated
from metadynamics. As can be seen from these figures, the RC with optimal water coe�cient of 0.075 as obtained from SGOOP gives the best Poisson metric
as per both these criteria.
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We then seek the best 1-d RC f of the following form:

f (z, ⇢, w) = {z + m⇢⇢ + mww; m⇢ � 0,mw � 0}. (3)

We first perform a short metadynamics simulation by biasing
with f0 = z, a purely dry RC. As before, this starting run is
performed with frequent biasing since the objective here is
to get a sense of the free energy, and not the kinetics. This
gives an estimate of the stationary probability density along
any f (z, ⇢, w) by applying the reweighting functionality of
metadynamics.37 We then use SGOOP to obtain an estimate
of the optimal values as m⇢ ⇡ 0.6, mw ⇡ 0.0 in Eq. (3). These
values maximize the spectral gap.

Fig. 5 gives an estimate of the spectral gap versus (m⇢,mw)
based on an initial metadynamics trajectory of duration 20 ns
biasing z. The results are again extremely robust with respect
to how long the simulation was run. In this case as well,
using an entirely di↵erent starting metadynamics trajectory
generated using di↵erent Gaussian width gives the same
optimal value of the RC (see the supplementary material).29

As can be seen by comparing Fig. 5 to Fig. 3, the
wetness of the optimal RC in the case of unconstrained
motion is closer to 0. In a sense, the water fluctuations in the
cavity appear to be caused or driven by the unbinding, rather
than being a driving variable for unbinding as it is in the
constrained case. The primary reaction coordinate depends
on z and ⇢, the displacement variables of the ligand with
respect to the cavity. Indeed SGOOP finds m⇢ ⇡ 0.6, which
gives the distortion of the reaction path from the z-axis
(see Fig. 1). This is the same as the slope of the minimum
free energy pathway in (z, ⇢) space reported in the previous
work.11 As described in detail in Ref. 11, removing the steric
constraint causes the bound ligand to roll over and take a
slightly more stable o↵-center ground state and therefore a
di↵erent binding pose. This leads to a slight di↵erence in
the binding free energies of the two setups considered in this
work.

Since the optimal wetness of the RC in this case is close to
0, we do not perform any kinetics calculations. Instead we refer
to the results from Ref. 11, where infrequent metadynamics
with a similar completely dry RC for this setup gave very

FIG. 5. Contour plot of spectral gap versus (m⇢,mw) with the starting
metadynamics trajectory of duration 20 ns used in SGOOP. The optimal
RC can be clearly seen to be at (m⇢,mw)⇡ (0.6,0.0). The spectral gap is
normalized so that its value for (m⇢,mw)= (0,0) is 1.

good agreement through detailed balance with the unbiased
MD estimate of the binding time.

In the supplementary material,29 we also provide
illustrative free energy profiles for both setups along a variety
of RCs.

V. DISCUSSION AND CONCLUSIONS

In this work, we have applied the recently proposed
method SGOOP23 to the problem of determining the reaction
coordinate for ligand unbinding in a model system in explicit
water. By using short biased metadynamics simulations
performed using a sub-optimal reaction coordinate, we find
that the true reaction coordinate involves water in the case
when the system is sterically constrained to move along an
axis of symmetry. In the case when this constraint is lifted, the
role of water in the optimal RC is reduced. Our predictions of
the optimal RC are validated by extensive calculations of the
unbinding rate constant using metadynamics with infrequent
biasing30,31 with di↵erent RCs. We believe that the application
of SGOOP to optimize the choice of RC for ligand unbinding,
combined with the approach of Refs. 30 and 31, provides
an important step in the quest to invent methods useful for
systematic and possibly high throughput calculations of the
unbinding rate constant in more complex and realistic protein-
ligand systems, a quantity extremely di�cult to compute
without careful enhanced sampling based approaches.38,47

The hope is that this approach will contribute a step toward
the success of computational drug discovery programs that
take drug unbinding dynamics into account. It would also be
interesting to see how closely the RC and associated unbinding
pathways identified through SGOOP correlate with realistic
reaction paths obtained from single molecule experiments on
dissociation of biomolecular complexes. We also think that
the current work is a demonstration of how SGOOP may
be used to answer similar questions in systems other than
drug unbinding where the role of water density fluctuations in
driving the dynamics is believed to play a role but which is
hard to quantify.

Using the model system in this work allows us to study
an unbinding problem involving solvation and steric related
complexities, yet where we can perform extensive simulations
of the reverse binding process. Undoubtedly more realistic
systems will be harder to tackle than the model system of
the current work, possibly involving a much larger set of trial
collective variables than used here and requiring more care in
coming up with this trial set to begin with. For instance, it
might be crucial to incorporate the conformational fluctuations
in the receptor or the ligand molecule or both into the trial set
of collective variables. In principle, this should be possible
with SGOOP and is the subject of current investigations. As
long as the system’s intrinsic dynamics displays a time scale
separation between few slow and remaining fast processes,
and hence possesses an associated spectral gap, we expect
SGOOP to be useful in obtaining a sense of fluctuations that
matter for driving the dynamics in rare event systems.

We would like to emphasize that the systems considered
in this work, in spite of their model nature, are in fact
quite challenging test cases. This is due to the enormous
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barrier height involved (around 30–35 kBT), and the relative
insignificance of the barrier in the dewetting related bimodal
distribution (around 1–2 kBT)9 relative to the main barrier.
As such, even the trial RC that excludes wetness entirely,
considered in this work and in Ref. 11, does a remarkably
decent job when used with metadynamics.30,31 Yet SGOOP
does very well in picking up signals in the right directions
for improving the RC towards ideal. This demonstration
makes us optimistic that in more complex systems where the
barrier associated to movement of water is expected to be
higher,38,48–50 the algorithm will be even more useful. Some
such studies are already underway and will be the subject of
future publications.
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