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I. INTRODUCTION 

A large number of experimental methods are currently used to probe the 
dynamics of molecular motions in solids, liquids, and gases. These include 
lineshape studies of electronic,' infrared, and Raman spectra' ; studies of 
the shape of the spectral density function obtained from light- and neutron- 
scattering  experiment^"^; lineshape studies in dielectric relaxation'; spin 
relaxation experiments* ; acoustic attenuationg ; as well as studies of static 
and frequency-dependent transport coefflcients." 

All of these experimental methods share one characteristic in common. 
They all use as a probe an external field which is weakly coupled to the 
system and they all study the response of the physical system to the probe. 
This is to be expected since a more strongly coupled probe would influence 
the dynamical behavior of the system and would thereby obscure the 
fundamental molecular processes taking place. 

The experiments can be divided into two categories according to whether 
the probe is mechanical or thermal. For example, light scattering falls into 
the first category whereas the measurement of the thermal conductivity 
falls into the second. The reason for making this division is the fact that the 
response of systems to mechanical probes is much easier to treat than their 
response to thermal probes. The interaction between a mechanical probe 
and the physical system can be described by an interaction Hamiltonian, 
whereas thernial probe system interactions must be handled differently. 

The basic theoretical problem is to describe the response of an equili- 
brium system to a weak force field be it mechanical or thermal in nature. 
The solution to this problem is by now well known and there exist many 
excellent reviews on the subject."-" A particularly informative account of 
this work together with historical comments has been given by Zwanzig.'2 

The major conclusions of this theory, which is known as linear response 
theory, can be simply stated as follows. Whenever two systems are weakly 
coupled to one another such as radiation weakly coupled to matter, or 
molecular vibrations weakly coupled to molecular motion, it is only 
necessary to know how both systems behave in the absence of the coupling 
in order to describe the way in which one system responds to the other. 
Furthermore, the response of one system to the other is completely describ- 
able in terms of time correlation functions of dynamical properties. 
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Time-dependent correlation functions have been familiar for a long time 
in the theory of noise and stochastic processes. In recent years they have 
become very useful in many areas of statistical physics and spectroscopy. 
Correlation functions provide a concise method for expressing the degree 
to which two dynamical properties are correlated over a period of time. 

The correlation function Cap(?) for two dynamical properties a and p 
is defined mathematically as 

where the bracket indicates an equilibrium ensemble average. When a and 
fl are different properties of the system, Cap is called a cross-correlation 
function, and when they are the same property it is called an autocorrela- 
tion function. The dynamical property p( t )  can be computed in the follow- 
ing way. Consider a Gibbsian ensemble. Each replica system in the en- 
semble is in an initial state characterized by a point in phase space. As time 
progresses each replica system point traverses a trajectory in phase space 
which is uniquely determined by its initial state and by the canonical 
equations of motion. The function 0 varies on each trajectory due to its 
dependence on the phase. Thus corresponding to each replica system there 
is an initial point in phase space, a corresponding trajectory, and a cor- 
responding time variation of the property 0. Thus for each replica system 
the product a(O)p(t) depends only on the initial state of that system and the 
time. Averaging this product over all replica systems is equivalent to 
averaging it over a distribution of initial states consistent with the con- 
straints on the ensemble. The bracket in the above expression merely indi- 
cates this averaging procedure. In the applications that are discussed here 
only the equilibrium canonical ensemble is used. In other applications 
different equilibrium and non-equilibrium ensembles are used. There is, of 
course, a corresponding quantum-mechanical definition which we will 
discuss later. 

Because the response of a system to a specific weak probe is directly 
related to a correlation function, many experiments have been devised to 
determine specific correlation functions. Only a few such experiments will 
be mentioned here. The interested reader should consult the excellent 
reviews on the subject.l2-I6 

A complete determination of the differential scattering cross section for the 
scattering of neutrons from liquids completely determines the Van Hove 
scattering function.'* This function is related through a space-time Fourier 
transform to the autocorrelation function of the number density at two 

The most important experiment of this type is thermal neutron scattering, 
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different space-time points in the liquid. In principle, this function con- 
tains all relevant information concerning the structure and dynamics of 
liquids that is necessary to describe liquid equilibrium and transport 
properties. There are still many experimental difficulties preventing the 
complete realization of this experimental program. 

With the advent of lasers, light scattering has become a convenient and 
powerful tool for the determination of liquid properties.'gs20 Brillouin 
scattering experiments involve the spectral resolution of light scattered at 
various angles from a liquid or solid system. The differential scattering 
cross section obtained from this inelastic light-scattering experiment is 
directly related to the long wavelength and low frequency behavior of the 
Van Hove scattering function. It supplements the information gained from 
neutron scattering experiments but is not capable of giving short wavelength 
and high frequency information. Nevertheless, it is useful for the determin- 
ation of hydrodynamic and transport and recently it has 
been shown how it can be used to determine rate constants in very fast 
chemical  reaction^?^-^' 

The shape of the vibration-rotation bands in infrared absorption and 
Raman scattering experiments on diatomic molecules dissolved in a host 
fluid have been used to determine2*I5 the autocorrelation functions 
(u(0) - u(t))  and (P2(u(0) - u(t)))  where u is a unit vector pointingalongthe 
molecular axis and P2(x) is the Legendre polynomial of index 2. These 
correlation functions measure the rate of rotational reorientation of the 
molecule in the host fluid. The observed temperature- and density-depen- 
dence of these functions yields a great deal of information about reorienta- 
tion in solids, liquids, and gases. These correlation functions have been 
successfully evaluated on the basis of molecular  model^.'^ 

Another experimental method that has been used to determine orienta- 
tional correlation functions in macromolecular systems is based on meas- 
urements of the time-dependence of the depolarization of fluorescence?6 
From these ,measurements rotational diffusion coefficients and the shape 
of the rotating macromolecule have been determined?' 

Microwave spectroscopy and dielectric relaxation studies probe the 
autocorrelation function of the total electrical polarization of the system 
and thereby also provide information about molecular reorientation. This 
information is difficult to interpret. 

All of these methods yield information about the time evolution of the 
specific correlation functions. What is usually measured, except in the 
case of the depolarization of fluorescence, is the power or frequency 
spectrum of the respective correlation functions over a wide range of 
frequencies. 
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There are many experiments which determine only specific frequency 
components of the power spectra. For example, a measurement of the 
diffusion coefficient yields the zero frequency component of the power 
spectrum of the velocity autocorrelation function. Likewise, all other 
static coefficients are related to autocorrelation functions through the 
zero frequency component of the corresponding power spectra. On the 
other hand, measurements or relaxation times of molecular internal 
degrees of freedom provide information about finite frequency compo- 
nents of power spectra. For example, vibrational and nuclear spin relaxa- 
tion times yield finite frequency components of power spectra which in the 
former case is the vibrational resonance f r e q u e n ~ y , 2 ~ ~ ~ ~  and in the latter 
case is the Larmour precessional frequency? Experiments which probe a 
range of frequencies contribute much more to our understanding of the 
dynamics and structure of the liquid state than those which probe single 
frequency components. 

There are several compelling reasons to interpret experiments in terms of 
correlation functions. The most important among these is that the results 
of several different experiments can often be correlated and used to clarify 
the basic underlying dynamical processes in the liquid. For example, 
infrared absorption and Raman spectroscopy, as well as dielectric relaxa- 
tion and the depolarization of fluorescence studies, provide information 
about molecular reorientation through the correlation functions 
<u(O) u(t))  and ([+[u(O) - u(t)]* - 11). These different measurements can 
be used to fill in gaps in the frequency-dependence of the power spectra, 
thereby providing a complete picture of the particular dynamical processes 
involved. Furthermore, correlation functions provide a useful link between 
theory and experiment. Any theoretical model which stands up to an 
exhaustive comparison with the full experimental frequency-dependence of 
the power spectra of the various correlation functions reflects more strongly 
on the nature of the liquid state than does one which only gives the trans- 
port coefficients or equivalently the zero frequency components of the 
power spectra. Thus a set of quite different experiments can be used to test 
a given model of a liquid and to assess the validity of certain ad hoc 
assumptions which unavoidably go into any theoretical model of liquids. 

It can be stated that time correlation functions have done for the theory 
of time-dependent processes what partition functions have done for equili- 
brium theory. The time-dependent problem has become well defined, but 
no easier to solve. One now knows which correlation function corresponds 
to a given time-dependent phenomenon. Nevertheless, it is still extremely 
difficult to compute the correlation function. This is analogous to equili- 
brium theory where one knows that to compute any equilibrium property 
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of a system, one must compute a well-defined partition function-a very 
difficult task. 

At present the complete time dependence of only a few time-correlation 
functions have been determined experimentally. Furthermore, the theory 
of time-dependent processes is such that we know in principle which experi- 
ments can be used to determine specific correlation functions, and in addi- 
tion certain general properties of these correlation functions. However, one 
of the major difficulties encountered in developing a theory of time-correla- 
tion functions arises from the fact that there seems to be, at least at present, 
no simple way of bypassing the complex many-body dynamics in a realistic 
fashion. Consequently both theoretically and experimentally there are 
difficult obstacles impeding progress towards a satisfactory understanding 
of the dynamic behavior of liquids, solids, and gases. 

In the case of monatomic fluids digital computers have recently been 
employed to cope with the mathematical difficulties encountered above. 
Two methods have been used and both have been reviewed by Nelson.” 
The first method is used to determine the equilibrium properties of fluids 
by Monte Carlo techniques. This method does not, however, provide 
dynamical information. The second method, molecular dynamics, is a 
brute force solution to the N-body problem. Alder and Wainwright3’ have 
used this latter method to study fluids of “hard sphere” atoms, and 
“ square well ” atoms. These authors originally pointed out the potential 
applications and limitations of this method. Rahman demonstrated that it 
is feasible to do dynamics studies on fluids having more realistic two-body 
interaction  potential^.'^ He studied the dynamical properties of liquid 
argon with a Lennard-Jones interaction potential. Rahman was primarily 
interested in the time-dependent correlation functions which enter into the 
theory of neutron scattering. Among other things, his time-correlation func- 
tions show that the motion of argon atoms in the fluid is more complicated 
than that assumed earlier in simplified model calculations. According to 
Zwanzig,’z “ Rahman’s calculations provide what is probably the most 
detailed ‘ experimental ’ information currently available about dynamical 
processes in liquids.” 

Until now there have been no simulations done on liquids whose con- 
stituents possess internal degrees of freedom. We have therefore undertaken 
a series of computer studies of the simplest liquids of this type: liquids 
made up of the diatomic molecules carbon monoxide and nitrogen. There 
were a number of compelling reasons for making these studies: 

(1) To obtain a realisticand detailed picture of how individual molecules 
rotate and translate in these classical fluids. 
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(2) To examine in detail some of the time-correlation functions that 
enter into the theories of transport, light absorption, and light scattering 
and neutron scattering. 

(3) To see how well simulations based on various proposed potentials 
reflect physical reality. 

(4) To test various stochastic assumptions for molecular motion that 
would simplify the N-body problem if they were valid. Molecular dynamics 
is far superior to experiment for this purpose since it provides much more 
detailed information on molecular motion than is provided by any experi- 
ment or group of experiments. 

These studies are to be regarded as “ experiments ” which probe time- 
correlation functions. They provide the raw data against which various 
dynamical theories of the liquid state can be checked. These studies pro- 
vide insight into the microscopic dynamical behavior of real diatomic 
liquids for both the experimentalist and theoretician alike. 

There have been a number of attempts to calculate time-correlation 
functions on the basis of simple models. Notable among these is the non- 
Markovian kinetic equation, the memory function equation for time-cor- 
relation functions first derived by Zwanzig” and studied in great detail by 
Berne et al.34 This approach IS reviewed in this article. Its relation to other 
methods is pointed out and its applicability is extended to other areas. The 
results of this theory are compared with the results of molecular dynamics. 

Linear response theory is reviewed in Section I1 in order to establish 
contact between experiment and time-correlation functions. In Section 111 
the memory function equation is derived and applied in Section IV to the 
calculation of time-correlation functions. Section V shows how time- 
correlation functions can be used to guess time-dependent distribution 
functions and similar methods are then applied in Section VI to the deter- 
mination of time-correlation functions. In Section VII a succinct review is 
given of other exact and experimental calculations of time-correlation 
functions. 

XI. LINEAR RESPONSE THEORY 

A. Linear Systems 

When a system of molecules interacts with a weak radiation field the 
interaction Hamiltonian in the dipole approximation is 

H‘ = - f. d3rM(r) * E(r, t )  
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where E(r, t )  is the classical electric field at the space-time point (r,  t) and 
M(r) is the electric polarization at the point r. 

M(r) = 1 P m  5(r - r m )  
m 

Here p is the electric dipole operator and r the center of mass position of 
molecule m. The Hamiltonian can also be written as 

H’ = - c p,,, - E(rm, t )  
m 

There is a completely analogous development for a system of nuclear 
spins interacting with a time-dependent magnetic field polarized along the 
x axis. 

It is a fact that when a system interacts with a weak probe theinteraction 
Hamiltonian can often be written as 

H’ = - J d 3  rB(r)F(r, 0 (2) 
Here 

m (3) 

with B a molecular property and r the position of particle in. F(r, t )  is a 
field which acts on the property B(r) at the space-time point (r, t ) ,  much as 
the electric field at the space-time point (r, t) acts on the dipole moments 
in the neighborhood of the point r. F(r, t )  depends only on the properties 
of the probe. [ ]+ denotes the anticommutator. 

More generally there may be a set of different forces Fi((ry t) acting on the 
molecular system so that 

H’ = - c i d3rDi(r)Fl(r, t )  

This form of the interaction potential between a system and a probe is quite 
ubiquitous. We shall therefore restrict our attention to the study of how a 
system responds to the adiabatic turning on of a Hamiltonian of the form 
given by Eq. (2). 

It is convenient to assume from the outset that in the absence of the 
probing field F the expectation value of the observable B is zero. In the 
presence of the probe F, (B) is in general not zero, because the system is 
“ driven ” by the force F. This also applied to other properties of the system 
which in the absence of the probe are expected to be zero. The perturbation 
thus “induces” certain properties of the system to take on nonzero 
expectation values. If the perturbation is sufficiently weak it produces a 
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linear response in the system. In the linear regime, doubling the magnitude 
of F simply doubles the magnitude of the induced responses. A simple 
example of linear response is Ohm’s law. 

J = a - E  

according to which the current induced in a medium is linear in the electric 
field E (although not necessarily in the same direction as E because of 
possible anisotropies in the conductivity tensor a). 

The expectation value of the property A  ̂ at the space-time point (r, t) 
depends in general on the perturbing force F at all earlier times t - t‘ and 
at all other points r’ in the system. This dependence springs from the fact 
that it takes the system a certain time to respond to the perturbation; that 
is, there can be a time lag between the imposition of the perturbation and 
the response of the system. The spatial dependence arises from the fact 
that if a force is applied at one point of the system it will induce certain 
properties at this point which will perturb other parts of the system. For 
example, when a molecule is excited by a weak field its dipole moment may 
change, thereby changing the electrical polarization at other points in the 
system. Another simple example of these nonlocal changes is that of a 
neutron which when introduced into a system produces a density fluctua- 
tion. This density fluctuation propagates to other points in the medium in 
the form of sound waves. 

It is consequently quite natural to write 

<A(r, t ) )  = s’ dt’ J dr’aAE(r, r’; t ,  t’)F(r’, t ’ )  (4) 
- m  

where it is assumed that the force has been turned on in the past. Note that 
the induced response (A(r, t)) is linear in the applied force F and further- 
more depends on the values F a t  all earlier times t ,  and at all points in the 
system. Causality is built into the above equation since the response 
follows and does not precede the application of the force. r‘; t ,  2‘) 
is called the “ after-effect function ” because it relates the response 
(A@,  t)) at the space-time point (r, t )  to the disturbance at the space-time 
point (r‘, t’) .  Note that the response to a delta function force, 

F(r, t )  = 6(r -ro) 6(t - to) 

<A(r, t ) )  = @ A E ( r ,  ro; 2, to) ~ l ( t  - to) 

(5)  

(6) 

is 

where q( t )  is the Heaviside function. Thus (PA&, ro , t, to) is the response 
(A@,  t)) to a unit delta function pulse applied at the space-time point 
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(ro , to). If in the absence of the perturbation the system is a large uniform 
system in thermodynamics equilibrium, then the response should be in- 
variant to an arbitrary shift in the origin of the space-time coordinate 
system by (ao, to). Consequently for such systems the condition 

<A(r + ao, t + to)> = <A(r,O> 

must hold. This condition can only be met if the after-effect function has 
the form 

@ A  d r ,  ro; t ,  to) = @ A  B ( r  - ro , t - to) (7) 
Thus the response of a spatially uniform system in thermodynamic equi- 
librium is always characterized by translationally invariant and temporaly 
stationary after-effect functions. This article is restricted to a discussion 
of systems which prior to an application of an external perturbation are 
uniform and in equilibrium. The condition expressed by Eq. (7) must be 
satisfied. Caution must be exercised in applying linear response theory to 
problems in double resonance spectroscopy where non-equilibrium initial 
states are prepared. Having dispensed with this caveat, we adopt Eq. (7) 
in the remainder of this review article. 

The response can thus be written as 

<A(r, t)> = f dt’ j dr’BAB(r - r’, t - t’)F(r’, t ’ )  (8) 
-m 

Once the after-effect function has been determined the respanse to any 
form of F(r, 1) can be predicted. The after-effect function is an intrinsic 
dynamical property of the system, which is independent of the precise 
magnitude and form of the applied force, and which succinctly summarizes 
the way in which the constituent particles in a many-body system cooperate 
to give the observed response of the system to the external perturbation. 

That theafter-effect function (DAB@, t) is a real function of the space-time 
coordinates (r, t )  can be deduced from the fact that, since A is an observ- 
able, the response ( A @ ,  t)> to a real force must be real. 

The force F(r, t )  is in general a very complicated real function of the 
position and time. Any such force can be regarded as a superposition of 
monochromatic components, 

p ,-i[k.r-corl e-c l r l  ., 0 
km 

The factor e-’Ltl has been introduced so that the field vanishes in the infinite 
past. Furthermore a field which is left on for an infinite time, no matter how 
weak it-is, will tend to heat the system. To avoid this eventuality the 
response is calculated in the limit that E -P 0 +. Since the response is 
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linear in the force it suffices to compute the response of the system to each 
one of the monochromatic waves separately and then to superpose the 
results to find the total response. Therefore without loss of generality we 
consider only the response to a single monochromatic force. Introducing 
the above force into Eq. (8) yields 

(A@, t ) )  = X A B ( k , , o ) F k m  e-i[k'r-mrl (9) 

where X A B ( k ,  a) is the frequency and wave vector-dependent complex 
susceptibility governing the linear response of (A(r, t ) )  to the mono- 
chromatic perturbation. The susceptibility is obviously the Fourier-Lap 
lace transform of the after-effect function. 

Since the after-effect function is a real function of (r, t ) ,  the susceptibility 
can be written in terms of its real, X f A B ( k ,  a), and imaginary, f A B ( k ,  a) 
Pa-, 

X A B ( k  0) = X f A B ( k ,  0) + iX'>B(k,  a) (1 1) 

Comparison of Eqs. (101 and (11) yields 
03 

X f A B ( k ,  o) = lim 

XffAB(k, o) = lim 

dt dfiAB(r, t )  cos [k  - r - at] e-e' 

dt  dfiAB(r, t )  sin [ k  * r - at] e-" 

t -0 0 

m (12) 

e+O 0 

The field applied to the system must in general be real, so that the full 
monochromatic force should be the superposition, 

-i[k.r-mtl + ~ * ~ , ~ ~ i [ k . r - m ? ] l  e-sll'l 
*CFk,m 

and the total response is the superposition of responses from each compo- 
nent, or 

i[k.r-mt] (A(r, t ) )  = *[XAB(k, W)Fk, e-qk'r-mrl + XAB(-  k, -o)F*km 1 
(13) 

The following properties follow directly from these definitions, 

(9 X f A B ( - k ,  -0) = X f A B ( k ,  0)  

(ii) X f f A B ( - k ,  -0) = - X " A B ( ~ ,  0)  (14) 
(iii) X * A d k ,  = X A B ( - k ,  
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These properties result from the fact that the sin and cos are respectively 
odd and even functions of their arguments. Condition (iii) can also be 
deduced directly from Eq. (10) by demanding that the induced response be 
real (that is (A) = (A)*). Condition (iii) allows Eq. (13) to be expressed as 

(A@,  ?)) = Re XAB(k,o)Fk,,, e-i[kr-co‘l 

The response of the system to the external monochromatic perturbation 
of Eq. (9) is accompanied by the absorption and emission of energy. This 
follows because under the influence of the external perturbation the system 
changes state. The difference between the energy absorbed and emitted is 
the energy dissipation. The energy dissipated per second Q(k, o), can be 
related to a susceptibility of the system. The time rate of change of the 
system’s energy is simply dl f ’ /a t  where H’ is given by Eq. (2) Q(k, o) is 
obtained from the expectation value of d l f ’ / d t  by averaging it over one 
period of the monochromatic field. Thus 

0 aF 
d t  j d r < B ( r ,  t )> - (r, t )  

v d t  Q(k, w) = j,, 
Substitution of Eq. (13) results in 

where V is the volume of the system. 
The imaginary part of the susceptibility XBB(k,o) is therefore related to 

the net energy dissipated per unit time by the system. It is obvious that all 
real processes are always accompanied by some energy dissipation* so that 
Q(k, o)2 0. It then follows from Eq. (16) that 

The susceptibility can in principle be determined in the following way: A 
force, 

is switched on and the response (A(r , t ) )  is measured as a function of time. 
From Eq. (10) it is seen that 

(A(r, t)) = Fk,,{X’AB(k, a) cos @c - r - of] + X”’AB(k, a) sin [k r - of]} 

F(r, t) = Fk,,, cos [k - r - at] (17) 

(18) 

* According to the Weiner-Khinchin theorem &(k, w) 2 0 so that it can be proved 
quite generally that Q(k,w) 2 0 and consequently a linearly driven system always 
dissipates energy. 
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If phase-sensitive detection is used then f A B  can be found from the part 
of (A) that oscillates in phase with the applied field (dispersion) and x ” A B  

can be found from the part of (A(r , t ) )  that oscillates 90” out of phase with 
the applied field (absorption). In practice it is unnecessary to measure both 
x‘ and x” because there exists a theoretical relationship between x‘ and x” 
so that a determination of one member of the pair uniquely determines the 
other member of the pair. It follows from this fact that the complex 
function, x(k, a) - X”(k, a), is analytic and vanishes on an infinite 
semicircle in the lower half of the complex frequency plane (2-plane) and 
that x’AB and x ” A B  are related through the Kramer’s Kronig relations 

where P denotes the Cauchy principle part. Thus to compute x ‘ A B  at one 
frequency, one has to know x n A B  at all frequencies and vice versa. 

In spectroscopy the Kramer’s Kronig relations are often used. For ex- 
ample the optical rotatory dispersion (ORD) is related to the circular 
dichroism (CD) through such a pair of  transform^.^^ Workers in the area 
usually measure the (CD) and determine the (ORD) through Kramer’s 
Kronig inversion of the (CD). 

B. The Statistical Theory of the Susceptibility 

There are a number of different ways to determine the quantum mechan- 
ical formulas for the susceptibilities X A B ( k ,  0). Perhaps the simplest and 
most elegant procedure is due to Kubo.” We follow this procedure here. 

The total Hamiltonian of our system fi consists of two parts: H:, the 
unperturbed Hamiltonian of the system and fi’(t), the perturbation 

This perturbation, as we have seen, can also be written as 

Since the responses that we are trying to calculate are linear in  the force, 
it suffices to develop F(rm, t) in a spatial Fourier series and then to compute 
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the response to each term separately. The total response is found by super- 
posing each of these terms. Thus without loss of generality we consider 
only the response to the simple Hamiltonian 

P(t) = - C +[B,, e-" .rm] + F,(t) 
m 

= -B-,F&) (22) 

The density matrix, 6, characterizing the state of the responding system 
obeys the Liouville equation 

ap 1 
at iA 
-- - - [A, 61- 

The procedure that we adopt here is to: 

given that the system is initially in thermodynamic equilibrium. 
(1) Solve the Liouville equation for the density matrix p(f) at time 1, 

(2) Linearize the solution in the field F. 
(3) Compute the response <A@, t ) )  with the linearized solution. 

The formal solution of the Liouville equation is 

1 '  
1R -03 

b(t) = 6(- CO) + dt'Uo(t - t')[H'(t'), b(t')]- Uo- l ( t  - t') (24) 

where [ 1- denotes the commutator and Uo(t - t ') is the unitary time- 
displacement operator exp [ - (i/h)Ho(t - t ' ) ]  which transforms the state of 
the system at t',Jr(t'), into the state Jl(t). In the Heisenberg picture of 
quantum mechanics the basis states are time independent, and the dynami- 
cal operators contain all of the time dependence. These operators depend 
on time in such a way that the arbitrary properly A at time t is generated 
from A(?') by the unitary transformation, Uo(t - t ' )  

or 
A(?) = Uo- l ( t  - t')A(t')Uo(t - t ' )  

A(t) = exp [k A0(t - f)] A(?') exp [ - I?,(? - f ) ]  (25) 

That Eq. (24) formally solves Eq. (23) is easily verified. 
It is assumed that the system is in a state of thermodynamic equilibrium 

at temperature T prior to the application of the forces Fj. p (  - 00) must 
consequently be the canonical density matrix, b0, 

where p-' = KTand Q is the canonical partition function. After the forces 
Fare adiabatically turned on, the density matrix p ( t )  varies with the time. 

p, = Q-' 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 77 

The deviation of the density matrix b(t)  from its initial value bo grows as the 
force grows so that 

PO) = 00 + O(F) 
The commutator in Eq. (24) depends on the applied forces through the 
perturbation Hamiltonian B'(t ') and through the density matrix P(t'). To 
describe the linear response of the system it is sufficient to replace j3(t') 
in the commutator by Po so that 

1 '  
l f i  -a 

P ( t )  = PO + 7 dt'Uo(t - t')[A'(t'), bO]- Uo- ' ( t  - t') + O(F2) (26) 

In order to proceed with the method outlined above let us note, by taking 
the spatial Fourier transform of Eq. (8), that 

(A&(t ) )  = d t '@AB(k ,  t - t')Fk(f') (27) 
-a 

where (PAB(k, t) is the spatial Fourier transform of the after-effect function. 
TQ proceed we compute (Ak(t)> with the density matrix of Eq. (26). The 
resulting response is then compared with the preceding equation in order 
to find a closed formula for @,,(k, t). ( A , ( t ) )  computed'in this fashion is 

(28) 

where tr denotes a trace. Note that U;'(t - t') = Uo(t')Uo-'(t), and 
Uo(t - t') = Uo(t)Uo-'(t'). Furthermore, the trace of a product of operators 
is invariant to a-cyclic permutation in the order of appearance of the 
operators. This allows Eq. (28) to be written as 

1 '  
h -4) 

<Ak(t))  = - dt'trAk Uo(t - t')[A'(t'), bO]- Uo-'(t  - t ' )  

after substitution of the perturbation Hamiltonian of Eq. (22). The after- 
effect function, (PAB(k, t), follows directly from a comparison of Eqs. (29) 
and (27), 

t, = (i B - k l )  (30) 

The properties A ,  and B- were defined previously as 
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Let us assume that the single particle properties 2 and B have definite 
symmetry under coordinate inversion, P ,  so that 

= & A A m  

P B m = & B B m  

where the signatures and E~ of 2, and B, are + 1 or - 1 dependingon 
whether the corresponding operators are even or odd on inversion. Thus 

A PAkP = & A 2 - k p 2  = & A A - k  

PB-kP = & B B k 8 '  = & B B k  

It should now be noted that the expectation value is invariant under an 
inversion transformation. This follows directly from the invariance of a 
trace to similarity transformation. Thus* 

i 
@AB(k, t )  = - [ A k ( t ) ,  B - k ] -  = tr - p [ A k ( t ) ,  B - , ] -  p̂ P (; > h  

Now if the Hamiltonian is invariant under inversion, that is, if the potential 
is symmetric, 

PAk(t)P = Pe'H'/''Ak e-*Ht/"P 
- & eiHt/#A e-iHt/fi 

A -k - 
Thus we see that 

@A&, t )  = - [ A - k ( f ) ,  = &AEB@AB(-k, t )  (32) (; ) 
It can be concluded that if = E~ the after-effect function is an even func- 
tion of the wave vector whereas if = - E ~  it is an odd function of the 
wave vector. 

Now that we have determined the quantum-mechanical form of the 
after-effect function for an equilibrium system, we can determine the re- 
sponse to a monochromatic field. This response has the same frequency 

* It can be demonstrated that the aftereffect function (PAB&, t )  can also be written as 

or 

wh6re b =(l/ih)[B- x,fi]- is the time rate of change of&,. The formula above is called 
the Kubo transform of the time-correlation function <B- k(0)Ak(t)). That (PAB(kr t )  is 
given by this formula can be demonstrated by expanding <(i/h([Ak(t),B- k]> in terms of 
the energy eigenstates of A. 
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and wave vector as the field, and is entirely prescribed by the complex 
susceptibility xAB(k, a) of Eq. (11) which becomes 

(33) 
QI 

XAB(k, 0) = I dk+'"'(; [A+k(t), B-k]- 
0 

The inversion symmetry of aAB implies that, 

x A B ~  a) = E A E B x A B ( - ~ ,  a> (34) 

and 

Another important property of ,the after-effect function @AB(k ,  t) can be 
derived. Note that 

) @AB(-k,  - t )  = - [A-k(-t) ,  Bk]- (; 
Since the trace is invariant to a cyclic permutation of the operators, it 
follows that 

@,B(-k, - t )  = -(g [Bk(f), A _ , ] - )  = -@m(ky t )  (36) 
i 

and 

@BB(-k,  - t )  = -@BB(k, t )  

C. The Reciprocal Relations 

The operators A k  and 8, are 

A k  = C $[Am, eik "*I + 
m 

8, E C $[B,, eik * 'm] + 

The single particle properties { d m }  and { 8 ,} are Hermitian. 2- k and 8- k 

are consequently the Hermitian conjugates of A , ,  8, .  Observables can 
quite generally be classified as time-even or time-odd depending on whether 
they do or do not change sign on time reversal. All even time derivatives of 
the coordinates are even under time reversal while all odd derivatives are 
odd under time reversal. Thus the Hamiltonian is time even, the angular 
momentum is time odd and the linear momentum is time odd. Time-even 
properties are represented by real Hermitian operators, while time-odd 
properties are represented by imaginary Hermitian operators. 

m 
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The properties 2 and 8 ,,, have the property that 

A*,,, =?,A,,, 
A 

B* m = Y B B  m 

where y A  and yo are the time reversal signatures of the observables. Thus if 
2,  is time-even yA = 1, whereas if it is time-odd y A  = - 1 .  The same holds 
true for y B  . 

From the definitions of A, and E k  it follows that 
A* - 

k - YAJ- k = YJ+ 
8*& = y B 8 - k  = YES+& 

where 2' , and 8' k denote the Hermitian conjugates of 2, and 8,. 
In the absence of external magnetic fields, or for that matter any external 

pseudovector field, the exact energy eigenstates of a system can only be 
degenerate with respect to the total angular momentum of the system. This 
source of degeneracy can be removed if we assume that the body is en- 
closed in a container with rigid walls. It is always possible in this case to 
choose the energy eigenstates to be real. Consider the matrix elements of 
2, and B ,  in the energy representation in which the eigenstates are real. 
From the preceding relation it is seen that 

(n 12*&l m, = 12'&l m> (37) 
Since the states are real 

(n I A * k \  m)* = (n l j ? k l  m) = yA(n I f f+&l  m)* = yA(m lff&l n)  (38) 

The last equality follows from the definition of the Hermitian conjugate. 
Consequently 

(n 12kl m, = yA(m lAkl n, 
and similarly (39) 

(n 1 8 & I  m, = y B i m  Is&] n, 
The operators 2, and 8, are seen to be symmetric or antisymmetric 
depending on their symmetry in time. 

Let us now consider the time dependence of the one-sided correlation 
function, 

Because the trace is invariant to a cyclic permutation in the order of the 

operators, 

(A,(t)B- ,(O)) = Tr 0 eiBrIfi 2 & eiRrB 8 - &  

(0 ( A  k ( W -  do)) = ( A  k(O)B- k( - 0 )  
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The trace can be expanded in the complete set of energy eigenstates des- 
cribed above. Then 

The second equality follows from the definition of the Hermitian conjugate 
and is (Bk(O)A-k(t)). The third equality follows from the reality of the 
states and is (A- k(o)Bk(t)). Consequently 
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From the properties (i), (ii), and (iii) for <Ak(t)B- k ( 0 ) )  and (B- k ( O ) A k ( t ) )  

it is easily seen that 

0) @ A &  t )  = - @ B A ( - k  - t )  

(ii) t )  = + Y A Y B @ B A ( - ~ ,  t )  (404 
(iii) @*AB(k, t )  = @,B(-k, 0 = YAYB@B,& t> 

These relationships can be combined with the transformation properties of 
QAB(k, t )  under reflection summarized in Eq. (32) 

(id @ A B ( - ~  t )  = E A E B @ A B ( k t  t )  

Conditions (i) and (ii) together give 

(&) 

(40d) 

and 

@ A d k ,  t )  = h A h B @ B A ( k ,  t )  

where h, = Y,E, and h, = Y B E B  are the signatures of the properties 
and 8, under combined inversion and time reversal. 

It should be noted that 

@ B E &  t> = -@BB(k , - t )  

@ * s B ( k ,  t )  = @ B B ( k ,  t )  (W 
and 

@ B B ( ~ ,  t )  = @ ~ d - k ,  t )  

so that @ B B ( k ,  t )  is a real odd function of the time and a real even function 
of k. 

From Eq. (33) it follows that 

XA&, 0) = ~ A ~ B x B A ~ ,  0) W f )  

The same arguments can be developed for a system which is in a uniform 
external magnetic field, B. The eigenvectors cannot be made real in this 
case and the wave functions have the property +*(I#) = +( - 8). It then 
follows that 

X A B ( ~ ,  0, B) = ~ A ~ B x B A ( ~ ,  w-B) (41) 
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These symmetry relations are called the Onsager reciprocal relations. Their 
meaning is best illustrated by reference to the following problem. Suppose 
the interaction Hamiltonian is 

It then follows from completely equivalent arguments that 

< B j k ( t ) )  = c f dt’@ji(k, t - t ’ ) ~ I k ( t ’ )  
1 -m 

where Qjl(k, t )  is the after-effect function that relates the jth response at 
time t to the Zth field at all previous times. The reciprocal relations then 
give 

QjLk t )  = hjh,@lj(k, t )  
or 

X& 0) = ht hjXlj(k, 0) 

According to these relations the response ( B j )  produced by a unit pulse of 
Fi is identical except for sign to the response ( B i )  produced by a unit pulse 
of F,. 

D. The Fluctuation-Dissipation Theorem 

The lineshape of the power dissipation function, Q(k, a), is determined 
by the imaginary part of the susceptibility, fss(k, a) as was shown in the 
previous section. 

0 
Q(k, 0) = v 2 X”B& 0) lFko lz  

Since many important dynamical properties of a many-body system are 
explored through precise lineshape measurements, it is worth studying some 
of the properties of XnBg(k, 0). 

According to Eq. (14) 
m 

0 
X*BB(k, 0) = XBB( - k, -0) = I dt e-iO‘@BB( - k, t )  

Transforming from t to - - t  and substitution of Eq. (14) leads to 
0 

X*BB(k, 0) = - 1 dt eiot@BB(k, t )  
- m  
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The imaginary part of the susceptibility can now be found from the 
difference x B B  - x * B B ,  

The quantity ([B,(t);  B- J-) can be expanded in terms of the complete set 
of energy eigenstates In), 

( [ B k ( t ) ,  B-kl-) = 1 (pn - pm>(n  lBkl m)(m IB-kl  n, exp 
nm 

where pn is theBoltzmannfactor Q-' exp (- PEJ, on, = (En - E J h ,  and 
E n  is the nth energy eigenvalue. The right-hand side of this equation can 
be simplified by expressing the difference between the Boltzmann factors as 

1 Pn pn - p m 
= [I - e-pfimmn 

Substitution of the resulting equation into X"gB(k ,  o) and subsequent use 
of the definition of the delta function yields 

Thus from the properties of the delta function it is seen that 
m 

(44) 

The quantity (Bk(t)B- k ( 0 ) )  appearing in the integral is a "one-sided " 
quantum-mechanical time-correlation function. The quantum-mechanical 
cross-correlation function CAB(k, t) of the dynamical variables A k  , Bk 
is defined as 

1 
A -a 

X"BB(k, w) = - (1 - e-'") [ d t  e'"'(Bk(t)B-k(O)) 

# 

c.4 B(k, t )  (*[A k ( f ) ,  B- do)] + ) (45) 

where [ ] + denotes the anticommutator, or symmetrized product, 

[a, PI+ = UP + Pa 
From the preceding section it is easily shown that 

(0 CAB@, t )  = C d - k - 2 )  
(ii) C,B(k,t) = Y A Y B C A B ( + ~ , - ~ )  

(iii) C*AB(k, t )  = CAB(-k,  t )  = - Y A Y B  CBA(k,  t> 
(iv) cAB(k, t )  = & A & B C A B ( - k ,  t )  
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Combining the results leads to the relations 

CAB&, 0 = ~ A ~ B C B A & ,  t) (46W 
The autocorrelation function satisfies the following relations 

CBB(k, t )  = C B B ( - ~ Y  t )  = C B B ( ~ Y - ~ )  = CBB(-k, t )  

and (464 

C*BB(k,t) = CBBtk4 

The autocorrelation function is a real even function of k and t. 

CAB&, 0, 
The Fourier transform, GAB(k, 0) of the time-correlation function 

W 

GAB(k, W) = 1 d t  eimtCAB(k, t )  (47) 
-00 

plays a very important role in linear response theory. Expansion of 
GBB(k, 0) in the energy representation and repetition of the same steps that 
resulted in Eq. (44) leads to the result 

W 

GBB(k, 0) i= -k e-Bfim] J- d t  eim'(&(t)B-k(0)> (48) 

This equation is now used to eliminate the integral on the right-hand side 
of Eq. (44) so that 

or 

since XBB(k, W) = XBB(-k, W), it fOIfOWS that CBB(k, t )  = CBB(-k, 2). 
Substitution of Eq. (50) into Q(k,o) yields 

The power dissipation is linearlyrelated to GBB(k, 0) which is called, for 
obvious reasons, the power spectrum of the random process Bk . It should 
be noted that the energy dissipated by a system when it is exposed to an 
external field is related to a time-correlation function CBB(k, t )  which 
describes the detailed way in which spontaneous fluctuations regress in the 
equilibrium state. This result, embodied in Eq. (51), is called thefluctuation 
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dissipation the~rern.~' It is a direct consequence of this theorem that weak 
force fields can be used to probe the dynamics of molecular motion in 
physical systems. A list of experiments together with the time-correlation 
functions that they probe is presented in Table I. An experiment which 

TABLE I 

Time-Correlation Functions and Experiments 

Experimental 
measurement Dynamical quantity Time-correlation function 

Diffusion coefficient 

Rotational diffusion 
coefficient 

Infrared absorption 

Raman scattering; 
depolarization of 
fluorescence 

Spin-rotation relax- 
ation time 

NMR lineshape 

Mossbauer lineshape 

Neutron scattering 

Brillouin scattering 

V, C.M. velocity of 
tagged molecule 

P angular velocity 
about molecular 
C.M. 

u, unit vector along 
molecular transi- 
tion dipole 

U 

J, angular momentum 
about molecular 
C.M. 

M,, x component of 
the magnetization 
of the system 

rl, position of Ith 
nucleus 

r l ,  position of lth 
nucleus in fluid 

al': trace of the - . .  
(polarized scattering) polarizability tensor 

of molecule 1 

Brillouin scattering: xyth element of 
(&polarized scatter- polarizability tensor 
ing) of molecule I 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 87 

determines Q(k, 0) determines GBB(k, 0) and consequently through Fourier 
inversion CBB(k,  t), 

The one-sided correlation function <B,(r)B- ,(O)) could have been deter- 
mined instead of CBB(k, t). From Eqs. (48) and (51) 

This kind of investigation is becoming so common in infrared spectro- 
scopy that investigators are becoming more concerned with the appropriate 
time-correlation function than with the frequency spectrum itself. 

In the classical limit (h + 0) Eq. (49) reduces to 

(54) 
0 

x " B B ( ~ ,  0)  = - GBBCYk, 0)  KT 
where 

+ W  

ti-0 00 

GBBc'(k ,  0) = lim 1- df eimrCBB(k, f) 

is the correspondence rule limit of the power spectrum of the quantum- 
mechanical time-correlation function. The classical time-correlation func- 
tion cBBcr(k, t) is defined as 

cBBcr(k, t )  = 5 drf"'(r)B-&(r) eiLfB,(T) ( 5 5 )  

Where r is the initial phase point of the system, L is the Liouville operator, 
f")(r) is the canonical distribution function, and Bk(r )  and B- ,(r) are the 
values of the classical properties Bk and B-,  when the system is in the 
classical state r. Much work has been done to determine how the quantum- 
mechanical functions approach the corresponding classical functions. 

There is an alternative, and perhaps more intuitive way to derive the 
results of the preceding section. For simplicity we consider the case when a 
monochromatic force is applied to the system. The Hamiltonian of Eq. (2) 
then takes the form 

H'(t)  = -)[&,F, cia' +~kF*kme-'m']  

when the applied force is monochromatic. The operator 8, is as before 
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From the definition of 8, it should be noted that 8, and 8- k are Hermitian 
conjugates. According to the Golden Rule of time-dependent perturbation 
theory the probability per unit time, W,,,(k, o), that the field (k, o) 
induces a transition in the system from the initial state l i )  to the final 
state If) is given by 

2 x  w*f(k, = @ ~ F k , m ~ 2 ~ ( i ~  B + k  If)] 6(o - 

where ha,, -= E, - E, and the delta function conserves energy. In a sense 
the external field transfers momentum, hk and energy ho to the system in 
the transition. The probability that the system is initially in the state li) is 
simply the Boltzmann factor pi = Q-' e-BEi. The probability per unit 
time that the probe will transfer momentum hk and energy ho to the 
time regardless of the initial and final state is 

(56) 
21c 

P(k, = 4h2 l F k , m 1 2  c Pi I ( i l  B + k  If11 26(o - 0 1 1 )  
if 

There is a corresponding inverse process in which the system makes a 
transition from the state If) to the state li) thereby giving momentum hk 
and energy ho to the probe. In this process the system suffers a momentum 
change -hk and an energy change -Ao with a probability per unit time 

(57) 
2 x  

Wf+[(-k, -0) = @ IFk,mI2 I(fI 8 - k  li)12 6(o - 

The probability per unit that the system will transfer momentum, hk, and 
energy, hw, to the probe regardless of the initial state is consequently 

It should be noted that Wf+( -.k, - o) = W,,,(k, a). This followsdirectly 
from the fact that the operator 8, is the Hermitian adjoint of 8 - k .  The 
transition probabilities P(k, o) and P( - k, - o) are in general unequal as 
can be seen by a comparison of Eqs. (56) and (58). In fact, since 
p, = p, exp (- f3hof,l it is clear from the properties of the delta function 
that Eq. (58) is 

21c 
P(-k, -0) = - 4 ~ 2  IFk,mlz e-p*w Pi I ( f l  B - k  I i ) l  ' 6 (0  - (59) 

if 

B- k and Bk are Hermitian conjugates so that 

Icfls- kli ) l  = 21( i ls+  k l f ) I 2  
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Substitution of this into Eq. (59) and subsequent comparison with 
Eq. ( 5 )  yields 

P( - k, - o) = e-BnmP(k, o) (60) 
This equation expresses the well-known condition of detailed balance 
according to which every transition out of a microscopic state of a system 
in equilibrium is balanced on the average by a transition into that state. 
This condition is sufficient for the maintenance of thermodynamic equi- 
librium. Equation (60) demonstrates that the system absorbs more energy 
per unit time than it emits. It can be concluded that there is a net energy 
dissipation from the external field with a consequent production of heat. 

The above transition probabilities can be written in terms of one-sided 
time-correlation functions. For this purpose we define the dynamic form 
factor SB(k, o) as 

SB(k7 = Pi I ( i l  B + k  6(w - O f i )  (61) 
i f  

It follows from Eqs. (56), (58), and (60) that 

(62) 

(63) 

(64) 

2R 
P(k7 = 4x2 IFk,ml 2SiI(k7 O) 

2x 
P( - k, - W) = - 

4x2 SB( - k, - 0) 

S,( - k, - 0) = e-BnmSe(k, 0) 

Equation (64) expresses the condition of detailed balance which is at the 
root of the fluctuation dissipation theorem. 

The dynamic form factors can be written in terms of one-sided time- 
correlation functions. This is accomplished by transformation of Eq. (61) 
to the Heisenberg representation, 

and 

From the physical interpretation of P(k, o) andP( - k, -0)  as absorption 
and emission rates, it is clear that the power dissipated per unit time and 
per unit volume,Q(k, o), is 

Q(k, 6.1) = ho[P(k, O) - P( - k, - o)] (67) 
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This becomes, after simple rearrangement, 

Comparison of Eq. (68) with Eq. (51) shows that 

1 ('y) df eimrCBB(k, f)  ffBB(k, o) = - tanh - 

is the quantum-mechanical autocorrelation function. 
The transition rates computed in this section provide a simple derivation 

of the susceptibility. Furthermore, they can be used to determine cross 
sections in many scattering processes. 

E. Doppler Broadened Spectra 
To illustrate how the preceding formalism is generally used, we apply it 

to the solution of a well-known problem. Let.us derive an analytic expres- 
sion for the Doppler broadening in the dipole approximation. The Hamil- 
tonian which describes the interaction between radiation of polarization, E, 
and matter in the dipole approximation was discussed in the first section 
of this review article. 

H'(t)  = - dr[E - M(r)]E(r, t )  

with 
M(r) = C pj 6(r - rj) 

j 

where p, is the dipole operator and r, the center of mass position of mol- 
ecule j .  From our preceding analysis we see that the crucial quantum- 
mechanical autocorrelation function is 

where 
CMM(k, t> = <i[Mk(f), M - k l  + ) 8 

Mk = C pj eXp ( + i k  * rj)  
j 

In electronic or vibrational transitions it is often a very good approximation 
to ignore correlations between dipoles on different molecules, then 

N 
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(In microwave spectroscopy the correlations between different molecules 
cannot be ignored.) The translational motion of the molecules is classical 
at sufficiently high temperatures. Furthermore, the translational motion of a 
molecule is, to a very good approximation, independent of the motion of 
the internal degrees of freedom which determine the motion of the molecu- 
lar dipole moment. Thus, 

N 

j =  1 
C d k ,  t )  C (exp {+ik * [rj(t) - rj(0)I))cL~ * <tbj(O), ~ j ( t > I + )  * 81 

If all of the N absorbing molecules are identical and the total system is 
isotropic, this equation reduces to 

C d k ,  0 = 3"k, 0 W )  
where 

Fs(k, O = ( ~ X P  { + W ( t )  - r(O)I>>ci 
describes the translational diffusive motion of a typical molecule and conse- 
quently the Doppler effect, and 

describes the dipolar motion. U(t)  is called the dipolar correlation func- 
t i ~ n ~ . ' ~  and Fs(k, t) is called the diffusion function." The power spectrum 
of C,,(k, i )  is thus seen to be the convolution product. 

w = <tC(O) - P(t) + d t )  - P(O)l> 

do' Ss(k, o - w')~(o')  

where S,(k, 0) is the power spectrum of F,(k, t) and B(o) is the power 
spectrum of U(t) .  &(k, 0) was first introduced by Van Hove.'** To des- 
cribe the spectral lineshape of isolated vibration rotation bands it is suffi- 
cient to consider U(o) for the specific vibrational transition. Suppose for 

* It should be noted that if the system consists of a gas of non-interacting molecules 
then 

jd lvexp - e'"'*' (""1") Fdk, t )  = (em"'> = 

From this it follows that, 

If V(o) is very sharply peaked at coo, it follows from Eq. (71) that the spectral lineshape 
is dominated by &(k, w) 

where oo = Ck. This is the usual Doppler lineshape. 
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convenience that the experiment is done at sufficiently low temperatures 
that only the ground vibrational state is populated. Then only transitions 
between the ground and first excited vibrational states need be considered. 
The structure of the band is determined by the dynamics of the molecular 
rotational motions. Then 

W )  = lP0l I2 (3")) - u(t) + u(0 - U(0)l) 

where pol is the transition dipole moment of the transition and u is a unit 
vector pointing in the direction of the transition dipole. As the molecule 
rotates, the direction of the transition dipole moment reorients. The cor- 
relation function in this preceding equation reflects the average effect of 
these molecular reorientations. In diatomic molecules u points along the 
molecular axis and the lineshape of the infrared band reflects the rotational 
relaxation of the molecules. For most molecules the rotational spacings are 
small enough that u(t) behaves classically at room temperature, and the 
correlation function can be evaluated classically 

W) = lU0ll2 (NO) * W > , l  * (72) 

Both of the functions U(t)  and F,(k, t) will be discussed at great length in 
the text. 

Spectral lineshapes were first expressed .in terms of autocorrelation 
functions by Foley3' and Ander~on.~' Van Kranendonk gave an extensive 
review of this and attempted to compute the dipolar correlation function 
for vibration-rotation spectra in the semi-classical approximation.2 The 
general formalism in its present form is due to Kubo." Van Hove related 
the cross section for thermal neutron scattering to a density autocorrela- 
tion function." Singwi et al.41 have applied this kind of formalism to the 
shape of Mossbauer lines, and recently Gordon15 has rederived the formula 
for the infrared bandshapes and has constructed a physical model for 
rotational diffusion. There also exists an extensive literature in magnetic 
resonance where time-correlation functions have been used for more than 
two decades.' 

F. Relaxation Times 
Relaxation times can be expressed in terms of time-correlation functions. 

Consider, for example, the case of a diatomic molecule relaxing from the 
vibrationally excited state In + 1) to the vibrational state In) due to its 
interactions with a bath of solvent molecules. The Hamiltonian for the 
system is 

fi = firno, + fif luid + HZ 
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where the molecular Hamiltonian is 

P 2  L2 1 

2m &r2 
A,,,= - -t- - + 5 [x' + Q2]ho0 

the fluid Hamiltonian is ;rot 

and the interaction Hamiltonian, characterizing the interaction between 
the diatomic molecule and the fluid molecules, is 

Here R, rl,. . . , r, are respectively the C.M. position of the diatomic 
molecule and the position vectors of the fluid atoms, P, P,, . . . , P, are 
the conjugate momenta, x and Q are the momentum and coordinate 
characterizing the oscillatory degree of freedom, r is the vector representing 
the orientation and length of the bond in the diatomic molecule, and L is 
the angular momentum of the molecule about the C.M. The interaction 
Hamiltonian has already been linearized in the oscillatory coordinate Q 
in the last equation. 

The centrifugal energy can also be linearized in Q 

Here E~ is the rotational energy of a rigid rotor and ro is the equilibrium 
ground state bond length of the diatomic molecule. The total Hamiltonian 
is thus 

A = f ? O + A v i b -  

where B v i b  is the vibrational Hamiltonian and .i the combined 
rotational-translational Hamiltonian describing a r&or in a bath of 
molecules with which it interacts. Let lin) be the eigenstate of 8, + a v i b  

corresponding to the energy E,, = Ei + E , .  li) stands for the combined 
translational-rotational state of the molecule plus the bath whereas In) is 
the vibrational eigenstate 2 energy, 

E n  = (n + -))ha, 

Application of the resultlfrom the preceding section clearly shows that the 
probability per unit time for the diatomic molecule to make a vibrational 
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transition from In + 1) to In) without regard to the initial or final rota- 
tional-translational states is 

= Wn+l-n 

where Qh+l,n = (n + 1 IQl n> is a matrix element of the vibrational 
coordinate 

Casting this formula into the Heisenberg representation yields the relaxa- 
tion time 

Note that the correlation function involves cross terms 

If there is no centrifugal distortion then the only contribution is 

( F O F ( t ) )  

whereas if there is no force acting on the vibrational coordinate the only 
term that contributes to vibrational relaxation is 

( E R ( O )  & R ( f ) )  

i.e., the rotational kinetic energy autocorrelation function. In this event, 

1 n + l )  + m  T,+1,,= rkG1 s, dt e - i ro t (ER(0 )ER(  t ) )  

Identical techniques have been applied to numerous problems in mag- 
netic resonance spectroscopy. 

III. TIME CORRELATION FUNCTIONS AND MEMORY 
FUNCTIONS 

A. Projection Operators and the Memory Functions 
Time-correlation functions are of central importance in understanding 

how systems respond to weak probes in the linear approximation. Accord- 
ing to the fluctuation dissipation theorem of the preceding section, spectro- 
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scopic lineshape studies reflect the detailed way in which dynamical vari- 
ables relax in the equilibrium state. This fact has been exploited fist in 
radio frequency and microwave spectroscopy and more recently in 
Mossbauer, neutron, and infrared spectroscopy. It is the aim of statistical 
physics to predict the stationary and dynamical properties of many-body 
systems in equilibrium. For this purpose it is often necessary to adopt 
simple models. Solids and gases are well understood because there exist 
many very successful simple idealized models for these states of matter. On 
the other hand, liquids still remain something of a mystery. There is no 
simple model of the liquid state which accounts for the observed properties. 
Furthermore, no new phenomena have yet been predicted by models of the 
liquid state as in the solid state. Liquids have been a challenge and embar- 
rassment to generations of outstanding physicists and chemists. In the last 
decade a great deal of new information on liquids has been acquired, partly 
because of new techniques and partly because linear response theory 
provided a theoretical framework in which different measurements and 
ideas could be unified. This information is usually in the form of time- 
correlation functions. Thus it is not difficult to see why theorists have 
attempted to construct models of condensed media which account for the 
dynamical behavior of time-correlation functions. In this article we des- 
cribe some recent attempts to compute time correlation functions by using 
memory f ~ n c t i o n s . ~ ~ * ~ ~ J ~ ~ ~ ~  

Consider the arbitrary operators a and P. Let us define the scalar pro- 
ducts of a and p, (a I p) 
(0 (a1 B> = tr+Ca+, PI+ a = (+[a+, PI+> 
(ii) (73) 

(iii) <a I B> = j d r  ~ + ( m w - ) f e q w )  

where 2' is the Hermitian conjugate of the operator 61. (i) is the ensemble 
average of the property a+P, (ii) is the Kubo transform of a+P, and (iii) is 
the classical ensemble average of a'p. The angular brackets denote an 
average over the canonical distribution function or density matrix. The 
scalar products (i), (ii), and (iii) defined above each satisfy the conditions 

(b) If a = clal + c2a2 where al and a2 are two arbitrary observables, 
(4 (a I B>* = (P I a>. 

and c1 and c2 are two arbitrary constants, 

( B  I a> = Cl(P I a J  + c2<P I a2> (74) 

(c) (a I a) 2 0, the equality sign appears only if 12 = 6. 
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From (a) we see that the norm (a 1 a), of the property a, is real. 
((a I a))”’ can consequently be regarded as the “length” of the property 
u. A property whose norm is unity is said to be normalized. Two observ- 
ables a and j3 are said to be orthogonal if (a I j3) = 0. It should be noted 
from (a) that (a I j3) need not be equal to (j3 1 a). 

Consider now the dynamical operators Ol,.  . . , 0,. Suppose that these 
operators are chosen such that they have a norm of unity and are orthognal 

(Ui I U j )  = 6ij (75) 

It should be noted that the properties must be chosen differently in order to 
satisfy the orthonormality condition for each definition of the scalar 
product. 

These properties are so chosen that their ensemble averages are zero. 

(Ui)  = 0 (76) 

Then the properties Oi can be regarded as vectors in a Hilbert space of 
dynamical properties. These dynamical variables obey the equations of 
motion 

au. J= .  lLUj 
at (77) 

where L is the Liouville operator: 

iLa 3 {a, A} (classical) 

iLa 3 - [a, A] (quantum) 
ih 

1 (78) 

If the properties GI, . . . , 8, all have the same symmetry under time 
reversal then it is easy to show that 

(UiliLIUj) = 0 

If the symmetry is different, then of course <U, 1iL.l Uj) can be nonzero. 
In this article we assume that Ox, . . . , have definite albeit different 
time reversal symmetries. The properties can be represented by vectors 
IU,) . . . IU,) . . . in Hilbert space with scalar product defined above. It is 
a simple matter to demonstrate that L is Hermitian in this Hilbert Space. 

Define the time correlation function 

cijcr) = ( ui I elLr I uj> (79) 

This function describes the correlation between Oi(O) and oj(t) as a func- 
tion of the time. Corresponding to each definition of the scalar product 
(Eq. (73)) there is a different correlation function. 
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(0 

(ii) 

(iii) 

Each of these correlation functions appear in linear response theory. 
If these properties satisfy the same conditions as Ak and 8, in the previous 

sections, then from the Hermitian property of L, function space it immedi- 
ately followst that 

where yi and y j  are the signatures of oi and oj under time reversal, and 
Cl,(r) stands for any of the three different correlation functions. 

Define the projection operator onto the vector I U , )  in function space as 

PI = IW<~,I  (82) 

The projection operator fi onto the subspace 1 GI), . . ., I U,)  is then simply 
the sum of the projectors p ,  

It is obvious that P is idempotent if the properties oi are orthonormal. 
That PI and p are Hermitian is easy to prove. Note that 

(4 p IF>* = [c U,><UI IS>]* 
I 

= (PI la> 
From the fact that these operators are indempotent and Hermitian it 
follows that they are projection operators. 

Since p, , P, and L are Hermitian, p, L and Lpl are Hermitian conjugates. 
It follows immediately that 

I d  (84) 

(85) 

ew - P I W  ~p)* = (p I e- iU1 -PIP 

and likewise 
(.I e-K1-P)Lr ~ p > *  = (PI ,+W1-Pi)t la) 

t The same reasoning applies here as was applied to C&, t )  in the last section. 
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The operator (1 - P,)L is Hermitian in the subspace of Hilbert space 
which is orthogonal to IU,). To see this define the vectors 

where IF) and IG) are arbitrary vectors. Ig) and I f )  are by definition 
orthogonal to IU,). Now note that 

(sl(1 - &L I f > *  = (GI (1 - P,)2L(1 - 8) IF)* 
Since (1 - P,)' = (1 - P,), and (1 - P,) and L are Hermitian. 

(SlU - P,)L I f > *  = <GI (1 - 8 ) W  - P,) In* 
= (FI (1 - fw(1 - P,) IG) 
= U l ( 1  - PlW Is> 

(87) 

This proves that (1 - p,)L is Hermitian in the orthogonal subspace of 
IU,). It follows therefore that 

Is) (88) (sl e i ( l  -P i )L t  if)* = ( f l  e-i(l-Pi)Lt 

Since the vector iL I U,)  3 IiLU,) is orthogonal to I U,),  it follows from 
Eq. (88) that 

IiLUl) (89) (gull ei(l - P W  li~u,)* = (ILU,I e - S ( l  - P w  

So that this function is an even function of the time if U, is real. P has 
corresponding properties. 

It is possible to derive an equation which describes the time evolution of 
the time-correlation function CIl(t) where C,, stands for different auto- 
correlation functions depending on the definition of the scalar product 
(i), (ii), or (iii) of Eq. (73) adopted. 

The equation of motion for the vector I U,(t))  is according to Eq. (77), 

a 
- I U,W> = iL I ~ 1 0 ) )  at (90) 

Since (1 - P,) + P, is simply the identity operator, it can be substituted 
between iL and IU,(t)) so that 

a 
- I ~ l ( t ) >  = iLP1 IW)) + iL(1 - P,) lul(t)> at 

Cll(t) = <Vll P, I UlW) 

(91) 

Since 

(92) 
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it should be noted that an equation for Cff(t) can be derived by first operat- 
ing on Eq. (91) with p,, and then dotting (U,l into the resulting equation. 
Following this procedure we find 

a 
- c,l(t) = <U,l p ,  jLpl I w> + ( Ql p ,  jL(1 - P,) I W)> at 

Now note that 

(Ufl~fiLPf IW)>  = ( ~ f l j L l ~ f ) ~ , f ( ~ )  (93) 
which vanishes since (U,l iL I U,) vanishes. Then 

To complete the derivation we must find how (1 - PI)  I Ul(t))  varies with 
time. For this purpose we operate on Eq. (91) with (1 - PI) .  

Now note that 

(1 - P,)iLfil I v m  = jL I U,>c,f(t> 

(1 - 9) I W ) >  = (1 - PI) lU,> = 0 

(96) 
and 

The solution of Eq. (95) subject to Eq. (96) is 

(1 - p,) IUf(t)) = f d.5 ei(l-pI)LT iL I U,>C,,(t - .5) (97) 
0 

Substitution of this into Eq. (94) yields 

where 
K,,(T) = (~LU,J e‘(l-’~)~~ JiLU,) (99) 

K,,(T) is called the “memory function,” and the equation for the time- 
correlation function that we derived is called the memory function equa- 
tion.33334*42 Note that the propagator in this equation contains the projec- 
tion operator p ,  . Further note that the memory function is an even function 
of the time, 

Kf,( - t )  = K,f(t) (loo) 
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This follows from Eq. (89). It should also be noted that the definition of the 
memory function* depends strongly on which scalar product (i), (ii), or (iii) 
of Eq. (73) is used. Corresponding to definition (i), (ii), and (iii), &(r) is 

(ii) 

(iii) drfCN)eq(r)u*,(r) ei(l -Pi)LrU I(U 
where the projection operator is so defined in each case that it is consistent 
with the definition of the scalar product adopted. 

B. Memory Function Equation for Multivariate Processes 

An analogous set of equations can be derived for the multivariate ran- 
dom process ol,. . . , 0,. To proceed, insert the identity operator 
(1 - P )  + d between iL and IUl(t)) in Eq. (W), where P is the projection 
operator onto the subspace I U,>, . . . , I U,), then 

( 102) 
a 
at - I ~ ~ ( t ) )  = iLP I UI(t))  + iL(1 - P )  I ~ , ( t ) )  

Since 

cjl(t) = (UjI P I uLt)> 
it should be noted that an equation for Cj,(t)  can be derived by first 
operating on Eq. (102) with d and then doting (Ujl into the resulting 
equation. Following this procedure we find that 

a 
at - Cjl( t )  = ( Ujl PiLP 1 U,( t ) )  + ( Ujl PiL( 1 - P )  I U,( t ) )  (103) 

* If the dynamical operator Ul is a vector then the scalar product can be defined as 

P) 

<a I p> = j d r  a(r)*. p(r)PN'O 

) <alp>= - [a+ .p+p .a+]  

<a I p> = J: dh<e"a+ e - d .  

( 9  (' 
(ii) 

(iii) 

where the dot stands for a dot product. Thus if U, = V/<V2)1/2, where V is the C.M. 
velocity, the memory function and time-correlation function of UI is well defined. 
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where 

Furthermore 

Combining Eqs. (103), (105), and (106) yields 
a N 

To proceed we must find how (1 - P )  I Ul( t ) )  varies with time. For this 
purpose we operate on Eq. (102) with (1 - P )  

a 
at 
-(I - P )  I Ut(t))  = (1 - P)iLP I UI(t))  + (1 - P)~L(I - P )  1 Ur(t)> (109) 

Now note that 
N 

(1 -P)~LPIu,(~)) =C(l  - P ) ~ L I U ~ ) C ~ ~ ( ~ )  

(1 - P )  IU,(O)) = (1 - P )  IUJ = 0 

(1 10) 
m = l  

and 

The solution of Eq. (109) subject to Eq. (110) is 
N 

(1 - lU,(t)> = c rcizei(l-'L)' (1- P)liLUm)Cml(t-z) (111) 
m = l  0 

Substitution of this into Eq. (108) yields 
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Note that the correlations in a multivariate process U,, . . . , U, are des- 
cribed by the N x N matrix of time-correlation functions C(t) whose 
elements are the time-correlation functions Cj,(t). The correlation function 
matrix evolves in time according to the memory function equation42 

- C(t) = QC(t) - fdz K(z)C(t - z) 
at 0 

(1 14) 
a 

where B is the matrix of " resonance frequencies " 

a,, = < Ujl iL I U,) 
K(z) is the " memory function " matrix, with elements given by Eq. (1 13). 

The time-correlation functions, Cjr(t), resonance frequencies, Rj, , and 
memory functions, K,,(t), satisfy the reciprocal relations 

C,,(t) = h,hl Cl,(t) 

K,l(t) = h,h,K,j(t) (1 15) 

Q j , =  - - j h , Q l j = ~ j ~ , Q , j =  -YjY,nj, 
These relations* follow from the time reversal symmetries of the multi- 
variate properties U,, . . . , U,. hi and h, are the signatures of Uj  and U1 
under inversion and time reversal. It also follows from these arguments 
that 

From these properties we see that R,, = 0, and CIl(t) and K,,(t) are even 
functions of the time. 

Needless to say, corresponding to each choice of the scalar product there 
is a different form of the memory function as in Eq. (101). 

In the next section a physical interpretation of the memory is presented. 

C. The Modified Langevin Equation 
The Langevin equation, 

= - ~ p ~ ( t )  + F(t) (1 17) 

is of central importance in the theory of Brownian motion. In this equation 
V is the velocity of the Brownian particle, M the mass, Mp the friction 
coefficient (often called Q, and F(t) the random force. The random force 
F(t) is usually assumed to have the following properties : 

* It is assumed here that the properties are such that Ul+ = y tU~*  (see 1I.C). 
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(a) The stochastic process F(t) is a stationary, Gaussian process. 
(6) It has an infinitely short correlation time so that its autocorrelation 

function is 

<www> = rW) 
where y is a constant of proportionality. 

(c )  The motion of the Brownian particle is due to equilibrium thermal 
fluctuations of the bath in which it is moving, and (V(O)F(t)) = 0. 

Assumption (a) implies that V(t)  is a stationary Gaussian process. The 
Langevin equation when solved subject to assumption (b) yields the velocity 
autocorrelation function 

(V(O)V(t)) = (v2> e-pl'l (1 18) 

Doob's theorem states that a Gaussian process is Markovian if and only if 
its time correlation function is exponential. It thus follows that V is a 
Gaussian-Markov Process. From this it follows that the probability 
distribution, P( V, t), in velocity space satisfies the Fokker-Planck equation, 

- P ( V , t ) =  a - a [PV+ D , z ] P ( V , f )  a 
at av 

which is a diffusion equation in velocity space with D, the diffusion con- 
stant in this space. D ,  is related to the fluctuating force according to the 
equation 

D,  = M-' Jm dt (F(O)F(t)) = M-'y 

Condition (c) requires that the stationary solution of the Fokker-Planck 
equation should be the Maxwellian distribution function. Substitution 
leads to 

0 

KT 
D , =  - $ = M - 2 y  

and 
1 .m 

The friction constant is consequently related to the time dependence of the 
random force in the equilibrium system. 

The question immediately arises: How can we generalize the Langevin 
model to, say, the motion of an atom or molecule in a liquid? 
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To describe the more complicated physical systems it is necessary to 

(a) F(t) may be non-Gaussian. 
(b) F(t) may have a finite correlation time. 
(c) The friction constant may be frequency-dependent. 

It can be shown by arguments similar to those presented in the preceding 

consider the following points: 

sections that the correct generalization of4he Langevin equation isJs 

M -  d v(t) = - M f  dt K(t  - T)V(T) + 4 t )  

dt 0 

where F(1) is a stochastic force which satisfies the conditions 

(9 
(ii) 

and K(t )  is a time-dependent friction coefficient. Multiplying the modified 
Langevin equation by V(0) and averaging over the equilibrium ensemble it 
is found that, 

(123) 
d 

M z ( V ( O ) V ( t ) ) =  - M  dTK(t-T)(V(O)V(T)) + (V(O)F(t)) 
II 
0 

where the last term is zero due to (ii). This is an equation for the velocity 
autocorrelation function +(t)  = (V(0) V(t)) ,  and can be solved by Laplace 
transforming with respect to time. 

Note that K(t )  is a memory function. Here $(s> and R(s) are the Laplace 
transforms of +(t )  and K(t) ,  respectively. We can now show that the kernel 
K ( t )  is related to the autocorrelation function of the random force accord- 
ing to the equation 

Kubo calls this relationship the Second Fluctuation Dissipation Theorem. 
For its proof it should be noted that the modified Langevin equation can 
be written as 

= [M2< ~(o)2>1-1<~(0)m))  (125) 

F(t) = M v ( r )  + M I'd? K(t - T)V(T) ( 126) 
0 

Consequently, 
F(0) = MV(0) 
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It follows directly that the autocorrelation function of the random force is 

(F(O)F(t)) = M2[( r'(O)v(f)) + f df K(t - T)( v(0) V(z))] (127) 

Note the following properties of the functions that appear in this equation: 
0 

Taking the Laplace transform of Eq. (127) and substituting Eq. (128) yields 

<~(O)F(S)>' = M 2 ( -  tS26(s) - S(W2)1 - Rs)tS6(s) - (V2(O>>l) 
= - M2[S + Rs)l[S4(s) - ( V2(0) >I 

where (F(O)F(S))' is the Laplace transform of (F(O)F(t)). Substitution for 
+(s) from Eq. (124) yields 

(F(om)>' = M2CS + R(s)lR(s)tS + R(s)l --'(V2(0)> 

R(s) = w+ 2< V2(o)>l- ' <F(O)~(FO>' 

so that 

(129) 

thus proving the second fluctuation dissipation theorem. Since the averages 
are done over an equilibrium ensemble ( V2(0)) = M-'KT, and it follows 
that 

1 

In the Langevin theory the memory function is proportional to the time- 
correlation function for the random force. 

If the random force has a delta function correlation function then K(t )  
is a delta function and the classical Langevin theory results. The next 
obvious approximation to make is that F is a Gaussian-Markov process. 
Then (F(O)F(t)) is exponential by Doob's theorem and K(t) is an expo- 
nential. The velocity autocorrelation function can then be found. This 
approximation will be discussed at length in a subsequent section. The 
main thing to note here is that the second fluctuation dissipation theorem 
provides an intuitive understanding of the memory function.* 

A modified Langevin equation can be derived for any property 0,. In addition 
the memory function will be related to the autocorrelation function of the "random 
force " in this equation. These results can be extended to multivariate processes. 
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D. Continued Fraction Representation of Time-Correlation Functions 
The memory function equation for the time-correlation function of a 

dynamical operator Ul can be cast into the form of a continued fraction as 
was fist pointed out by M01-i.~~ We prove this in a different way than Mori. 
In order to proceed it is necessary to define the set of memory functions 
KO(?), . . . K,(t)  . . . , such that 

KAt) = ( f n I  eiLnt If,> (130) 
where the quantities f and L are defined in terms of the Liouville operator 
iL = iL, and the dynamical quantity bl, = ol = fo, as 

iL, = (1 - Pn-l)iLn-l 
I f n )  = (1 - P n - W n - 1  Ian-1) 

Ian)  = (fn I fn>-'" If,> 
P n  I a n X a n I  

(131) 

From these definitions note that 

(4 Ia,), . . . la,,), . . . are orthonormal 
n- 1 

(b) iL, = (1 - Pn-&1 - P,-J . . . (1 - Po)iLo = 1 - C PliLo (132) [ l = O  1 
Therefore If,,) and lan) are orthogonal to all vectors of lower index. 
Furthermore (1 - C;:: Pl)Lo is Hermitian in the subspace orthogonal 
to lao), . . . , With these definitions we can prove the following 
theorem by mathematical induction. 

Theorem: The set of memory functions Ko(t), . . . , Kn(t) obey the set 
of coupled Volterra equations such that 

d~ K,(Z)K,-i(t - Z) n = 1, . . . , N (133) at 

Proof: That the theorem holds for n = 1 is easy to see. Note that Ko(t) 
is simply the time-correlation function 

KO(?) = (Ul I eiL'I Ul) = Gr(0 
and consequently satisfies Eq. (133). Thus if the kernel Kl(?) is identical to 
the kernel (iLUII exp [i(l -P,)Lt] liLU,) of Eq. (99), then the theorem 
holds for n = 1. Note that 

Kl(t) = ( f l l  eiL1'Ifl) = (iLUiIei(l-P')L' IiLUl) 
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The theorem is consequently valid for n = 1. 

n +  1, 
To proceed we assume that the theorem is valid for n and deduce it for 

(134) 
a 
-K,( t )  = - f dt K,+l(r)K,(t  - r) 
at 0 

Here 
Kn(t) = ( f n I  elLn' If.> ='(fnIfn>(anI eiLn* Ian> 

(135) = ( f n  I f n > R n ( t > *  

The equation of motion for eiLnlu,) = la&)) is 

(136) 
a at In(t)> = i L n  Ian(t)> 

This equation is analogous to Eq. (90). Note that 

Rn(t) = ( a n 1  elL,' Ian> = < n I  P n  Ian(t>> 

Thus to find the equation of evolution for L,(t)  operate on Eq. (136) 
with P ,  

a 
- P n  Ian(t)> = PniLnPnIan( t )>  + PniLn(1  - PJ Ian(t)> (137) at 

Following exactly the same reasoning that led to Eq. (98) we find that 

(138) 
a - R,(t) = f dr(u,l iLneitn+"IiLnan)R,(t - r) 
at 0 

Multiplication by (f, I f,) shows that K,(t)  satisfies this equation. To 
complete our proof we must show that the kernel above is identical to 
-Kn+l(t) where 

Kn + 1(~) = ( f n  + 1 I elLn+ I f n  + 1 ) (139) 

This is readily proved by noting that L, is Hermitian in the space ortho- 
gonal to la,), . . ., Ia,,-J, lan) so that 

(a,l i ~ , e ' L ~ + l ' ~ i L n a n >  = -(iL,ctJ eiLn+l' IiL,,u) 

Because of parity (1 - P,) can be inserted in such a way that 

(a,/ iL,eiLn+l'IiLna) = - (iLnunl(l - Pn)eiLn+l'(l - P , ) ~ i ~ , , a , , )  

Since 1 - P ,  is Hermitian it follows from the fact that 
(1 - P,)iL,,Ia,,) that 

= 

(UJ i ~ , , e ' L n + l T [ i ~ n a n )  = - ( fn+l i  eiLn+l' If,+ 1) = - Kn+ 1(~ )  (140) 
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Thus 

S ( t )  = - f d2 K,+,(z)K,(t  -2) 
at 0 

This proves the theorem. 
Let K,(O) = ( f n  If,) = A ,'. Taking the Laplace transform of K,(t)  yields 

where - K,(S) is the Laplace transform of K,(t). Iteration leads to 

C,,(S) = c,m 
S + A I 2  

S +A,' 

S + KAS) 
with A = (f, If,). In particular A,' = (o,Io,) and 

Continuation of this procedure leads to an infinite continued fraction. It is 
obvious that the precise definition of the quantities which appear in these 
formulas depends on the precise definition of the scalar product used. 
Moreover, this approach is easily extended to the multivariate processes. 

E. Dispersion Relations and Sum Rules for the Memory Function 
Time-correlation functions Cli(t) obey the memory function equation 

According to this equation Cr1(t) depends only on the values of the memory 
function K,,(z) for all times r prior to t. Since the autocorrelation function 
C,,(z) is real the memory function must also be real. This can also be 
deduced directly from the definition of the memory function, Eq. (99). 

The power spectrum G,,(o) of the time-correlation function Cl,(t) is, 
according to Eq. (47), 

1 + w  

27c - w  
Gll(o)  = - dt e+'"'Cll(t) 
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The time-correlation function C,,(t) is an even function of the time (see 
Eq. (81)). Consequently, 

G,,(o) = lom dt cos wt C,,(t) (143) 

or 
m 1 G,,(o) = Re 1 dt e-'m'Ctr(t) 

0 

The integral in this expression is the Laplace transform, ell (io) of the 
time-correlation function, so that 

Gl1(o) = Re ell(io) (145) 

The Laplace transform of the memory function, K,,(t). 
m 

R,,(io) = J' dt e-'m' ~ , ( t )  (146) 
0 

Since both C,,(t) and K,,(t) are real functions of the time, &(io) can be 
expressed as 

R,,(io) = ~',,(o) + iK;,(o) (147) 

where K',,(o) and K'i;(o) are the real and imaginary parts of R,,(io) or 
00 

K',,(o) = dt cos at K&) 
(148) 

0 

OD 

K",,(o)' = - I dt sin at &(t) 
0 

From the memory function equation it follows that 

So that the power spectrum is 

The imaginary and real parts of &(io) determine the shift and breadth of 
the power spectrum and consequently the lineshape. K',,(o) and K",,(o) 



110 B. 1. BERNE AND G. D. HARP 

are, respectively, even and odd functions of the frequency. This follows 
from Eq. (148) and the symmetry of the sin and cos. Thus G,,(o) is a 
symmetric function of the frequency as is expected. 

Consider now the complex Fourier transform of the memory function, 
KI(Z),  

m 
R,,(z) = 1 dt e"'Kll(t) (151) 

0 

with z = x + iy. Because of the properties of K(t )  it follows that R,,(z) is 
analytic in the entire lower plane and uniformly goes to zero as Izl+ 00. 

That &(z) is analytic in the lower half plane can be demonstrated by 
showing that R,,(z) obeys the Cauchy-Riemann conditions according to 
which: if 

R,,(z) 3 u + iv (152) 

where u and v are real functions of (x,  y )  then R,,(z) is analytic in a given 
region if and only if the Cauchy-Riemann conditions, 

are satisfied in that region. 
From Eq. (151) we have 

m 
u(z) = 1 dz Kll(z) cos xr ey7 

v(z) = - 1 dz K,,(z) sin xz eY' 

0 

m 

0 

(154) 

It follows that 

and consequently &(z) is analytic only in a region where these operations 
are valid-that is, in a region where the integrals converge. These integrals 
will be convergent in the region y < O-that is, in the lower half plane. 
Thus &(z) is analytic on the real axis and in the lower half plane. More- 
over, we note that 

~ R , , ( z ) ~  -, o as y + - 00 
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It is also intuitively obvious that 

~ K I I ( z ) ~ + O  a s x -  +00 

since the rapidly oscillating cos x and sin x wash out the integrals u and u. 
It thus follows that 

I&(z)l+ O as I Z I  + 00 for y I o 
&(z) vanishes on an infinite semicircle in the lower half of the complex z 
plane. 

The real and imaginary parts of &(z) are therefore Hilbert transforms 
of each other, 

n J-, w ’ - w  

or since K’,,(w) and K”,,(w) are, respectively, even and odd functions of w, 

From these relations we see that the width and shift of the power spec- 
trum and consequently the spectroscopic lines are related through the 
Kronig-Kramers dispersion relations. Exactly the same arguments apply 
to the Laplace transform of the time-correlation function, C,,(iw). The 
real and imaginary parts, C‘,,(w) and C’\&), are related by Kramers- 
Kronig dispersion relation. 

From the definition of K’,,(w), Eq. (148), the following general sum rules 
can be deduced 

All odd moments vanish due to the evenness of K,,(t). 

frequency moments. From Eqs. (99) and (1 58)  it follows that 
It is a simple but lengthy matter to determine the explicit form of all these 

p(zn)  = (- l)”(iLU,I [i(l - Pl)L]2” IiLU,) (1 59) 
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In the previous section we saw that (1 - P,)L is Hermitian in the subspace 
orthogonal to I U,) .  Consequently 

pt(zn) = <An I A 2 

IA ,,) = [i(l - P,)L] " IiLU.) 

(160) 

(161) 

where 

From the definition of the projection operator we see that 

po = (iLU, I iLU,) = (0, I 0,) 
cL2 = +(GI If,) - (0,I ri-J2 
p4 = (Ut3' I u;39 - 2(0, I U,)<tr, I 0,) + (0, I 0,>3 

( 1 62) 

where U t  ") is the nth time derivative of U, or (iL) "U, . 
Likewise from the definition of C',,(w), as 

C',,(w) = J dt cos wt C,,(t) 
0 

The following general sum rules can be deduced 

All odd moments vanish due to the evenness of C&). 
From Eqs. (164) and (79) it follows that 

Y(zn) = ( - 1) "< u,I [iLIz" I VJ 

Since L is Hermitian it follows that 

Y(zn) = ([iLl"u,l[iLl"u,) 
or 

Comparison of Eqs. (166) and (162) allows the moments {pi?,,) of the 
memory function and the moments {yzn} of the autocorrelation function 
.to be related 

Note that p2,, depends on yZn+* and y's of lower index. 
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The memory function &(t) and the time-correlation function Cll(t) are 
easily expanded in an even power series in time. It follows from Eqs. (158), 
(159), (la), and (165) that 

F. Properties of Time-Correlation Functions and Memory Functions 
Consider the vectors la) and 1s). According to the Schwartz inequality, 

0 I; I(a I S>I 5 [(a I a><S I S>1”2 

la> = IUf> 
IS> = efLt IW 

0 5 I(4l efUIWl 5 (Uf I Uf> = 1 

First let 

Then according to the Schwartz’s inequality, 

so that the time-correlation function, Crt(t), which is real, is bounded 
below by - 1 and above by + I 

Now let 

Then 

la> = IW 
IS> = eiL‘ I u,> 

and the cross-correlation functions are bounded. The same kind of argu- 
ment can be applied to the corresponding memory function. Let 

la> = (1 - Pf) 1Q 
(1 - 4) la> 18) = e’(1-PdLt 

where laf is the projector onto IUJ. Then 

(1 70b) 
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where P is the projector onto the subspace IU,), . . ., IU,), ..., 

A complex function of the time C(t)  is called positive definite if and only 
if, 

ZjC( t j  - t&)Z*& 2 0 
j , k =  1 

holds for every choice of the finitely many real numbers t , ,  . . . , t ,  and 
complex numbers Z, ,  . . . , Z , .  

According to Bochner’s theorem, a continuous function C(t)  is the char- 
acteristic function of a probability distribution, R(o), if and only if C(t) is 
positive definite and C(0) = 1. Thus, if C(0) = 1, and C ( t )  is positive 
definite, 

C( t ) = s + do e’”‘R( o) 
- m  

R(o) is a probability distribution function and consequently satisfies 

OSR(o)=-  I+ dt e-‘”‘c(t> 
2x - m  

(A rigorous statement of Bochner’s theorem should be in terms of a 
Fourier-Steltjes representation of the integral.) 

Bochner’s theorem plays an important part in the theory of time cor- 
relation functions. Consider the time correlation functions corresponding 
to definitions (i), (ii), or (iii). 

= <w I w + TI) 
These correlation functions are stationary; that is, they are independent 
of the time t. Furthermore, since the “vector” IU) is normalized, 

C(0) = 1 

Now define a vector la,) such that 

k = t  

for every choice of the finitely real numbers t l ,  . . . , t , ,  and complex 
numbers Z,,  . . . , Z ,  . It follows from the fact that the norm of the vector 
la) is positive, that 

n 

< a n  I a n >  = C Z*k< u(tJ I u<tj)>Zj 2 0 
j , k = 1  
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From stationarity, (U(tk)l V( t j ) )  = C(tj  - tk) so that, 

It follows from Bochner's theorem that the normalized time autocorrela- 
tion function C(t) is the characteristic function of a probability distribution 
G(o) so that 

C(t)  = 1 + do e'"'G(o) (1 70d) 
- -m 

Furthermore, the probability distribution G(o) satisfies the condition 

0 I G(o) (1 70e) 

The interesting thing to note is that G(o) is none other than the power 
spectrum of the time-correlation function (see (Eq. 144)). Bochner's theorem 
gives us reason to regard the power spectrum as a probability distribution 
function. The same conclusion applies to the memory functions corres- 
ponding to C(t) .  

Consider the vector, 
1 O(t))P = e'(' -P)L' IU) 

where fj is the projection operator I U)( Ul. 

the ordinary propagat'or eiL'. Let us now define a function 
A p is fixed to the ket to denote the fact that this vector is not found with 

P(U(t)lU(t + Z ) > P  

( 01 0) 
R(z) = 

Now note that since (1 - fj)L is Hermitian in the orthogonal subspace to 
I U), the vector I U) lies in this orthogonal subspace so that R is stationary, 
or 

Thus R(z) is related to the memory function K(t)  corresponding to C(t).  

(01 0)R(t)  = K(t )  

R(0) = 1 

R(t) is called the normalized memory function since 

Furthermore, R(t) is positive definite as we now show. Define the vector 
n 
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for every choice of then real numbers (Ik} and n complex numbers { z k } .  It 
follows that 

Consequently R(t) is positive definite. It follows from Bochner's theorem 
that the normalized memory function can be regarded as the characteristic 
function of the probability distribution, P(w), such that 

J - W  

From Eq. (148) we see that 

0 5 P(w) = K'(o)/7C( o I 0) (1 709) 

We will return to this interpretation later. 
Consider the one-sided quantum mechanical correlation function 

@(T) = tr pO+(t)O(t + T) 
@(z) is a stationary function of the time. Moreover, the property 0 is so 
defined that 

@(O) = 1 
Define the property, 

Then 

Thus @(T) satisfies the condition of Bochner's theorem so that there exists 
a probability density or spectral density R(o) such that 

J - m  

where 0 < R(o) < 1. 
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From Bochner’s theorem it is seen that power spectra are everywhere 
positive and bounded, and furthermore, time-correlation functions have 
power spectra that can be regarded as probability distribution functions. 

The Wiener-Khinchin theorem is a special case of Bochner theorem 
applicable to time averages of stationary stochastic variables. Bochner’s 
theorem enables the Wiener-Khinchin theorem to be applied to ensemble 
averaged time-correlation functions in quantum mechanics where it is 
difficult to think of properties as stochastic processes. 

The power spectrum G(o) of the normalized time-correlation function, 
c(t), like any distribution function, can be decomposed into a continuous 
and a discrete part, Gc(o) and Gd(o), respectively: 

G ( 4  = Gd(@ f CAW) ( 170i) 

The discrete part is of the form 

Gd(a) = c Pk 6(o - wk), k = 1, . . . ( 1 7Oj) 
k 

Here {ok} is a denumerable set of frequencies and {Pk} is the set of corres- 
ponding probabilities (0 I Pk 5 I and O I C k Pk I 1). It is assumed here 
that the continuous part of the spectrum, G,(o), is a continuous well- 
behaved function of the frequency, although it is quite possible to find 
physical Gc(o) which have singular points. From previous chapters it 
follows that G(o) is even in o. 

The normalized time-correlation function can thus be decomposed in a 
corresponding way, 

In this case C(t) does not have any long-time limit. If the spectrum is 
entirely continuous, then it follows from the lemma of Riemann-Lebesque 
that c(t) vanishes as t + a. A system is irreversible if and only if all time 
correlation functions of properties f) (with zero mean) vanish as t +  co. 
Consequently, irreversible systems must have continuous spectra. In finite 
isolated systems, the spectrum is discrete and 

( 1701) 

is almost periodic. This is a consequence of Poincark’s theorem. In special- 
ized cases it can be shown that in the thermodynamic limit, N + 00, V-, co 
such that N/ V = const, the discrete spectrum becomes continuous. Ir- 
reversibility enters in an asymptotic manner. This is a very important 
point. 
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Computer experiments on condensed media simulate finite systems and 
moreover use periodic boundary conditions. The effect of these boundary 
conditions on the spectrum of different correlation functions is difficult to 
assess. Before the long-time behavior of covariance functions can be 
studied on a computer, there are a number of fundamental questions of this 
kind that must be answered. 

R(t) is the characteristic function of the probability distribution 

(1 70m) 

The morllcnts of P(w) are consequently 
+ m  

(0" )  = j+mdw"P(w) = [ ( o I u ) X ] - l  J- do W " K ' ( 0 )  
- m  m 

From Eqs. (158), (160), and (162) it should be noted that these moments 
can be related to the sum rules on K'(w), and that furthermore 

( 170n) 

where po , pz , and p4 are the first few sum rules on K'(w). The first condi- 
tion follows from the fact that K'(o) is an even function of w .  

It is often a very complicated problem to compute K'(w) for a given 
many-body system. We have devised an approximate method for finding 
P(o). For this purpose we define the information measure of a distribu- 
tion as 

.+m 

The measure S[P(w)] is called the entropy corresponding to the distribu- 
tion P(wL According to information theory, if a certain set of moments of 
P(w) are known, that P(w) is optimum which maximizes S[P(w)] subject to 
the moment constraints. Suppose we know only 

( 0 0 )  = 1 
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Then we must find that P(w) for which. 

and 

6 1;)" P ( 0 )  = 0 

+ m  

6 [ do WZP(W) = 0 
J - m  

are satisfied. This problem can be solved using Lagrange multipliers. The 
optimum P(o) turns out to be 

(1 70r) 

Since K( t )  is the characteristic function of the distribution it follows that 

J - m  

Information theory consequently leads to the normalized memory function 
which is a Gaussian function of the time 

(1 70s) 

From which it follows that the memory function K(t )  is 

This approximation will be very useful in the following sections. It should 
be noted that higher-order moments could have been used to generate 
higher-order approximations. 

This approach is not entirely satisfactory. From Eqs. (148) and (149) it is 
seen that rigorously 

K'(0) = Im dt K( t )  = dt q t ) ]  
0 

Yet from information theory 
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In general, this interpolative result is not identical with the rigorous result. 
Nevertheless, as we shall see in later sections, the information theory 
result often is in good agreement. Needless to say it would be better to use 
an optimization procedure which would simultaneously satisfy the moment 
theorems and give the correct K’(O), but we have not been able to devise 
such a procedure. 

Given an approximate K(t),  the Volterra equation can be solved for C(t). 
Our P(w) satisfies the sum rules on K’(o) for po and p2 and is therefore 
satisfactory to this order. It will fail to satisfy the higher-order sum rules. 
Nevertheless, as we pointed out, these sum rules can be built into the theory. 

IV. COMPUTER EXPERIMENTS 

A. Introductory Remarks 

At the present time the complete time dependence of only a few correla- 
tion functions have been determined experimentally because: 

(1) Some experiments only measure the power spectrum of correlation 
functions over very restricted frequency ranges. Hence, the correlation 
functions themselves cannot be reconstructed from the experimental data. 
This is the case in static transport coefficient measurements where only 
the power spectra of specific correlation functions at zero frequency are 
measured.12 

(2) Some experiments are difficult to perform and analyze. This is the 
case in slow neutron-scattering experiments5 

Hence, despite these theoretical advances, we still have very little quanti- 
tative experimental information on the detailed motion of fluid molecules. 

The present state in the theory of time-dependent processes in liquids is 
the following. We know which correlation functions determine the results 
of certain physical measurements. We also know certain general properties 
of these correlation functions. However, because of the mathematical 
complexities of the N-body problem, the direct calculation of the full- 
time dependence of these functions is, in general, an extremely difficult 
affair. This is analogous to the theory of equilibrium properties of liquids. 
That is, in equilibrium statistical mechanics the equilibrium properties of a 
system can be found if certain multidimensional integrals involving the 
system’s partition function are evaluated. However, the exact evaluation of 
these integrals is usually extremely difficult,especially for liquids. 

In the case of monatomic fluids, digital computers have recently been 
employed to cope with the mathematical difficulties encountered above. 
Two methods have been used and both have been reviewed by Nelson.30 
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The first evaluates the multidimensional integrals for equilibrium properties 
by Monte Carlo techniques. However, this method does not provide any 
dynamical information. The second method, molecular dynamics, is 
essentially a brute force solution of the N-body problem. Alder and 
Wainwright3’ have used this latter method to study fluids of hard sphere 
molecules and square well molecules. These authors originally pointed out 
the potential applications and limitations of this method. In 1964, Rah- 
man32 demonstrated that it is feasible to do dynamics studies using much 
more realistic potentials. In particular he simulated liquid argon assuming 
a Lennard-Jones potential of interaction. He was primarily interested in 
time-dependent correlation functions which enter into the theory of neutron 
scattering. Among other things, his correlation functions show that the 
motion of argon atoms in the fluid is much more complicated than that 
assumed earlier in simplified model calculations. According to Zwanzig,” 
“ Rahman’s calculations provide what is probably the most detailed 
‘ experimental ’ information currently available about dynamical processes 
in liquids.” Verlet44 then did a series of dynamics studies on liquid argon 
at various temperatures and densities. He again used the Lennard-Jones 
potential and found that these studies represent, to a good approximation, 
the equilibrium properties of real liquid argon. 

Until now there have been no simulations done on liquids whose con- 
stituent molecules possess internal degrees of freedom. We have therefore 
undertaken a series of computer studies of the simplest liquids of this type: 
liquids made up of the diatomic molecules carbon monoxide and nitrogen. 
There were several compelling reasons for making these studies : 

(1) To obtain a realistic and detailed picture of how individual molecules 
rotate and translate in classical fluids. 

(2) To examine in detail some of the time-correlation functions that 
enter into the theories of transport, light absorption, light scattering, and 
neutron scattering. 

(3) To see how well simulations based on various proposed potentials 
reflect physical reality. 

(4) To test various stochastic assumptions for molecular motion that 
would simplify the N-body problem if they were valid. Molecular dynamics 
is far superior to experiment for this purpose since it provides much more 
detailed information on molecular motion than is provided by any experi- 
ment or group of experiments. 

These computer experiments have provided insight into the microscopic 
dynamical behavior of real diatomic liquids for both the experimentalist 
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and theoretician alike. Further it is hoped that these studies will motivate 
more realistic approximate theories of the liquid state and provide " experi- 
mental " data to test these theories against. 

B. Method Employed 

The molecular dynamics calculations were carried out in a manner simi- 
lar to that used by Rahman in his original study of liquid argon.32 A finite 
number of molecules, N ,  were assumed to interact pairwise through a 
given truncated intermolecular pair potential. In addition, the atoms on 
the same molecule were assumed to interact through a harmonic potential, 
+Ku(ri - i)', where K,, is the ground state vibrational force constant for the 
molecule, r1 is the internuclear separation for the ith molecule, and i is the 
ground state equilibrium internuclear separation. For carbon monoxide, 
K,, = 1.9020 x lo6 dynes/cm and i = 1.1281 A. For nitrogen, K,  = 
2.2962 x lo6 dyneslcm and i = 1.094 A.45 The harmonic potential 
was added because the calculations were done in the Cartesian coordinates 
of the atoms forming the molecules. These atoms were originally separated 
by the equilibrium internuclear distance. They remained separated by this 
distance to within A throughout the course of the calculations. 
Therefore the results of these computations are essentially those for sys- 
tems of rigid rotors. 

The center of mass of each molecule was initially placed in a cubic 
lattice system within a large cube. The length, L, of a side of the cube was 
(NM/p)'I3 where M was the mass of a molecule and p was the density of 
the fluid. L was typically -30 A in these calculations. The molecular 
orientation angles were chosen randomly on a unit sphere. That is, if 8 and 
4 were the usual molecular axis, polar orientation angles, then + was 
assumed to be uniformly distributed between 0 and 2n and cos 8 was as- 
sumed to be uniformly distributed between - 1 and 1. The relative and 
center of mass velocity components were chosen by the Von N e ~ m a n ~ ~  
rejection method from Gaussian distributions appropriate to a gas of rigid 
rotors at some preselected temperature, 7'. That is, if V,, V, , and V, were 
the center of mass velocity components and 8 and 4 were angular velocities, 
then the probability of selecting these velocities was given by 

(-I[& e42 + d2]) 
2KT 

x exp 
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The selected relative and center of mass positions and velocities for each 
molecule were then transformed to Cartesian coordinates to give an initial 
set of velocities and positions to each of the two atoms making up the 
molecule. Periodic boundary conditions were imposed.31s32 That is, if 
(x, y ,  z) were the coordinates of a particle in the original cube, then there 
were assumed to be 26 images of this particle with coordinates gotten by 
adding and subtracting L from each Cartesian coordinate of the original 
particle. A given particle i then interacted not only with every particle .j 
within the original cube but also with all of particlej's images. Further, if 
during the course of the calculation a particle passed outside the original 
cube, then it was replaced by a particle entering the opposite side of the 
cube and having the same velocity as the particle that left. In other words, 
the number of molecules in the cube was constant. Hamilton's equations of 
motion for the N molecules were then solved numerically using the Runga- 
Kutta-Gill method with a stepsize in time, At, of 5 x s. See Appendix 
A for a general discussion of the reasons why this numerical method4' and 
time step were used. 

During the course of the calculations the translational and rotational 
temperatures, TT and TR , respectively, were monitored at each step. These 
temperatures were defined by the equipartition theorem : 

where Vi is the center of mass velocity of the ith molecule,Vt is the velocity 
of thejth atom on the ith molecule, and Ml and M ,  are the masses of the 
two atoms making up the molecule. The formula for TR assumes explicitly 
that we were dealing with systems of rigid rotors. This was actually a very 
good assumption since the vibrational coordinates only contributed 
-0.02"K to TR and the variance of TR due to statistical fluctuations was 
typically loo0 times larger than this contribution. The total kinetic 
temperature, TK, was then defined by 

3 
2 

TK = - TT + TR (173) 

The initial distribution of positions and velocities was not that of an 
equilibrium fluid at the preselected temperature T. Therefore, during the 
initial or equilibration phase of these calculations the monitored tempera- 
tures fluctuated wildly. This behavior is illustrated in Figure 1 where TT 
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Fig. 1 .  Rotational and translational temperatures during the first 100 steps in the 
equilibribration phase of the modified Stockmayer simulation of CO. One step is equal 
to 5 x 10-&. The discontinuities correspond to points where velocities were changed. 

and TR for the first 100 steps in the equilibration phase of a typical calcula- 
tion are presented. The preselected temperature was 68°K in this particular 
instance. Note that during the first 100 steps of this calculation the rotation- 
al temperature climbed from -68 to - 130°K while the translational 
temperature dropped from - 68 to - 55°K. In order to force the system to 
equilibrate at the preselected temperature, T ,  and TR were examined after 
every 10 steps, and if these temperatures fell outside the range T & AT 
then : 

(1) The Cartesian velocities of all the molecules were transformed to 

(2) The center of mass velocities were multiplied by (T/TT)'/2 and the 

(3) The new relative and center of mass velocities were transformed 

(4) The equilibration phase was allowed to proceed. 

AT usually varied from 0.5"K during the first 100 steps to 2.5 or 5°K for 
the last 100 steps. The maximum value of AT depended on the number of 
molecules being followed and the expected temperature or kinetic energy 
fluctuations at equilibrium for this number of molecules. The effect on 
temperature fluctuations of applying the above method in the first 100 
steps of the equilibration phase is again illustrated in Figure 1. Note that 

relative and center of mass velocities. 

relative velocities were multiplied by (T/TR)'I2. 

back to the Cartesian frame to give a new set of starting velocities. 
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in the first 10 steps the fluctuations are as large as 50°K but in the last 10 
steps they are only -3°K. A given system usually took 300 steps to 
equilibrate. 

After a system had equilibrated it was followed for an additional 600 
steps or for 3 x s. During this production phase of the calculations 
the velocities were not changed but the temperatures were continually 
monitored. The random translational and rotational temperature fluctu- 
ations that occurred during this phase are illustrated by Figure 2. In this 
particular instance, the rotational and translational temperature fluctuations 
are out of phase with one an other. This behavior is typical of a system 
with a strong angular dependent potential. The distribution of the x 

6 0  ' 1 1 1 1 1 1 1 1 1 1 1 1 " " 1 1  

0 20 40 60 80 I00 120 140 160 180 : )O 
NUMBER OF S T E P S .  

Fig. 2. Rotational and translational temperatures during the first 200 steps in the 
production phase of the modified Stoclpayer simulation CO. 

component of the center of mass velocity for this same simulation is 
presented in Figure 3. This is a Gaussian distribution with a mean of 0 
and a variance of 1. 404 x lo4 cm/s, i.e., that characteristic of a system 
of carbon monoxide molecules in equilibrium at a temperature of 66.4"K. 
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Vx in 1.421 X 10 cm/a 

Fig. 3. Distribution of the x component of the C.M. velocity for CO from the 
modified Stockmayer simulation of CO. <V,> = 0 and <Vx2>1/2 = 1.404 x lo4 cm/s. 

C. Data Reduction 

During the production phase, the positions, velocities, and accelerations 
created at each step in time were put on magnetic tapes. These tapes were 
later analyzed for the time-dependent and independent properties of the 
system. From a statistical mechanical standpoint, the data on these tapes 
may be viewed in one of two ways: 

(1) The 600 blocks of positions and velocities represent an ensemble of 
600 points in the phase space r N ,  of the entire system being studied or an 
ensemble of 600N points in the reduced phase or p space of a single 
molecule. This approach was taken in calculating time-independent prop- 
erties. For example, the mean square force on a molecule, (F2>, was 
given by 

where F,(j) is the total force on the ith molecule in thejth block. Since N 
was either 216 or 512, averages of this type utilized either 129,600 or 
3,072,000 points in p space. 

(2) The first 100 blocks of data may be viewed as 100 initial phase 
points in r N ,  in which case the data represents 100 trajectories in r N  or 
l00N trajectories in p space over a time interval -2.5 x lo-'* s. This 
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approach was taken in calculating autocorrelation functions. For example, 
the dipolar correlation function was given by : 

where t i  = ( i  - 1)At, i = 1, . . . , 500, and pk(l) is a unit vector pointing 
along the internuclear axis of the kth molecule in the Zth block. Auto- 
correlation functions were averaged over from 21,600 to 51,200 trajectories 
in p space. 

D. Potentials Used 

One source of information on intermolecular potentials is gas phase 
virial coefficient and viscosity data. The usual procedure is to postulate 
some two-body potential involving 2 or 3 parameters and then to determine 
these parameters by fitting the experimental data. Unfortunately, this data 
for carbon monoxide and nitrogen can be adequately represented by 
spherically symmetric potentials such as the Lennard-Jones (6-12) 
p~tential.~' That is, this data is not very sensitive to the orientational- 
dependent forces between two carbon monoxide or nitrogen molecules. 
These forces actually exist, however, and are responsible for the behavior 
of the correlation functions (p(0) a(?)) and (P,(p(O) p( t ) )> .  In the gas 
phase, where orientational forces are relatively unimportant, these func- 
tions resemble those in Figure 6. On the other hand, in the liquid these 
functions behave quite differently and resemble those in Figures 7 and 8. 

One of the simplest orientational-dependent potentials that has been 
used for polar molecules is the Stockmayer potential.48 It consists of a 
spherically symmetric Lennard-Jones potential plus a term representing 
the interaction between two point dipoles. This latter term contains the 
orientational dependence. Carbon monoxide and nitrogen both have 
permanent quadrupole moments. Therefore, an obvious generalization of 
Stockmayer potential is a Lennard-Jones potential plus terms involving 
quadrupole-quadrupole, dipole-dipole interactions. That is, the orienta- 
tional part of the potential is derived from a multipole expansion of the 
electrostatic interaction between the charge distributions on two different 
molecules and only permanent (not induced) multipoles are considered. 
Further, the expansion is truncated at the quadrupole-quadrupole term. 
In all of the simulations discussed here, we have used potentials of this 
type. The components of the intermolecular potentials we considered are 
given by : 
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1. Lennard- Jones 

where R is the distance between the center of masses of two molecules. For 
nitrogen we used E/K = 87.5"K and o = 3.702 A.49 For carbon monoxide 
we used E/K = 109.9"K and Q = 3.585 A.48 

2. Dipole- Dipole 

VD-D(R el, e,, 4) = -- - " [2 cos 8, cos 8, - sin 8, sin 8, cos $1 (177) 
R3 

where el, 8, , and 4 are the orientational angles of two molecules with 
respect to a line joining their center of masses. For CO, we used p = 0.1172 
deb ye^.^' 

3. Quadruple- Dipole 

3clQ VQJR, el, e,, $1 = - [COS e,(3 COSZ 8, - 1) + cos e,(3 cos2 el - 1) 4R4 

- 2 sin 8, sin 8, cos ~ ( C O S  8, + cos O,)] (178) 

The quadrupole-dipole interaction differs by a factor of 2 from the usual 
definition of this term.4s However, the effect of this difference on the overall 
results of the simulation that it was used in is thought to be small. The sign 
of Q was taken as positive and the dipole moment direction was from the 
oxygen atom to the carbon atom.50 

4. Quadrupole- Quadrupole 

+ 2(sin 0, sin 8, cos $ - 4 cos 8, cos 8,)2] (179) 

For carbon monoxide we used Q = 2.43 x esu and for nitrogen we 
used Q = 2.05 x lo-," Q is defined here as + the zz component of 
the quadrupole tensor in a coordinate system whose z axis lies along the 
internuclear axis. 

The four simulations of carbon monoxide and nitrogen discussed here 
were done at a preselected temperature of 68°K and usually equilibrated 
within 2 or 3°K of this value. The densities of carbon monoxide and nitro- 
gen liquids used were 0.8558 and 0.8537 g/cc, respectively. The range of all 
potentials used was 2.250: the same range that Rahman32 used in his 
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studies of liquid argon. At any instant there were -40 molecules within a 
particular molecule5 range of interaction. The four simulations and their 
intermolecular potentials are: 

1. The Stockmayer Simulation of Carbon Monoxide with p = 0.1172 Debye 

The intermolecular potential consists of the sum of Eqs. (176) and(177). 
This simulation was done for 216 and 512 molecules. However, only the 
autocorrelation functions from the 512 molecules case are discussed here. 
The small dipole moment of carbon monoxide makes the orientational part 
of this potential so weak that molecules rotate essentially freely, despite 
the fact that this calculation was done at a liquid density. The results for the 
Stockmayer simulation serve the purpose of providing a framework for 
contrasting results from more realistic, stronger angular-dependent po- 
tentials. 

2. The Stockmayer Simulation of Carbon Monoxide with p = 1.172 Debye 

The potential form is the same as that in 1 except for the dipole moment 
used. This simulation was run for 216 molecules. We were primarily 
interested in seeing the effect on rotational motion of increasing the dipole 
moment. Although this particular dipole moment is ten times larger than 
carbon monoxide’s, it is a reasonable one for a more polar substance such 
as HCl. Note: Henceforth a reference to the Stockmayer simulation will 
refer to the first one discussed. Any specific reference to this calculation 
will mention the dipole moment used. 

3. The Modijied Stockmayer Simulation of Carbon Monoxide 

The intermolecular potential consists of the sum of Eqs. (176), (177), 
(178), and (179). This simulation was done for 216 and 512 molecules but 
again only the autocorrelation functions for 512 molecules are discussed 
here. This potential is the strongest angular dependent potential we con- 
sidered. The results from this potential indicate that it is slightly stronger 
than that in real liquid carbon monoxide. For example the mean square 
torque,(N2), for this simulation is -36 x (dyne-cm)’ 51 and the 
experimental value is -21 x (dyne-cm)’. If this potential is taken 
seriously, then it should be pointed out that this small discrepancy in 
torques could be easily removed by using a smaller quadrupole moment. 
This would be a well justified step since experimental quadrupole moments 
for carbon monoxide range from -0.5 x 

4. The Lennard-Jones plus Quadrupole-Quadrupole Simulation of Nitrogen 

The intermolecular potential consists of the sum of Eqs. (176) and (179) 
and was done for 21 6 molecules. 

to 2.43 x ~ s u . ~ ’  
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E. Summary and Discussion of Errors 
Our original goal was to study liquids of carbon monoxide and nitrogen. 

Ideally this would involve solving the equations of motion for a macro- 
scopic number of molecules (-lo2'). However, in practice we only 
considered -512 molecules in an infinite periodic environment. Even this 
number strained both the storage capacity and computing ability of our 
IBM 7094. For example, the 6144 kst-order differential equations for the 
modified Stockmayer simulation for 512 carbon monoxide molecules took 
5.1 min of 7094 time/step or a total of 76.5 hr of 7094 time for the 900 steps 
of the equilibration and production phase of this calculation. The data 
reduction for this calculation took approximately another 75 hr of 7094 
time. 

We have tried to assess the effects of the finite number of molecules, or, 
equivalently, the periodic boundary effects .by comparing the results of 
simulations done with 216 and 512 molecules. For equilibrium properties 
such < N 2 )  and <Fz) ,  the primary effect of increasing the number of mole- 
cules is to reduce the measured variances of these quantities (see Tables I1 
and 111). We therefore feel that these quantities are within a few percent of 

TABLE I1 
Equilibrium Properties from Modified Stockmayer Simulation of CO 

< vc> 
N 

< vr> 
N 

- 

- 

512 
(67.43 f 1.26)"K 
(66.35 f 1.72)"K 
(69.06 f 2.47)"K 
(9.460 f .657) x lo-" (dyne)? 
(35.74 f 1.46) x (dyne-cm)? 
(27.63 f .991) x 
1.88 x lo-' cm2/s 

(-8.21 f .05) x 10-14erg 

(g cmz/s)2 

216 
(69.45 & .43)"K 
(68.87 f 3.38)"K 
(70.31 f 3.91)"K 
(10.07 f 1.05) x lo-" (dyne)? 
(35.32 f 3.00) X (dyne-cm)2 
(28.14 f 1.60) x 
1.82 x cmz/s 

- -8.2 x 10-14erg 

(g cm2/s)" 

(-11.34 & .04) x 10-'*erg - - 11 x erg 

those measured for an infinite number of molecules. For the correlation 
functions discussed here, the primary effect of increasing the number of 
molecules is to reduce fluctuations in these functions that occur for 
t 9 4 x lo-'' s. This effect on the velocity autocorrelation function, Jr(t), 
for the Stockmayer simulation is illustrated in Figure 4. $(t)  is defined by 
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TABLE 111 

Equilibrium Properties from Stockmayer Simulation of CO 

512 
(69.18 f .97)OK 
(70.03 f 1.60)"K 
(67.91 f .12)"K 
(8.722 f .541) x lo-" (dyne)2 
(6.716 f .144) x (dyne-cm)2 
(27.17 f .04) x 10-54(g cmz/s)2 
2.39 x cm2/s 

(-8.49 f .03) x erg 

(-8.49 f .03) x l0-I4erg 

216 
(67.86 f 153°K 
(67.89 f 2.54)"K 
(67.80 f .29)"K 
(8.696 f 378) f lo-" (dyne)2 
(6.635 f .434) x lo-'' (dyne-cm)2 
(27.13 f .12) x (g cm'/s)' 
2.48 x cm2/s 

N -8.4 x 10-14erg 

N -8.4 x 10-14erg 

. g(t) N.216 .8 - 
- 

Deviation of $(t) 
. 6 -  for N.216 .- 

f 
U 

LL 
a -  

.- '0 -4 -  

c :: .2- 
3 

c 
0 - 
t -  
b 

0 .  

- 

Fig. 4. The velocity autocorrelation functions from the Stockmayer simulation of 
CO using 216 and 512 molecules. 

where V is the center of mass velocity of a molecule. This function will be 
discussed in greater detail shortly. Because of the boundary effect, we feel 
that the fine details of the correlation functions from simulations involving 
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216 molecules and for times 5 4  x s should not be taken too seri- 

We have also tried to assess the effects of integrating Hamilton’s equa- 
tions numerically. This is a rather difficult task since the exact solutions to 
these equations are not known. However, we can use the observed con- 
servation of total energy and linear momentum as an indication that the 
equations are being integrated properly. For the Stockmayer and modified 
Stockmayer simulations the total energy and linear momentum were 
conserved to -0.05 and -0.0()()6%, respectively, over the 600 integration 
steps of the production phase of these calculations. 

In comparing our systems to real liquids of carbon monoxide and nitro- 
gen, we are assuming implicitly that these real liquids behave like classical 
systems of rigid rotors. That is, quantum effects are relatively small. The 
usual criteria that have to be satisfied for this to be true are: 

(1) The De Broglie wavelength of a molecule must be small compared to 
the average distance between molecules, i.e., (h2/3MKT)”2/(p/M)”3 < 1. 

(2) Many rotational states must be occupied or, equivalently, the rota- 
tional energy spacing must be small with respect to KT, i.e., h2/2ZKT < 1. 

(3) The molecules must be predominantly in their ground state vibra- 
tional level, i.e., ho,c/KT 1,  where c is the velocity of light and o, is the 

oxide at 68°K with p = 0.8558 g/ccand o, = 2.170 x lo3 ~m-’ ,~ ’  the above 
factors are -2 x lo-’, - 5  x lo-’, and -5 x lo1, respectively. Therefore, 
to a fist approximation real liquid Carbon monoxide at this temperature 
and density behaves classically, and our comparisons will be justified. 

F. Liquid or Solid 
All of these simulations were done at temperatures at or near the melting 

point of carbon monoxide and nitrogen. Therefore we must show that these 
simulations represent liquids, not solids. The following characteristics of 
our results all indicate that we are dealing with liquids. 

The coefficients of self diffusion for each of these simulations (see Tables 
11,111, IV, and V), are all very close to those measured experimentally for 
liquid CO.” If we were dealing with solids these coefficients would be an 
order of magnitude or more smaller. 

ously. 

energy separation of suc 2 essive levels in wave numbers. For carbon mon- 

Following Verlet,44 consider the function ~ , , ~ ( t )  defined by 
1 
3 ,=I 

p=,u(t) = - C {COS KXi(t) + cosKY,(t) + cos KZ,(t)} (181) 

where K = 4nN’I3/L, L is the length of a side of the cube enclosing the N 
molecules, and X,(t) ,  Y,(t), and Zi(t) are the center of mass coordinates of 



TABLE W 
Equilibrium Properties from Stockmayer Simulation of CO with I" = 1.172 Debyes 

and from Lennard-Jones Plus Quadrupole-Quadrupole Simulation of N2 

Liquid 
N 
TK 
TT 
TR 
<F2> 
<N2> 
<J2> 

D# 
< vc> 
N 

<Vr> 
N 

- 

- 

co 
216 
(71.84 f 2.99)"K 
(69.94 f 3.59)"K 
(74.67) =k 6.95)"K 
(10.54 f 1.18) x 10-ll(dyne)f 
(19.99 f 1.50) x (dyne-crn)l 
(29.88 f 2.78) x 
1.86 x cm'/s 

- -8.1 x lO-I4erg 

(g cm2/s)' 

- -13 x lO-I4erg 

N2 
216 
(66.29 f 2.09)"K 
(68.86 f 2.69)"K 
(62.43 f 3:29)"K 
(10.22 f .96) x lo-" (dyne)2 
(18.29 f 1.29 x (dyneem)? 
(23.99 f 1.27) x 
1.15 x lo-' cm2/s 

N -6.6 x lo-'* erg 

(g cm2/s) 

- -8.4 x lo-'* erg 

TABLE V 

Data for Approximate Memory Functions 

Simulation Stockmayer Modified Stockmayer 

<N2> 
<JZ> 

<m 
<J'> 

- 1.2932 x 10'6/s' 

133 
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the ith molecule at time t. For a cubic lattice, which was our initial starting 
configuration in each of the simulations, the distribution of Xi is given by 

N 113 

Using this distribution, the mean and variance of pKSR are N and 0, 
respectively. Therefore P K , R ( f )  should be N for all times in a solid. On the 
other hand, for a gas or liquid the Xi are uniformly distributed between 
0 and L: 

(183) 
dx . 
L 

P(Xi) dx, = -2 0 s xi I L 

The mean and variance of pK,R for the uniform distribution are 0 and 
(N/2)'12, respectively. This implies that for a liquid, P K , R ( f )  should oscillate 
around 0 with an amplitude of oscillation of -(N)'12. Plots of ~ ~ , ~ ( t )  for 
the Stockmayer and the modified Stockmayer simulation of carbon 
monoxide using 512 molecules are shown in Figure 5 .  The behavior of 
~ ~ , ~ ( t )  in each of these simulations is that of a liquid. 

Finally, consider the behavior of the mean square displacement of the 
center of mass of a molecule, ((AR(t))2>. R(t) is the center of mass of the 
molecule at time t and AR(t) = R(t) - R(0). Rahman has just completed a 
dynamics study of liquid and solid argons3 in the neighborhood of 84'K- 
the melting point of argon. He finds that for short times, 0 5 t 5 2.5 
x s, the mean square displacement of an atom in the solid is identical 
with that of an atom in the liquid at the same temperature. That is, for 
short times the atoms in both states behave like free gas particles and their 
displacements are given by (3KT/M)t2.  However, the long time behavior of 
these functions is quite different. In the liquid ((AR(t))2) increases mono- 
tonically with time. On the other hand, in the solid ((AR(t))2) reaches a 
maximum value of -0.58L2 at t = -6 x 10-'3s and then decreases 
slightly in an oscillatory fashion to a value of -0.4 8L2 at t = 25 x s. 
The main point of interest here is that the mean square displacement in 
the solid is bounded, whereas in the liquid it is not. Our mean square 
displacements behave like Rahman's: they increase monotonically in 
the real time interval 0 I t I 25 x s. (See Figures 35 and 39.) 
However, we can not yet conclude from this that we are dealing with liquids 
because it is possible that for t > 25 x s these functions will approach 
some asymptotic value characteristic of a solid. The following arguments 
suggest that this is not the case: If we were dealing with solids, then these 
functions would have approached their asymptotic values long before 
25 x s. Consider a cubic harmonic Debye solid which is a fair 
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Fig. 5. The functions pK&) from the Stockmayer and modified Stockmayer simulation 
of co. 

approximation to solid nitrogen, carbon monoxide, and argon. Vineyard54 
has shown that if 8, is the characteristic temperature of a solid of this type, 
then the mean square displacement of an atom in the lattice is given by: 

(184) 
sinw,t 

((AR(t))2>D = [ - 7 1  



136 B. J. BERNE AND G. D. HARP 

where cog = KB,/h. This function goes as (3KT/M)t2 for short times and 
approaches the asymptotic value of 18KT/MqD2 in a damped oscillatory 
fashion. It reaches its maximum value of 22KT/MoD2 at t - 4.4/0,. 
Therefore, ((AR(t))2)g behaves at least qualitatively like Rahman's 
function for solid argon. The characteristic temperatures for solid argon 
and nitrogen are 85 and 68°K,55 respectively. It follows that ((AR(t))2)g 
in solid argon at 84°K should reach its maximum value of -0.3 A2 in 
-4  x s. These values are approximately a factor of 1.5 smaller than 
what Rahman actually observed. For solid nitrogen at 68"K, ((AR(t))2)D 
should reach its maximum value of -0.6 A2 in - 5  x s. Since we 
have not seen the mean square center of mass displacements approach any 
asymptotic values over a time range five times larger than this value, we 
conclude again that we are dealing with liquids. 

G. Equilibrium Properties 

Tables 11, 111, and VI contain a few equilibrium properties for the 4 

TABLE VI" 

Equilibrium Properties 

Numerical value of 
friction coefficients 

( x  10-12 s-1) 

Memory function friction coefficient Y YJ 
Corresponding 

Gaussian 5.98 

Delta function 

Lorentzian 

(;)"'. 

(a) [ A l p  
Exvonential 

5.98 

10.60 

8.10 

(b) [$] '"p 9.73 

Experimentalb 9.38 

14.34 

14.34 

25.41 

19.43 

16.38 

17.54 

a p is calculated from moments given in Nijboer and Rahman to 

The experimental friction coefficient comes from Nijboer and 
be 4.77 x loxz s-l, pJ from moments given in Table V. 

Rahman ? 
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systems we studied. The data is presented in the form of the mean value of 
a given property averaged over 600 blocks plus or minus the variance of 
that property within the 600 blocks. For example, the mean square force 
is given by (see Eq. 5): 

and the variance of the mean square force, oF, is then given by: 

The kinetic temperatures, T ,  , TR , and T, ,  are mainly given for complete- 
ness. The fact that these three temperatures are not equal indicates that our 
heuristic method for forcing each system to equilibrate at a preselected 
temperature was not 100 % effective. The largest differences between these 
temperatures occur in the Stockmayer simulation of CO with p = 1.172 
Debyes and in the Lennard-Jones etc., simulation of N 2 .  

The mean square force is one test of the validity of the pair potentials 
used in the dynamics calculations. The calculated mean square forces for 
the four simulations are not very different: they only vary between 
-9 x lo-" and - 10 x lo-" (dynes)2. The experimental valuess1 of the 
mean square force in solid CO at 68°K and in Iiquid CO at 775°K are - 15 x lo-" and - 14 x lo-" (dynes)2, respectively. Therefore, our mean 
square forces are - 30 % too small. 

The mean square torque is another test of the pair potentials used. The 
calculated mean square torques are very potential dependent: they range 
from -7  x to -36 x (dyne-cm)'. The experimental valuess1 
of the mean square torque in solid CO at 68°K and in liquid CO at 77.5% 
are -19 x and -21 x (dyne-cm)2, respectively. Therefore, 
the Stockmayer potential clearly does not represent the noncentral forces 
in liquid CO, i.e., this potential is much too weak. On the other hand, the 
noncentral part of the modified Stockmayer potential is too strong. 
However, as pointed out previously, this problem can easily be solved by 
using a smaller quadrupole moment. The mean square torques from the 
other two potentials agree quite favorably with the experimental values. 
We conclude from the above that the quadrupole-quadrupole interaction 
can easily account for observed mean square torques in liquid CO. 
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A further test of the pair potentials used is the translational diffusion 
coefficients, D. The coefficients in Tables 11,111, and IV were all evaluated 
using the Einstein-Kubo relation: 

The experimental valueS2 of D in liquid CO at 69°K is (2.25 -f .l) x 
cm2/s. The calculated values of D for the Stockmayer and modified Stock- 
mayer simulations of CO are 2.39 x cm2/s, respec- 
tively. Therefore, the diffusion coefficients from these two simulations agree 
fairly well with the experiment. 

The average central or Lennard-Jones potential energy per molecule, 
(V,-)/N, and the average total potential energy per molecule, ( V , ) / N ,  are 
also given in Tables I, 11, and 111. The noncentral part of the Stockmayer 
potential contributes nothing to this system's total potential energy. On the 
other hand, the noncentral parts of the other three potentials contribute 
from 22 to 38 % to their system's total potential energies. 

and 1.88 x 

H. The Classical Limit 
In the previous section it was shown how classical many-body systems 

can be studied by computer experiments. Actual laboratory experiments 
probe real systems which are, strictly speaking, entirely quantum-mechani- 
cal in nature. What, then, is the relationship between the classical and 
quantum-mechanical time-correlation function of the dynamical variable 
o,? To expedite this discussion consider the one sided function 
( V I ( 0 )  UI( t ) ) .  This correlation function is in general complex with real 
part t$iI(t) and imaginary part so that 

from which it follows that $'II(t) and +"II(t) are odd and even functions of 
the time, respectively. 

The complex conjugate of ( P I ( 0 )  UI(t))  is thus, 

(U+I(O)UI(tD* = ( ~ d t ) U ' , ( O ) )  = +'Il(t) - i+"e(t> = (u+I(o)~I~-o) 
(191) 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 139 

Now 4*tl(t) = c$[~( - t), and consequently 
+ m  

JId t  e'"' ( t )  = I dt e- 411(t) = $11( - o) (194) 
- m  

So that 

4n(o) = e- $ I d  - a) (195) 

This equation expresses the well-known condition of detailed balance. 
Substitution of Eqs. (189) and 191) into Eq. (193) leads to 

IOm dt 4'Jt) cos ot = coth (T) Jomdt $"ll(t) sin ot (196) 

after exploiting the fact that 4'll(t) is even and +l l l ( f )  is odd in the time. 
This gives the fluctuation dissipation theorem. 

The classical time-correlation function, ( Uf,(0) Ul(t)) ,  does not obey 
the condition of detailed balance. Computer experiments provide detailed 
information about classical time-correlation functions. Is there any way to 
use the classical functions to predict quantum-mechanical time-correlation 
functions? The answer to this question is affirmative. There exist approxi- 
mations which enable the quantum-time-correlation functions to be predic- 
ted from the corresponding classical functions. Let us denote by Jlll(t) the 
classical time-correlation function and by c$zz(t) the one-sided quantum- 
mechanical correlation function : 
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Theorem: If F'(r) = $II(t + ihp/2), then the Fourier transform, F'(o) ,  of 
F'(t) is related to the Fourier transform, $II(o), of $&), according to the 
equation, 

~' (o)  = e-prm12 $a(o) (198) 

Proof: Expansion of 4&) in the energy eigenstates of the Hamiltonian 
leads to the equation 

Mt) = C P n I(n I U+i I m)t2 exp ( i o n m i )  
nm 

From this it follows that 

Fourier transformation of F'(t) is then, 
+ m  

F'(o) = 1 dr e'"'F'(r) 

The term 

2~ C P n  I(n Iu+,Im)12 6(o + onm) 
nm 

is the Fourier transform of $&), so that 

F'(o) = epAm/' $II(o) 

This proves the theorem. 
That F'(o) is an even function of the frequency and consequently F'(t) 

is an even function of the time follows from the detailed balance condition 
and the previous theorem. Combining the condition of detailed balance 

411(o) = e - ljrm $ I d  - 0) 

~ ' ( o )  = e - prm/' (bI1( - o) 

F'( - w) = epAm/2 $II(o) = F'(o) 

with Eq. (1 98) yields 

From this it follows that 

(199) 

This last step follows from Eq. (198) and demonstrates that F'(o) and F'(t) 
are even functions of their arguments. 

SchofieldS6 suggested that the quantum-mechanical time-correlation 
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function, $o(t), can be approximated from the classical correlation function, 
$ i I ( ~ ) ,  by taking F’(t) equal to $rr(t) since both of these functions are even 
functions of the time. Then 

and the quantum-mechanical function is 

The Schofield approximation is useful insofar as it gives an approximate 
quantum-mechanical time-correlation function which satisfies the condi- 
tion of detailed balance as it must. Needless to say if +JI(t)  is equated to 
\Jrt1(t) the condition of detailed balance will not hold. It should be noted 
that the Schofield approximation does not satisfy the moment sum rules on 
+’I(t). It was for this reason that Egelstaff proposed his y time approxima- 
tion. Egelstaff showed that if y2 = t 2  - ihpt, then taking 

411w = $n(v) (202) 

would give an approximate t$a(t) which satisfies both the condition of 
detailed balance and the first few sum rules on +II(t). In addition to these 
approximations there have been some recent attempts to relate classical 
time-correlation functions to their quantum analogues. The approximate 
quantum-mechanical time-correlation functions so obtained deviate sig- 
nificantly from their classical counterparts only for short times. 

V. EXPERIMENTAL CORRELATION AND MEMORY FUNCTIONS 

In this section we shall first investigate the following auto-correlation 

(1) The linear momentum or velocity autocorrelation function $(t), 

and memory functions obtained from these simulations : 

defined by 

where P is the center of mass, C.M., linear momentum of a molecule, i.e., 

P = m1v1 + m2v2 (205) 
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It has already been pointed out that the power spectrum of this function at 
zero frequency determines the translational diffusion coefficient, D. The 
full-time dependence of this function can be obtained indirectly from in- 
elastic slow neutron experiments. 5 7  Unfortunately, these experiments are 
not yet precise enough to say anything quantitatively about this function. 
\Ir(r)’s memory function, K,(t), is defined by 

- dJr dt = SdK,(r‘) Jl(t - t’)  dt’ 

(2) The angular momentum autocorrelation function, A,(?), defined by 

where J is the angular momentum of a molecule about its C.M., i.e., 

J = mi[rl - R] x [vl - V] + mz[rz - R] x [vz - v] (208) 

where m i ,  ri,  and vi are the mass, position, and velocity of the ith atom, 
respectively, and R and V are the position and velocity of a molecule’s 
C.M., respectively. The power spectrum of this function at the Larmour 
precession frequency determines the contribution of the nuclear spin-rota- 
tion coupling to nuclear spin relaxation in NMR  experiment^.'^'^ Un- 
fortunately, there has been very little if anything reported on the full-time 
dependence of this function. Aj(t)’s memory function, KJ(t),  is defined by 

dAJ - - dt = JoKJ(t‘)AJ(t - t’) dt’ 

(3) The dipole autocorrelation function, ( ~ ( 0 )  - p( t )> ,  defined previously. 
The full-time dependence of this function for liquid carbon monoxide has 
been successfully determined experimentally from Fourier inversion of 
infrared band In fact, this was one of the reasons this system 
was studied. This function has also been successfully evaluated in terms of 
models of the molecular reorientation process. 58 ( ~ ( 0 )  * p(t)>’s memory 
function, KD(t), is defined by 

Note: K,,,(t), KD(t),  and KJ(t)  are defined formally in terms of projection 
operators by appropriate modifications of Eq. (99). 

These three autocorrelation and memory functions have one thing in 
common : They all depend on the average interaction of a molecule with its 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 143 

surroundings. This dependence can easily be seen in the moment expan- 
sions of each of these functions. For short times we have (see Eqs. 168 
and 169) : 

where (F’)  and (N’) are the mean square force and torque on a molecule. 
(g’) and (N2) are the mean square first time derivatives of the force and 
torque. (P’), (J’), and ( J 4 )  are quantities that are independent of any 
molecular interactions. In particular for a linear molecule. 

(P2) = 3MKT 

<J2> = 21KT 

(J4) = 8(IKT)’ (219) 

= 2(J2)’ (220) 

This latter expression has been used to simplify KD(t). Note that the time 
dependences of the linear and angular momentum autocorrelation func- 
tions depend only on interactions between a molecule and its surroundings. 
In the absence of torques and forces these functions are unity for all time 
and their memories are zero. There is some justification then for viewing 
these particular memory functions as representing a molecule’s temporal 
memory of its interactions. However, in the case of the dipolar correlation 
function, this interpretation is not so readily apparent. That is, both the 
dipolar autocorrelation function and its memory will decay in the absence 
of external torques. This decay is only due to the fact that there is a distri- 
bution of rotational frequencies, o, for each molecule in the gas phase. In 
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particular we have for a gas of rigid rotors 
2 

0 2  = [3] 

where P(J) dJ is the probability distribution for the magnitude of the 
angular momentum. Therefore for a gas of non-interacting rigid rotors the 
dipolar autocorrelation function is given by 

(P(0) - P(O>c = Jrn 0 cos (;+(a dJ (223) 

The decay of this function as well as the results of,the Stockmayer simula- 
tion of carbon monoxide are presented in Figure 6. Note that the gas phase 

a <P, (G(o)*G(t))> FOR CO GAS AT 68OK 

0 <P,(t(o)*;(t))>FOR CO GAS AT 68OK 

<P, (G(o) .c(  1 ) ) )  FROM STOCKMAYER 

<P2(G(o)-J(t  ))> FROM STOCKMAYER 

t -  

- 

-2 - 
- 

1 1 1 1 1 1 1  I l l  I l l  I 

0 5 10 I 
-.4 

t ( i n  1 0 - l ~ ~ )  

Fig. 6. The autocorrelation functions <Pl(p(0) * p( t ) ) )  and <P2(p(0) . p(t))) for CO 
in the gas phase and in the liquid using the Stockmayer potential. 
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and Stockmayer results are practically identical-which again indicates 
that this potential with the small dipole moment of CO is of little impor- 
tance in rotational relaxation. Note further that for the dipolar correlation 
function : 

(a) The coefficient of the t 2  term, KT/Z, depends only on the temperature 
and a molecule’s moment of inertia. Therefore the dipolar correlation 
functions from each of the four simulations should have the same initial 
curvature. 

(b) Molecular interactions enter in the t4  term which is positive. There- 
fore, interactions will delay the decay of the gas phase function. 

These points are all illustrated in Figures 6, 7, and 8. That is, the dipolar 
correlation functions all have the same initial curvature, and the functions 
from simulations using strongly angular dependent potentials decay 
more slowly than the gas phase function. The memory functions for the 
Stockmayer and modified Stockmayer simulations are presented in Figure 
19; the angular momentum autocorrelation function from this latter 
simulation is also shown. The memory for the gas phase or Stockmayer 
dipolar function decays monotonically and is positive for 0 5 f I s. 
On the other hand, the modified Stockmayer memory decays in an entirely 
different fashion. It goes negative in -2 x s and is approximately 
equal to the angular momentum autocorrelation function for this simu- 
lation. This is a very important observation because it presents the pos- 
sibility of obtaining approximate angular momentum correlation functions 
from infrared bandshape studies. Looking closer at Eq. (211) we see that 

This function’s decay will be dominated initially at least by molecular 
interactions provided ( (N2)IZ/ (J2>2)  < 1. This is actually not a difficult 
condition to satisfy. In the modified Stockmayer simulation this ratio is 
-9.8 and experimentally this ratio is -4.5 for liquid carbon monoxide at 
78°K.59 There are probably other physical systems for which this ratio is 
much larger. In the event that this criteria is satisfied K,(t)/lY,(O) -A,(t) 
to terms in t 2  at least. In the case of the modified Stockmayer simulation 
we have just seen that this approximation is actually valid throughout the 
interesting negative region of A,(t). Hopefully, this approximation will also 
be valid in real systems, and the interesting negative region of A,(t) can be 
verified experimentally from infrared bandshape studies. 

For completeness consider also the correlation function (P2(p(0) - ~ ( 1 ) ) )  
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Fig. 7. The autocorrelation function <P1(p(0) * p(t))) and <P,(p(O) * p(t))> for CO 
from the modified Stockmayer simulation. 
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Fig. 8. The autocorrelation function (PI(p(0) . p(t))) from (a) the Stockmayer 
simulation of CO with a dipole moment of 1.172 Debye, and (b) the Lewd-Jones plus 
quadrupolequadrupole simulation of N1 . 
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which can also be obtained from the Fourier inversion of rotation-vibra- 
tion Raman bandshapes.” The short-time expansion of this function is6’ 

From Eq. (225) it is seen that this function will : (a) have a time dependence 
in the absence of interactions, (b) initially decay faster than (p(0) - p ( t ) ) ,  
and (c) decay slower in the presence of interactions than in their absence. 
The behavior of this function in the gas phase is given by 

In the limit t --t co this equation goes to 1/4 whereas in a system with inter- 
actions (P,(p(O) * p ( t ) ) )  goes to zero in this limit. These characteristics are 
all illustrated in Figures 6 and 7 where the results from the Stockmayer and 
modified Stockmayer simulations and from a system of gas phase mo- 
lecules (Eq. 226) are presented. 

Before discussing other results it is informative to first consider some 
correlation and memory functions obtained from a few simple models of 
rotational and translational motion in liquids. One might expect a fluid 
molecule to behave in some respects like a Brownian particle. That is, its 
actual motion is very erratic due to the rapidly varying forces and torques 
that other molecules exert on it. To a first approximation its motion might 
then be governed by the Langevin equations for a Brownian particle:61 

where F(t) and N ( t )  are small stochastic forces and torques whose time 
averages are zero, and cT and cR are translational and rotational friction 
coefficients. This is an oversimplification of the actual motion of a molecule 
surrounded by other molecules of similar mass but nevertheless is an inter- 
esting situation to consider. The linear and angular momentum autocorre- 
lation and memory functions obtained from the solutions to the Langevin 
are simply: 

+(t )  = e-cTt/M (229) 

(230) K,(t) = s(t)  
CT 
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Debye6’ showed that for a Brownian particle whose molecular orienta- 
tion changes through small erratic angular displacements, (p(0) * p ( t ) )  and 
(Pz(p(0) * p(t))) are also exponentials. In particular under these conditions 
these functions are given by 

(do) * p(t)) = e-zDRr 

(PZ(C(0) - p(W> = e- 6DRr 

(233) 

(234) 

(235) 

K D (  t )  = 20,6( t )  

where DR is the rotational diffusion coefficient. There are two points of 
interest here: 

(1) All of the autocorrelation functions are exponentials and, as such, 
are always 20 

(2) All of the memory functions are Dirac delta functions which implies 
that at any given time t a Brownian particle has no memory of interactions 
that occurred before t. That is, the decay of each of these autocorrelation 
functions proceeds through a series of uncorrelated events. 

We have already seen that even in the case of strong intermolecular 
interactions neither (p(0) p ( t ) )  nor (P,(p(O) * p(r)))  decay initially as 
exponentials. Gordon has been able to reproduce the decay of these latter 
functions in liquid CO and N2 by allowing for large angular displacements 
between  interaction^.^^ However, Gordon’s model incorrectly predicts the 
angular momentum autocorrelation function. 

The phenomenological Langevin Eqs. (227) and (228) are only applicable 
to a very restricted class of physical processes. In particular, they are only 
valid when the stochastic forces and torques have infinitely short correla- 
tion times, i.e., their autocorrelation functions are proportional to Dirac 
delta functions. As was shown in the previous section, these restrictions 
can be removed by a suitable generalization of these Langevin equations. 
As we saw in the particular case of the velocity, the modified Langevin 
equation is 

r 

(236) 
dv 

dz y(r)V(t - z)z + F(t) 

where y ( t )  is a time-dependent friction coefficient. Equation (125) shows 
that the friction coefficient is related to the random force by 

This is the second fluctuation-dissipation theorem. It was shown that if 
y(t )  is equal to !&6(t)/M, one recovers the original Langevin equation for u. 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 149 

It was also shown that the generalized Langevin equation is an exact 
equation of motion for v provided y(t)  is the exact memory function, 
KJr).35i42 

Mori4’ pointed out that the random force, F(t), is not the actual force 
that acts on a molecule except at t = 0. That is, the evolution of the random 
force is governed by a different equation of motion than that which deter- 
mines the evolution of the actual force on a molecule. The major point of 
interest here is that the approximations for the velocity and angular 
momentum autocorrelation functions which are based on postulating 
various memory functions are equivalent to assuming generalized Langevin 
equations of motion for the velocity and angular momentum. Therefore, 
from that viewpoint the memory functions K.+(t) and K,(t) might be inter- 
preted as being proportional to the autocorrelation functions of the ran- 
dom forces and torques acting on a molecule. 

At the other extreme we might expect a fluid to have some characteristic 
of a simple Einstein solid, i.e., a collection of independent oscillators each 
oscillating at the same frequency ol. The linear momentum correlation 
function and its memory would then simply be 

+(t) = cos o,t 

K,(t) = all’ 

In this particular instance the memory is a constant, that is, the molecule 
“remembers” all of its past interactions. We might expect that the actual 
motion of a fluid particle will have both a diffusive or Brownian character 
and a solid or vibratory nature. If this were true, then the linear momentum 
autocorrelation function should decay in damped oscillatory fashion. This 
is indeed the case. All of these studies show clearly that there is an interval 
of time for which the velocity or linear momentum autocorrelation func- 
tion is negative. See for example Figures 9 and 10. This negative region 
indicates that, on the average, a displacement of a molecule toward its 
nearest neighbors is followed by a displacement back toward its initial 
position. This behavior is also displayed in Rahman’s results for liquid 
argon3’ and in Alder’s results for systems of hard spheres at high den~ity.~’ 
This similar behavior is interesting since neither Rahman’s nor Alder’s 
systems have internal degrees while these systems do. 

All of these studies likewise show clearly that in liquids with potentials 
that have a strong noncentral character there is an interval of time for which 
the angular momentum correlation function is negative (see Figures 12 and 
13) whereas in liquids for which the pair potential has a small noncentral 
character this function remains positive and changes very little over the 
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Fig. 9. Velocity autocorrelation functions from the Stockmayer simulation of CO. 

~ o o o ~ o o r l ~ o o o ~ o o o ~  

c -  

0 

.- 
c 

$ ( t  1 f Standard T 4 -  

2 . 2 -  

6 
0 
L 

- 
0 '  

- 

-. 2 I I 1 I l l ~ , I I  

0 5 10 
Time t in units of  

Fig. 10. Velocity autocorrelation functions from the modified Stockmayer simulation 
of co. 

150 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 151 

1.000 

.995 

u) z 
+ 
V z 
3 
L 

z 

0 

0 5 .990 
J 
W 

0 
V 
0 
I- 
2 
4 

a a 

,985 

.981 
0 

0 

0 

0 CJ ( 1 )  * A j  ( t ) ? STANDARD 
DEVIATION A j ( t )  

0 

0 
Dj(t)*STANDARD 
DEVIATION D,(t) 

0 

T 
I I I I I I I I I  

5 10 
t ( in  1 0 - l ~ ~  

Fig. 11. Angular momentum autocorrelation functions from the Stockmayer simula- 
tion of CO. 

observed time interval (see Figure 11). The negative region indicates that 
on the average a molecule suffers a sufficiently strong collision with the 
cage of its nearest neighbors that the torque acting on it is large enough to 
reverse the direction of its angular momentum. 

Because these autocorrelation functions go negative, the events leading 
to the decay of these functions are not uncorrelated. In other words, a 
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Time ? in units of IO-l3S 

Fig. 12. Angular momentum autocorrelation functions from the modified Stock- 
mayer simulation of CO. 

molecule must retain some memory of its interactions for a finite time 
period. This behavior is illustrated in the memory functions for the linear 
and angular momentum autocorrelation functions for the modified Stock- 
mayer simulation, Figures 27 and 32, and for the linear momentum auto- 
correlation function for the Stockmayer simulation, Figure 9. Note that 
each of the memories discussed here was calculated using the numerical 
method outlined in Appendix B. All of these memories quickly decay (in an 
approximately Gaussian fashion) almost to zero in the time interval 
0 s t < 3 x s and they all have small positive tails for t F 3 x lO-”s 
which display much slower time dependences. 3 x s is approximately 
the average time that it would take a molecule to travel from the center of 
its cage of nearest neighbors to the “ cage wall.” 

Both $(t)  and A,(?) depend on changes in both the direction and magni- 
tude of the linear and angular moments. Therefore, it is important to 
determine which of these changes contributes the most to the overall time 
dependence of $( t )  and A&). In order to investigate this problem we have 
also computed the normalized linear and angular speed autocorrelation 
functions, o(t) and a,(t): 
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Fig. 13. Angular momentum autocorrelation functions from (a) the Stockmayer 
simulation of CO with a dipole moment of 1.172 Debye, and (b) the Lennard-Jones plus 
quadrupole-quadrupole simulation of N2 . 

together with the corresponding directional correlation functions, D(t) 
and DJ(t):  

W t )  = (e(0) - e(O> (242) 

D J ( t )  = eJ(t)> (243) 

where IP(t)l, IJ(t)l, e(t), and eJ(t)  are respectively the magnitude of the 
linear and angular moments and unit vectors in the direction of the linear 
and angular momenta. 
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These functions are all normalized such that they are initially unity. 
Their long-time limits are 

L D(t) = (e) - (e) = 0 
t - m  

= O  (J) - (J) 

<J2> 
L A,(t) = 

I - -  

L o,(t) = - = - 
t + m  <J2> 4 

L DJ(t) = (e,) (e,) = 0 
t - -  

(247) 

(249) 

As mentioned previously the above relations follow from the fact that at 
long times the value of the random variable in each correlation function 
becomes statistically independent of its initial value-provided of course 
interactions are present. 

Figures 9 and 10 correspond to $(t), o(t), and D(t) determined from the 
Stockmayer and modified Stockmayer simulation of carbon monoxide. 
Figures 11 and 12 represent A&), o,(t), and D,(t) for the same two poten- 
tials. The behavior of A&), o,(t), D&), +(& o(t), and D(t) for the other 
two simulations considered are similar to the results from the modified 
Stockmayer simulation. Therefore, only the A,(t)’s for these latter two 
simulations are presented in Figure 13. 

Note that for the weak noncentral Stockmayer potential A,(t) changes 
very little and is positive during the time it is observed, while for the 
stronger noncentral potentials there are regions in which A,(t) is negative. 

Note further in the Stockmayer and modified Stockmayer simulations 
how closely D(t)  resembles $(t). o(t) varies between its initial value of unity 
and its long-time value of 8/3n, and therefore, because of only a 13% 
change over the whole time axis, contributes very little to the overall time 
dependence of $(t). Note also in the modified Stockmayer simulation how 
closely DJ(t) resembles A&). o,(t) varies between 1 and its long-time value 
of x/4 and therefore, because of only a 21 % change over the whole time 
axis, contributes very little to the overall time dependence of A,(t). D(t)  is 
an excellent approximation to $( t )  in each of these simulations. In a sense, 
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these results can be construed as an argument for a constant linear and 
angular speed approximation in calculating linear and angular momentum 
autocorrelation functions. 

A. Approximate Distribution Functions 

It would be very convenient to know whether or not the linear and angu- 
lar momenta can be accurately represented by stationary Gaussian random 
variable+ If they are, then the probability of finding a molecule at time c 
with a velocity V, given that it was moving with a velocity Vo at the initial 
t = 0, is the Gaussian transition probability 

The corresponding transition probability for the angular momentum is 
similarly given by 

If these relations were true, then one could compute any autocorrelation 
function involving a higher power of V or J by just knowing $(t)  or A,(?). 
For example, the normalized translation kinetic energy autocorrelation 
function ~ ~ ( t ) ,  where 

can be determined in terms of +(t)  from the Gaussian transition probability 
to be 

E ~ G ( ~ )  = (z)3’z j d30 J d3u0v * wo - vo Pu(v, i 1 vo , 0) e-Muo2/2KT 2nK T 

= +[l + +$2(t)] 

The subscript G indicates that this is an approximate and an as yet un- 
verified result based on the Gaussian approximation. Similarly, the normal- 
ized rotational kinetic energy autocorrelation function ~ ~ ’ ( t ) ,  where 



I56 B. J. BERNE AND G .  D. HARP 

can be determined in terms of AJ( t )  from the Gaussian transition proba- 
bility to be 

1 
E'GJ(t)  = cT dJ' dJ,'J * JJ, - JoPj(J, t I J,, 0) e-'02/'*KT (256) 

= 3c1 + A J W I  (257) 

In like manner, the fourth-order correlation functions tz4(t) and ~ ~ ' ( t )  and 
the eighth-order correlation function ~ ~ ( t ) ,  which are defined as 

can be determined in terms of $(t)  and A J(t) ,  from the Gaussian transition 
probabilities to be 

225 600$2(t) + 120$4(t) 
945 

E ~ G ( ~ )  = - + ~ 

[945 945 

384 
64 256AJ2(t) 
384 384 

&J4G(f) = [- + -- 
[945 + lO,080$'(t) + 18,144$4(t) + 6,912q6(t) + 384\lr8(t)] 

36,465 (263) &SG = 

These higher-order correlation functions play a large role in determining 
many physical properties of polyatomic systems. For example, the vibra- 
tional relaxation can, in some cases, be expressed in terms of the rotational 
kinetic energy autocorrelation function.'* 

At this time the only " experimental " method available for determining 
to what extent the Gaussian approximation is realistic is molecular dynam- 
ics studies of polyatomic liquids such as the ones we have been discussing. 
We have therefore tested this approximation by 

(1) Computing ~ ' ( t ) ,  ~ ~ ( t ) ,  ~ ~ ( t ) ,  ~ ' ' ( f ) ,  and ~ ~ ~ ( t )  from the modified 
Stockmayer simulation. 

(2) Evaluating ~ ' ~ ( t ) ,  &4G(t ) ,  E g G ( t ) ,  E Z J ( t ) ,  and ~ ~ ' ( t )  using the previous 
formulas and $(t) and AJ( t )  from this simulation. 
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The results of these computations are presented in Figures 14, 15, 16, 
17, and 18. These first few calculated moments indicate that the Gaussian 
transition probabilities for the linear and angular momentum may repre- 
sent the dynamics fairly well, However, it may not yet be concluded that 
the Gaussian approximation is actually correct, since this same test must 
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Fig. 14. The autocorrelation function cz ( f )  from the modified Stockmayer simulation 
of CO and the autocorrelation function szC(t)  from the Gaussian approximation. 
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Fig. 15. The autocorrelation function c4(t) from the modified Stockmayer simulation 
of CO and the autocorrelation function e4&) from the Gaussian approximation. 
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be made on the corresponding higher moments, i.e., El,(?), El,’(?), . . . , 
etc. If the linear and angular momentum were truly Gaussian random 
processes, then they are not Markovian. This follows from the facts that 
+(?) and A,(?) are not exponential with time-Figures 10 and 12-and 
from Doob’s theorem64 (according to which a stationary Gaussian process 
is Markovian if and only if the autocorrelation function for the process is 
exponential in time). 

In the preceding we were very successful in predicting autocorrelation 
functions of powers of V and J from $(?), A,(?), and the assumptions of 
Gaussian transition probabilities for V and J. It would be very convenient 
if we could similarly predict (P2(p(0) - p(?))), . . . , (PN(cr(O, p(?))) from 
(p(0) * p(?)). If we could, then we would be able to at least predict Raman 
band shapes from infrared band shapes. In order to make these predictions, 
we have to guess the distribution of p(0) - p( t )  from one or more of its 
known moments. In the following we shall make this guess by maximizing 
the information entropy6’ of this distribution subject to the constraint that 
it yields the correct value of (p(0) - p(?)). 

First suppose that a spherical surface of unit radius is drawn and the 
center of this sphere is taken as the origin of a spherical polar coordinate 
system. Suppose further that p(O), the initial orientation of a diatomic 
molecule, is represented by the unit vector, k, along the positive 2 axis of 
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this system. As time progresses p will move about on the surface of this 
sphere and at any particular instant of time tits orientation will be uniquely 
specified by its polar and azimuthal angles 8 and 4. The actual path that 
p traces out on the surface will, in general, be very complicated due to the 
continual interaction of the diatomic molecule with its neighbors. Let 
P(8,+,  t) dQ be the probability at time t that p is oriented in the direction of 
the solid angle dQ. After a time t which is long compared to the orienta- 
tional relaxation time, P(8 ,+ ,  t) will be independent of its initial value and 
will tend toward the uniform distribution, i s . ,  

dQ 
L P(8, 4, t )  d n  = - 

t - W  4x 

(p(0) - p ( t ) )  and (P2(p(0) p ( t ) ) )  can be computed provided P(8,+, t) is 
known since 

(p(0) . p ( t ) )  = j2’ d+ s’ d8 sin 8 cos 8 P(8, +, t )  (265) 
0 0 

1 z- 
<P,(p(O) - p(t))> = I d+ s’ d8 sin 8 [3 C O S ~  8 - l]P(8,4,t) (266) 

0 0 

Likewise all higher-order correlation functions, (PN(p(0)  - (t))) can also 
be computed. 

We now assume that (p(0) * p ( t ) )  is known and we want to guess the 
probability distribution P. We do this by maximizing the information 
en t r~py,~’  S,, of this distribution 

s , ( P ( ~ ,  + , t ) )  = - j d Q ~ ( e ,  4, t )  in ~ ( e , + ,  t )  (267) 

subject to the constraints 

j dQP(8, 4, t )  cos 8 = (P(0) - P(t)> (270) 

where Eqs. (268) and (269) are the conditions that P be a probability 
distribution and Eq. (270) the condition that P gives the right dipolar 
correlation function, (p(0) - p( t ) ) .  

Introducing Eqs. (269) and (270) into the problem via Lagrange multi- 
pliers a and j3 gives 

6[ j dQ[P InP - (a + 1 ) ~  - j3 cos e ~ ] ]  = 0 (271) 

j d i 2 p n P - u - p  cos8]6P=O (272) 
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or 

P(e, +, t )  = ea+B cos ' (273) 

This distribution automatically satisfies the positivity condition, Eq. (268). 
The Lagrange multipliers a and B are determined from the constraints 
shown by Eqs. (269) and (270). From Eq. (269) we see that 

or 

From Eq. (270) we see that 

+ (ee + e-"] 
B 

b(t) can be determined from (p(0) - p ( t ) )  by inverting Eq. (277) either 
graphically or numerically. 

The higher correlation functions such as (P,(p(O) * p( t ) ) )  can now be 
found in terms of B(t) and thereby in terms of (~(0) * p(t)) .  For example 

(Pt(p(0)  * p(t)))  = 3 5 'OS ' [3 COSZ e - 11 (278) 

Maximizing the information entropy of a distribution gives in some 
sense the " smoothest " distribution consistent with our available informa- 
tion6' on this distribution. We have tested the information theory predic- 
tion of (Pz(p(0) - p ( t ) ) )  from (p(0) * p ( t ) )  for two different systems: the 
Stockmayer and modified Stockmayer simulations of CO. We have al- 
ready seen that these two systems represent two extreme forms of molecu- 
lar rotational motion. In the Stockmayer simulation the molecules rotate 
essentially freely whereas in the modified Stockmayer simulation there is 
evidence for strongly hindered rotational motion. (p(0) ~ ( i ) )  from the 
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Stockmayer simulation is presented in Figure 6 and the experimental 
(P,(p(O) * p ( t ) ) )  and its information theory prediction are presented in 
Figure 45. In this particular instance the information theory prediction 
agrees with experiment only for short times, i.e., t 2 4.5 x s. 
(p(0) * p ( t ) )  from the modified Stockmayer simulation is presented in 
Figure 7 and the experimental (P,(p(O) - p( t ) ) )  and its information theory 
prediction are presented in Figure 46. Note that in this example the infor- 
mation theory prediction is in excellent agreement with experiment for 
t < s. This is a significant result since in this particular instance the 
decay of (P,(p(O) - p ( t ) ) )  is predominantly governed by intermolecular 
interactions and, hence, would be very difficult to calculate theoretically 
from first principles. 

The information theory approach to calculating approximate probabili- 
ties is quite general and, as we have just shown, is quite straight forward to 
use. One might then ask why we did not use this approach in the previous 
section to predict ~ ~ ( t ) ,  ~ ~ ( t ) ,  . . . , Ez’(t) ,  and ~ d ( t )  from $(t) and A&)? 
The answer to this question is that we did. That is, information theory 
predicts Gaussian transition probabilities for V and J and these were the 
transition probabilities that we assumed. We shall now elaborate on this 
remark. Let P(V, t; V, , 0) be the joint probability that a molecule has a 
velocity V at time t and a velocity V, at t = 0. then P is related to the 
transition probability Pv by 

P(V,t;V,,O) =Pv(V,tIV,,O)f(V,) (280) 

where f(V,) is the Maxwell distribution function, i.e., the probability 
distribution that a molecule has a velocity V, at t = 0. The information 
entropy of P is defined by 

S#] = - j dV3 dVO3P(V, t ;  V,, 0) In P(V, t; V,, 0) (281) 

S#“ is to be maximized subject to the constraints. 

j dV3 j dV03P(V, t ;  v,, 0) = 1 

j d v 3  j dvO3v0 V,P(V, t; v,, 0) = <v2) 
j dv3 j dvo3v - VP(V, t; v,, 0) = ( v2) 
j dV3 j d~,’v * V,P(~, t ;  v,, 0) (v2)$(t) 

(282) 

(283) 

(2841 

(285) 

Introducing the Lagrange multipliers ai, uz , a 3 ,  and a4 into the problem 
and proceeding as before, we find 

(286) P(V, i ;  V,, 0) = exp (-[al + az VOz + a3V V, + a4V2]) 
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Evaluating al, a2,  a3, and a4 from Eqs. (2821, (283), (283), and (285), we 
find that the information theory approach to calculating P is equivalent to 
assuming a Gaussian transition probability for V. Note that the approxi- 
mate distribution functions we derived from information theory for p, V, 
and J were only required to give the correct autocorrelation functions 
(p(0) * p(?)), Jl(t), and A,(?), respectively. Hence, improved approximate 
distribution functions could be derived by requiring these new distributions 
to give the correct higher moments of p(0) - p(r), V, and J as well as the 
fundamental autocorrelation functions. 

VI. APPROXIMATIONS TO TIME-CORRELATION F”CTI0NS 

A. A Simple Model for Linear and Angular Momentum Correlations 
In the preceding sections it was shown that the normalized linear and 

angular momentum autocorrelation functions, Y(t) and A,(?), are identical 
within experimental error with the corresponding directional autocorrela- 
tion functions, 

W) = (40) * e(O> 
D,(d = (e’(0) e’(t)) 

where e(t) = v(t)/lv(t)l and e‘(t) = J(?)/lJ(t)l are unit vectors pointing in the 
direction of v(t) and J(t), respectively. It will be our purpose in this section 
to give a simple theory for these two correlation functions. 

The time evolution and geometrical aspects of the directional autocor- 
relation function are given by the following considerations. Consider the 
time variation of e(t) (or e’(t)) and of its projection e(0) e(?) (or e’(0) - e‘(?)) 
on‘its original direction. In order to describe this motion we adopt the 
Rice-Allnatt model of simple liquids according to which a fluid molecule 
moves in the long-range weak-fluctuating force field of its many neighbors 
between strong repulsive binary collisions. The soft-fluctuating force field 
destroys correlations between successive binary collisions. It is this par- 
ticular aspect of the model which makes it particularly amenable to mathe- 
matical analysis. 

During the fmt diffusional step in which the molecule executes a kind of 
translational and rotational Brownian motion in the soft-fluctuating force 
field of its neighbors, its direction cosines are represented as 

e(0) - e(Ol1 = 4 
e‘(0) e’(t)ll = ~ ~ ~ ( t )  

These functions must be unity at t = 0. 
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The first diffusional step is interrupted by a strongly repulsive collision 
which in general is of finite but very short duration. For simplicity it will be 
assumed that the collision is hard core and consequently of zero duration. 
The direction of the velocity and the angular momentum will suffer a 
discontinuous change. If the collision occurs at t,, then immediately after 
the collision at tl+ the direction cosines will be given by spherical geo- 
metry as 

e(O) * e(t+ l) l c o l l ,  = cos X , ~ F ~ " ( ~ , )  + sin alT sin xlT sin [arc ~ , ~ ( t , ) ]  

e'(0) - e'(t+ ,) Jcoll, = cos x ~ ~ F ~ ~ ( ~ ~ )  + sin alR sin XIR[sin arc ~ ~ ~ ( t , ) ]  

where a, T i R  is the dihedral angle between the two planes formed by the two 
pairs of unit vectors [e(O), e( t - , ) ]  and [e(t-,),  e ( t+ l ) ] ,  where t - ,  and t', are 
times immediately before and after the hard core collision. Cos x T  gives 
the change in the direction of the unit vector e at the time t+ l  caused by a 
strong collision which began at time t -,. a,' and x1 have exactly the same 
meaning for the changes in the angular momentum. 

In this model we assume that the set of all diffusional steps randomizes 
the angle a, so that (sin alR) = (sin a, ') = 0, and 

and 
* 4 t l )  l C 0 l l l  = cos XITFIT(tl)  

e'(0) - e'(t1) lcoll, = cos XIRFIR(t l )  

So far we have derived an expression for the direction cosines corres- 
ponding to a molecule which has followed one diffusional step for a time ti 
when it undergoes a hard-core collision. Suppose now that up to the time 
t the molecule does not suffer another collision. The direction cosine for a 
molecule in its second diffusional step is then, according to spherical 
geometry, 

e(0) e(Ol(2) = r;zT(t - tl) cos x1'4 =(tl> 
e'(0) - e ' ( ~ ) l ( ~ )  = ~ ~ ~ ( t  - t , )  cos XlRFlR(tl) 

where again we use the fact that the dihedral angles are randomized. F,(t) 
represents the diffusional change of the direction cosines during the 2nd 
diffusional step. 

The collision ending the first diffusional step could have occurred with 
equal probability at any time between 0 and t. Averaging e(0) e(t)l(2) and 
e'(0) e'(t)lc2, over the time of the first collision yields 

(e(O) e ( t ~ ) ( ~ ,  = t-1 

(e'(0) e'(t))(2) = t-' dt, ~ ~ ' ( t  - t , ) ~ , ~ ( t , )  cos xlR 

dtl F2T(t - tl)Fl T(tl) cos x1 T 
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where ( ) indicates an average over all collision times. Carrying through 
this procedure for a molecule which is in its (n + 1)th diffusional step at 
time t ,  it is found that 

with an identical expression for (e'(0) e'(t)) ,,+ ,. 
We see therefore, that the contribution of the diffusional motion in the 

soft force field is determined by the rate coo at which collisions terminate 
the diffusional steps. In terms of this collisional rate, the probability of 
finding a molecule in its (n + 1)th diffusional step at time t is given by the 
Poisson distribution (l/n!)(ot) " exp (- coot). In order to determine D(t) 
and DJ(t), (e(0) * e(t))n+l and (e'(0) * e'(t)) "+, must be averaged over the 
Poisson distribution 

x 1; dt,F2=(t2 - t i )  cos X I T ( t l )  

(e'(0) e'(t)), is given by an analogous formula. 
The subscriptp refers to the specific set of diffusional paths (Fl . . . F,+,) 

and deflection angles (xl . . . xn) .  The nth term in this series represents the 
contribution to D(t)  or DJ(t)  from a molecule in its (n + 1)th diffusional 
step at time t .  

The total directional-correlation function is determined by averaging the 
above formula over all possible diffusional paths between collisions and all 
sets of deflection angles. The specific F's and X'S may be quite different for 
each path. According to the model that we are studying, successive binary 
collisions are uncorrelated. Each diffusional step starts out with knowledge 
of the preceding diffusional steps, and each deflection angle xi is uncorrela- 
ted with successive or preceding deflection angles or This as- 
sumed lack of correlation leads to the statistical independence of successive 
paths and deflection angles, and the resulting directional correlation are 
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where F*(t) and FR(t) represent the path averaged translational and rota- 
tional diffusional motions, and (cos x *) and (cos x R )  are the averages of 
cos X *  and cos x R  over all collisions. The above formulas for D(t) and 
D,(t) can be reduced to the integral equation. 

o(t) = e-uO'FT(t) + oo<cos X*> f dt,  e-mo(t-tl)FT(t - tl)o(tl) 

D,(t) satisfies a completely analogous equation. This equation can be 
solved in terms of Laplace transforms, 

0 

b(s)  = F*(s + 0 0 )  + 0 0  (cos X*)F*(S + w,)b(s) 

or 
FT(s + 0 0 )  

1 - 0,(cos x*)P*(s + 0 0 )  
b(s) = 

Likewise 
FR(s + 0 0 )  

= 1 - O,(COS x R ) F R ( s  + Oo) 

Consistent with our model is the assumption that FT(t) and FR(t) are the 
ordinary weakly coupled or Brownian motion exponentials. 

~ * ( t >  = e-B'ltl 

J'R(t)  = e-@R'itI 

where fY and flRs are the translational and rotational friction coefficients 
due to the soft forces, Then FT(s) = (s + P)-', FR(s) = (s + BJ1. It fol- 
lows directly that 

DO) = exp (- {B + mot1 - (COS xT>l>ltl) 
D,(t) = exp (- {B, + wo[l - (cos XR>l>lfl) 

The Rice-Allnat model predicts an exponential directional correlation 
functions with time constants which are additive in the weak soft force and 
the hard force. When no soft forces are present D(t)  reduces to 

~ ( t )  = exp (- wo[l - (cos x * ) ] t )  

which is precisely the form of the velocity correlation function discussed by 
Longuett-Higgins and Pople. These authors evaluated (cos x * )  from the 
Boltzmann equation. Similarly DJ(f )  turns out to be in the absence of soft 
forces, 

~ , ( t )  = exp (- oO[l - (cos x R ) ] t )  
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It is a trivial matter to evaluate (cos xR) from the Boltzmann equation. 
This gives the rotational diffusion coefficient in gases as a function of 
pressure and temperature. 

Thus our stochastic model predicts a monotonic decay of D(t)  and DJ(t).  
This may be valid for gases, but it is incorrect for liquids. From our com- 
puter experiments we saw that there are negative regions in both D(t)  and 
D,(t) in liquids. Thus we must search for better models of the liquid state. 

B. Memory Function Theory of Linear and Angular Momentum Correlations 

The first attempt to account for the structure of the empirically deter- 
mined velocity autocorrelation function using the memory function 
K,(t), 

(iLVI ei('-P)L' I ~ L V )  
( v2> K&) = 

was based on the simple ansatz that the memory function depends on a 
single relaxation timeJ4; that is 

where a is the reciprocal of the relaxation time, (a2)  is the mean square 
acceleration, and (u2> is the mean square velocity of a labeled molecule. In 
this discussion computer-generated values of (a') are used. Alternatively 
it is quite possible to determine (a2)  over a narrow range of temperatures 
and densities using isotope separation data. 

The single relaxation time approximation corresponds to a stochastic 
model in which the fluctuating force on a molecule has a Lorentzian 
spectrum. Thus if the fluctuating force is a Gaussian-Markov process, it 
follows that the memory function must have this simple form.64 Of course 
it would be najve to assume that this exponential memory will accurately 
account for the dynamical behavior on liquids. It should be regarded as a 
simple model which has certain qualitative features that we expect real 
memory functions to have. It decays to zero and, moreover, is of a suffi- 
ciently simple mathematical form that the velocity autocorrelation func- 
tion, 
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can be determined analytically from the memory function equation. 
That the exponential form of the memory function can never be the exact 
memory function follows from the fact that it has odd derivatives at the 
initial instant and, furthermore, it has moments, p2,, which do not exist 
for n 2 1. The corresponding power spectrum of the velocity will be non- 
Lorentzian with finite moments, u2,, for n I; 1, and infinite moments for 
n > 1. It should be noted that this non-Lorentzian power spectrum is a 
considerable improvement over more traditional theories according to 
which the power spectrum of the velocity is Lorentzian (uidu Brownian 
motion). A Lorentzian power spectrum has finite moments only for n = 0 
whereas the exponential memory function leads to a velocity power spec- 
trum which has finite moments for n I 1. It is therefore quite profitable to 
study the properties of the exponential memory. 

To proceed it is necessary to evaluate the single relaxation time, a-l ,  
which appears in Eq. (288). For this purpose it is important to note the 
relationship between the normalized velocity autocorrelation function and 
the self-diffusion coefficient, D, 

where $(O) is the Laplace transform, $(s>, of $(t)  evaluated at S = 0. 
Eq. (290) is the Kubo relation for the diffusion coefficient. It can be de- 
rived from the Einstein relation, 

in which AR(t) is the displacement of the tagged particle during the time t, 

AR(t) =f dtl V(tl) 
0 

Substitution of this into the Einstein relation yields 
1 1 '  t 2  

3 t - w  t 0 0 
D = - lim - I dt2 I dtl (v(tl) * v(t2)> 

The velocity is a,stationary stochastic process so that 

(V(t1) ' V ( t 2 ) )  = (v(0) * v(t2 - tl)> = (u2>$(t2 - 4 )  
Substitution of this into Eq. (291), followed by an integration by parts, 
yields 

D = -  (u2> lim J" dtl (1 - :)$(ti) 
3 t -w 0 
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If the integral low dtl tl$(tl) exists, the limit can be taken so that 

(293) 
1 KT 
3 

D = - ( v 2 )  $(O) = M $(O) 
The friction coefficient, y, is so defined that 

from which it follows that, 

Y-' = $(O> 

The Laplace transform of the memory function equation 

(295) 

- 2 = 1: dz K,(z)\lr(t - z) 
at 

subject to the conditions $(O) = 1, $(O) = 0 leads to 

5<s> = [S + R+(s>I-' (296) 

where R,(Q is the Laplace transform of the memory function. It follows 
directly that Jl(0) = [R+(O)]-', and consequently from Eq. (296) that 

Y = R,(O) (297) 

The exponential memory function has the property that 

from which it follows that 

Consequently if (a2) and y are known, the single relaxation time, a-', 
can be determined. In terms of the velocity autocorrelation function, a is 

Thus the single relaxation time approximation to the memory function is 
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To find the velocity-correlation function corresponding to this memory 
substitute Eq. (298) into Eq. (296) and then find the inverse Laplace 
transform 

Laplace inversion then yields 

where S* are the roots of the equation [S2 + US + < u ~ ) / ( u ) ~  = o], 

s, = - - 3- - 1 - 4-u-' 
2 2  a i (a2) (u2> )"' (304) 

Depending on the value of (a"), ( v 2 ) ,  and y, theseroots can be real or 
complex. Explicitly, if 

the roots are complex and $(t)  will oscillate. In this case 

01 s* = - - [l T ih] 
2 

where h = [- 1 + 4((uz)/(uz))u-']'12. Then 

(305) 

The power spectrum of the velocity-correlation function is consequently 

4S+S-(S+ + s-) 
(s+2 + 02)(S-' + 0 2 )  

G(a) = (307) 

and goes asymptotically as l/w4. This is why uZn does not exist for n 2 2. 
The exponential approximation will be discussed later in this section. 

This initial attempt to compute the time-correlation function was fol- 
lowed by a study of the Gaussian memory function with no significantly 
new  result^.^' The Gaussian memory, adjusted to give the correct diffusion 
coefficient, is found in exactly the same way as the exponential memory. It 
turns out to be 
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The major advantage of this memory function is that all of its moments are 
finite. The corresponding velocity correlation function cannot be deter- 
mined analytically, but must be studied numerically. More will be said 
about this approximation later. 

Prior to our computer experiments little, if indeed anything, had been 
reported about the full-time evolution of the angular momentum autocor- 
relation function of diatomic molecules in gases and liquids. The relaxa- 
tion of nuclear spins is determined by the coupling of the spins to the rota- 
tional and translational motions of the molecules in the system. For nuclei 
with spin 1/2, the spin-rotation interaction of a linear molecule leads to an 
interaction Hamiltonian of the form (- cI J) where I is the spin angular 
momentum of the nucleus, J is the angular momentum of the molecule, 
and c is the spin rotation coupling constant. When this is the only part of 
the Hamiltonian leading to nuclear spin relaxation, the spin relaxation 
time, TI, is 

where oo is the Larmour precession frequency.' In liquids the angular 
momentum autocorrelation function decays on a time scale of the order of 

which is many orders of magnitude shorter than typical precessional 
periods (l/oo - s). Thus the integral above is to an excellent approxi- 
mation I:01 dt (J(0) J( t ) ) .  

As we saw in the previous sections, the normalized angular momentum 
autocorrelation function, A J ( t ) ,  

satisfies the memory function equation with memory 

IN) (N1 ei(1 - P ) L t  

(J2> 
KJ(t) = 

where N is the torque acting on the molecule. 
Consider the unit vector u(t) pointing in the direction of the molecular 

axis of a diatomic molecule at time t. The angle that this vector makes with 
u(0) is denoted by e(t). According to Debye6' the rotational diffusion 
coefficient, D ,  , is 



172 B. J. BERNE AND G. D. HARP 

The mean square angular deviation <e2(t)) can be found in the following 
way. Note that the following integral of the C.M. angular velocity, Q(?). 

J)?, Q(4) 

is a vector whose magnitude is the angular displacement, e(t). The mean 
square angular displacement can consequently be written in terms of this 
integral as 

where Z is the moment of inertia of the molecule. The correlation function 
(J(ti) J(t2)) is a stationary even function of the time-a result which 
follows from the fact that an equilibrium average is being taken, 

(J(t1) * JOz)) = (J(0) a J(h - $1)) 

then 

Introduction of the normalized angular momentum correlation functions, 
A,@), into this integral, followed by an integration by parts yields 

If the integral lom dt t A,(?) exists then the limit above is 

where the equilibrium mean square angular momentum, 2ZKT, has been 
used and &(O) is the Laplace transform, a,(S), of 
rotational friction coefficient, y, , is so defined that 

A,(?) at S = 0. The 

(315) 

from which it follows that 

YJ = a,co> 
or in terms of the memory function, K,(t) 

Y J  = g.l(o) 



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 173 

The single relaxation time approximation can be applied to the angular 
momentum memory function in a completely analogous way.68 KJ(t) can 
be interpreted as the time-correlation function of the random torque acting 
on the molecule. If this random torque has a Lorentzian spectrum or, more 
restrictively, is a Gaussian-Markov process, KJ(t) is exponential. 

The mean square torque is taken from computer experiments. Nevertheless, 
it could have been found from the infrared bandshapes. Likewise the 
integral in this expression can be found from the experimental spin rotation 
relaxation time, or it can be found directly from the computer experiment 
as it is here. The memory function equation can be solved for this memory. 
The corresponding angular momentum correlation function has the same 
form as Jr(t) in Eq. (302) with 

f- 1-4- 
2 2  (JL> (N2)uJ-111'2 s,=-QJ " [  

where 

(319) 

The solution is oscillatory if 

These solutions are described later. 
The Gaussian approximation to KJ(t)  is in like manner 

There are alternative forms of the Gaussian memories* Corresponding to 
both J r ( f )  and AJ(f) .  From Eq. (169) we see that the formal power series 
expansions of K&) and KJ(t) are 

* This form follows from Eiq. (188a). 
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If K,(t) is assumed to have a Gaussian form, as suggested by the informa- 
tion theory interpolative model presented in Section 1II.F. 

Then 
K,,,(t) = B e-a212 

&(t) = B[l - u2t2 + * .] 

Comparison of this expansion with Eq. (322) shows that 

The Laplace transform of K,(t) is 

(7r)'/2 
&(S) = - B e(S2/4a2) erfc (S/2u) 

2u 

from which it follows that the friction coefficient y is 

(327) 
y=Q))=--=-- ( 7 ~ ) ' ~ ~  B ( 7 ~ ) " ~  (aZ)  

2 u 2 ( v 2 )  

Let the factor multiplying ~ ' / ~ / 2  be called p. Thus we see that if we assume 
a functional form for the memory function, then it is possible to determine 
the parameters in the functional form by using the moment theorems of 
Eq. (162) and to determine, thereby, the transport coefficients, such as the 
friction coefficient. Moreover, the time correlation function, $(t) ,  can also 
be determined. 

Here we see that 

Exactly the same procedure can be carried through for the angular 
momentum memory function.68 Then the rotational friction coefficient is 

I1 t 2  (H2) ( N 2 )  
KJ(t)  = (N2> exp- [ - [ z-- 

<J2)  2 ( N  ) < J 2 )  
(331) 
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Corresponding to the following memory functions are the indicated friction 
coefficients. 

Delta function memory: K(t)  = Bs(t)  

( n y  

(x)1/2 
Y J  = 2 PJ 

y=- P 2 

Lorentzian memory: ~ ( t )  5 B/(1 + uzt2) 

n y = -  
J2 

Gaussian memory: K(t)  = B e-"*' 

(332) 

(333) 

Exponential memory: K(t)  = Be-"l'l, (a)  adjusted so that the half-life for 
the exponential memory is identical to the Gaussian memory 

y =  [+J2P 
(335) 

(b) is adjusted so that the half-life for the exponential is identical with the 
Lorentzian memory: 

This very last procedure is not really justified since the exponential 
memory starts out with nonvanishing odd time derivatives. 



176 B. J. BERNE AND G.  D. HARP 

Values of (a') and ( ti2> are required to compute p. For this purpose we 
use the moments determined by Nijboer and Rahman from Rahman 
computer studies on liquid argon. The results are presented in Table VI. 

C. The Martin Formalism 

There is an alternative approach to the theory of time-correlation 
functions. According to Eqs. (148), (156), and (157) the real and imaginary 
parts of the frequency dependent memory function 

W 

~ , , ( io )  = I dt e-'m'K,,(t) 

are related by Kramer's-Kronig relations. The real part, K',,(w), is an 
even function of o and the imaginary part, K",,(o), is an odd function of o. 
The real part K',,(o) satisfies the sum rules of Eqs. (158) 

0 

with 

Po = ( 011 01) 
pz = ( U , ( U , )  - (0,~0,)' etc. 

Thus if a functional form is chosen for fCt1(co), K",,(o) and K,,(t) can be 
determined from the Kramers-Kronig relations. Moreover, the parameters 
in the functional form, K'll(o),  can be related to the moments pZn, in 
addition to the friction constant Rl1(O), so that these parameters can 
thereby be determined. 

This approach was recently proposed by Martin and was exploited in a 
number of papers.I6 It should be noted that this method is entirely 
equivalent to the memory function approach of Berne, Boon, and Rice.34 

The previous remarks are demonstrated by the following simple example : 
Choose 

Ba 
K',,(o) = - 

0' + a' (337) 

Of course this Lorentzian form has finite moments, p2,, , only for n = 0, in 
which case 
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For the memory function corresponding to the velocity correlation function 
this yields B = (a2)/(v2), Kramers-Kronig inversion of Eq. (337) leads to 

KII(t) = Be-'lrl. (339) 
so that 

B K I ( s >  = s+a 
From this -a t  formula we see that the friction coefficient, y, is 

(340) 

Thus the choice of Eq. (337) is entirely equivalent to the exponential 
memory of Berne, Boon, and Rice. If the assumed form of K',,(o) is 
Gaussian, and the two parameters characterizing this Gaussian are found 
from po and pz, it is found that K(t)  is identical to the Gaussian memory of 
Eq. (328). We conclude therefore that the Martin formalism is completely 
equivalent to the work presented previously. It is merely a matter of in- 
tuition and taste which dictates which method to use. 

D. The Continued Fraction Approximations 

Time-correlation functions can also be computed from their continued 
fraction representations (see section 1II.D) by exploiting a hierarchy of 
approximations of the following kind. Suppose that the nth order " random 
force" has a white spectrum.34 It then follows that 

It is obvious from Eq. (141) that this assumption allows the continued 
fraction approximation to be truncated at the nth iterate so that 

S +  A22 
S +  Aa2 (343) 

s + A, 
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The terms A: are well-defined equilibrium averages. h ,  on the other 
hand depends on the integral 

m 

L, = 1 dr K,(r) (344) 
0 

To proceed it is necessary to evaluate this coefficient. One possible 
procedure is to use a measured value of the transport coefficient which is 
related to C,,(O) through a Kubo relaion. Another possibility is to relate 
A ”  to the moments of C,,(o). 

This method of approximation is illustrated on the velocity correlation 
function, although it can be applied to the other time-correlation functions 
that have been discussed. For the purpose of this illustrative example let us 
assume that the second-order random force has a white spectrum. Then the 
continued fraction representation of $(s> is 

1 
5(s> = 

S + h ,  

Comparison with Eq. (296) shows that 

(345) 

so that the memory function corresponding to the velocity correlation 
function is 

This is just the single relaxation time memory with 

K,(t) = A12 e-’*‘ (347) 

<aZ> 
A12 = (vf> 

and 

where y is the friction coefficient. Consequently the truncation of the con- 
tinued fraction expansion, K,, leads to the simple exponential memory 
function that we described earlier and thereby to the corresponding time- 
correlation function. This approximation can be carried througll for higher- 
order truncations. For example the truncation at g,(S) yields 

S + h ,  
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A12 and A22 are the well-defined equilibrium moments 

and (351) 

which have already been evaluated. The Laplace transform of the memory 
function is 

The friction coefficient y is consequently 

A12h3 y = K(0) = 2 
A2 

The parameter h3 is therefore 

(353) 

and can consequently be determined from the experimental value of the 
friction coefficient. It follows from Eq. (350) that 

(S2 + AZ2) + Sh3 
SIAlz + AZ2 + S2] + h3[AI2 + S2] NS, = (355) 

This expression can be analytically inverted to yield the velocity autocor- 
relation function. The power spectrum, G(o), corresponding to this correla- 
tion function is 

(356) 
h3A,2A22 

W2(A1’ + A22 - w’)’ + h32(A12 - W’ 1 C(w) = Re $(iw) = 

This power spectrum falls off asymptotically as 1/w6 and has finite 
moments, pzn , for n I 2. A comparison of this approximation with experi- 
ment is presented in Figure 29.* 

Other approximations have been used to truncate the continued fraction 
representation. Newman and Rice have recently shown that the velocity 

* It should be noted that any comparison based purely on the computer generated 
power spectrum is inaccurate. A better comparison would be between the actual +(t)’s. 
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correlation function for a Brownian particle in a simple cubic lattice can be 
determined by truncating the continued fraction in a certain way. Their 
results coincide with those of Rubin.” 

E. Approximate Correlation Functions from Memory Functions 

In the following we focus our attention on approximate velocity and 
angular momentum autocorrelation functions generated from postulated 
memory functions. The theory behind these approximations has been 
outlined previously in this section. Each of the proposed memory functions 
that we shall consider has already been discussed in the previous sections. 
Here we examine how well the time-correlation functions generated from 
these postulated memories reproduce our experimental correlation func- 
tions and spectra. It is also informative to see the relationships between the 
postulated and “ experimental ” memories for our systems. 

The specific memories and their exact functional form for K.,,(t) and 
&(t) that we shall consider are34: 

(1) Berne et al.’s exponential memory: 

where (I is the magnitude of the total acceleration on a molecule and the 
asterisks imply that these are postulated memory functions. 
(2) Singwi and Tosi’s Gaussian memory ‘’ which is referred to here- 

after as Gaussian memory I: 

(359) 

(3) Berne and Martin, and Yip’s Gaussian memory” which is referred 
to hereafter as Gaussian memory 11: 
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These two memories satisfy the first two moments of the exact memories, 
K,(t) and K,(t) (see Eqs. 324 and 325), but they do not necessarily satisfy 
the relations (see Eq. 296): 

A&) dt = [lorn K*,(t) dt] -' (364) 

Each of these postulated memories was used to solve the appropriate 
Volterra equation numerically for the approximate autocorrelation 
functions $*(t) and A*,(t) (see Appendix B). Three different experimental 
autocorrelation functions were tested: the velocity autocorrelation func- 
tion from both the Stockmayer and modified Stockmayer simulations and 
the angular momentum autocorrelation function from the modified Stock- 
mayer simulation. The parameters needed by the postulated memory 
functions for each of these three autocorrelation functions are tabulated in 
Table IV. 

Consider first the postulated and experimental memories which are 
displayed in Figures 20, 22, 25, 27, 30, and 32. The exponential memories 
are the poorest approximations to the " experimental " memories : for 
short times they decay too rapidly and for long times too slowly. The differ- 
ences between the short-time behavior of the Gaussian I and the experi- 
mental memories are quite dependent on the magnitude of the positive 
tails present in these latter memories: if the tails are large, then the differ- 
ences are large. The Gaussian I1 memories are excellent approximations to 
the short-time behavior of the experimental memories. Note that none of 
the approximate memories takes into account the presence of the tails in 
the experimental memories. 

Consider next the experimental and approximate autocorrelation func- 
tions displayed in Figures 21, 23, 26, 28, 31, and 33. All of the auto- 
correlation functions based on the above memories are better than the 
truncated moment expansions in representing the experimental correlation 
functions (see Figures 23, 28, and 33). The Gaussian I1 autocorrelation 
functions approximate both the long- and short-time dependences of the 
experimental autocorrelations better than the functions from either of the 
other two memories. By comparing the Gaussian I1 autocorrelation func- 
tions to the experimental ones, we can get some idea of how the tails or 
long-time behavior of the experimental memories affect their autocorrela- 
tion functions. K,(t) from the modified Stockmayer simulation has the 
largest tail. From Figure 28 we see that this tail primarily delays $(t)'s 
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Modified Slodtmayw 

t 
Fig. 19. Memory functions for (P,(p(O) * p(t))> from the Stockmayer and modified 

Stockmayer simulation of CO. A&) from the modified Stockmayer simulation of CO is 
also plotted. 

approach to zero. On the other hand, the tails from the other two experi- 
mental memories seem to have very little effect on their correlation func- 
tions. This is not quite true when one compares Iom A*&) dt and lo” $*(?) dt 
for the correlation functions generated form the Gaussian I1 memories to 
the appropriate experimental values which are presented in Table IV: 

(1) For the Stockmayer simulation 

while JOm $*(t) dt - 1.22 x lo-’’ s 

Iom $*(t) dt - 1.16 x lo-’’ s 

Joa $(t) dt -1.15 x lo-’’ s 

Iom $(t) dt -0.96 x lo-’’ s 

(2) For the modified Stockmayer simulation 

while 

JOm A*,(t) dt -0.70 x s while Iom A,(?) dt -0.57 x lo-’’ s 
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Fig. 20. Memory functions for +( t )  from the Stockmayer simulation~of CO. The approx- 
imate memories are based on <a2>/<v2) and 10" +(t)  dt. 
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Fig. 21. Velocity autocorrelation functions from the Stockmayer simulation of CO, 
the exponential memory, and the Gaussian memory I. 
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In each case the integral of the approximate correlation function is larger 
than the integral of the experimental function. Also the difference between 
the integral of an approximate and the integral of an experimental function 
is proportional to the magnitude of the long-time behavior of the corres- 
ponding experimental memory. In these three examples the neglect of the 
tail in the experimental memory functions leads to a maximum error of 
-23 % in the integral of the resulting, approximate autocorrelation func- 
tion. 

I .o 

- Numerical Solution to 

a Gaussian Memory II 

.8 Volterra Equation 

.6 

I 

0 - 
Y 
\ *4 - c - 
Y 

.2 

0 

- I  
0 5 10 

Time t in 10 s . -I3 

Fig. 22. Memory functions for $(t) from the Stockmayer simulation of CO. The 
approximate memory is based on <a2)/<uz> and /b2)/<02). 

Finally, consider the power spectra of the experimental approximate 
correlation functions which are displayed in Figures 24, 29, and 34. Note 
that each of these spectra bas been normalized to unity at o = 0. Note also 
that the experimental spectrum from the angular momentum correlation 
function is much broader than the experimental velocity autocorrelation 
power spectra. The power spectra of the Gaussian I1 autocorrelation 
functions are in much better agreement with the experimental spectra at all 
frequencies than the power spectra of the other approximate autocorrela- 
tion functions. 
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We conclude the following from the above discussion: 

(1) The experimental memories for our velocity and angular momentum 
autocorrelation functions decay initially to approximately zero in a 
Gaussian fashion. 

(2) This initial decay can be adequately approximated by knowing the 
2nd and 4th moments of the corresponding autocorrelation function. 

0 5 10 
-13. 

Time t in 10 s 

Fig. 23. Velocity autocorrelation functions from the Stockmayer simulation of CO, 
the Gaussian memory based on <a2)/<v2> and (h2) /<u2) ,  and the short time expansion 
of w. 

(3) The correlation function generated from this approximate memory 
gives a good approximation to the exact correlation function at least 
through this latter function’s first minimum. 

(4) The power spectrum of this approximate correlation function is in 
fair to excellent agreement with the experimental spectrum at high fre- 
quencies (o 5 ioi3/s). 
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I 
- Experimental 

Exponential Memory 

0 Gaussian Memory I 

0 Gaussian Memory P 

-0 .5 1.0 
13 w in  10 l s  

Fig. 24. Normalized power spectra of +( t )  from the Stockmayer simulation of CO, 
the exponential memory, and Gaussian memories I and 11. 

F. Elementary Excitations in Liquids 

Many important properties of liquids, solids, and gases can be probed 
by scattering neutrons off the system in question. The differential scattering 
crossection in monatomic systems is related to the time Fourier transforms 
of the intermediate scattering  function^^-^*^ 

and 

F(k, t )  and F’(k, t ) ,  it should be noted, are one-sided quantum-mechanical 
time-correlation functions. We shall be interested in the classical behavior 
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Fig. 25. Memory functions for $(t)  from the modified Stockmayer simulation of CO. 
The approximate memories based on <a2>/<v2> and Jg' +(t). 
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Fig. 26. Velocity autocorrelation functions from the modified Stockmayer simulation 
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Fig. 27. Memory functions for $( t )  from the modified Stockmayer simulation of CO. 
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Fig. 28. Velocity autocorrelation functions from the modified Stockmayer simulation 
of CO, the Gaussian memory based on <aZ>/<v2> and <u2>/<02), and the short time 
expansion of #t). 
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0 .  

* .  - 

Fig. 29. Normalized power spectra of +( t )  from the modified Stockmayer simulation 
of CO, the exponential memory, and the Gaussian memories I and 11, and the con- 
tinued fraction approximation of Eq. (356) 

of these functions. The differential scattering cross section for neutrons 
turns out to be a linear combination of the two spectral density functions 

1 + m  

2n -a 

2n --4) 

S(k, w) = - 1 dt e*'*F(k, t) 

&(k, 0) = - dt ermtFs(k, t) 

The fist  function, S(k, a) contributes to the coherent scattering, and the 
second function, Ss(k, a), contributes to the incoherent scattering of the 
neutrons. Neutrons consequently probe the spontaneous fluctuations of the 
property 



190 B. J. BERNE AND G. D. HARP 

- Numerical Solution io 
Voltcrro Equotion 

Exponcnliol Memory 

Goussion Memory I 

.2 

0 

.2 

0 

0 5 I 0- 
Time t in lO-''s 

Fig. 30. Memory functions for A&) from the modified Stockmayer simulation of 
CO. The approximate memories are based on <N2>/<J2> and A&) dt. 

which is proportional to the spatial Fourier transform of the number 
density, 

N 

Thus neutrons probe the dynamics of density fluctuations. The properties 
p k(t)  can be regarded as collective coordinates. 

From the definition of F(k, t) it is obvious that 

t )  = Fs(k t )  i- Fd(k t )  

where Fd(k, t )  is called the distinct intermediate scattering function because 
it involves correlations between different or distinct nuclei, 

Let Gs(r, t )  and Gd(r, t )  denote the Fourier transform with respect to the 
vector k of F,(k, t )  and Fd(ky t ) .  Then 
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Fig. 31. Angular momentum autocorrelation functions from the modified Stock- 
mayer simulation of CO, the exponential memory, and the Gaussian memory I. 

Gs(r7 t) and Gd(r, r )  are called the Van Hove self and distinct space-time 
correlation functions." It clearly follows that Gs(r, t )  is a probability 
distribution describing the event that a molecule is at the origin at t = 0 
and at the point r at the time t. Gs(r7 t) is consequently the probability 
distribution characterizing the net displacement or diffusion of a particle 
in the time t. Gd(r, t )  on the other hand is a probability distribution des- 
cribing the event that a molecule is at the origin at t = 0 and a different 
molecule is at the point r at the time t. Gd(r7 t )  describes the correlated 
motion of two molecules. It should be noted that the initial value of 
Gs(r7 t )  is 

and the initial value of Gd(r, t) is related to the pair correlation function, 

Gs(r, 0) = W (370) 

g'2'(r) 
G,j(r, 0) = PZg"'(r) (371) 

where n is the number density of fluid molecules. 
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Fig. 32. Memory functions for A&) from the modified Stockmayer simulation of 
CO. The approximate memory is based on <NZ>/<JZ> and < f i 2 > / < J 2 > .  
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Fig. 33. Angular momentum autocorrelation functions from the modified Stock- 
mayer simulation of CO, the Gaussian memory based < N 2 > / < J 2 >  and < f i 2 > / < J 2 ) ,  and 
the short time expansion of A&). 
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Fig. 34. Normalized power spectra of A&) from the modified Stockmayer simulation 
of CO, the exponential memory, and the Gaussian memories I and 11. 

Consider first the theoretical calculation of F&, t). Gs(r, t) is normalized, 

d3r GS(r, t )  = 4~ dr r2Gs(r, t )  = 1 (372) h 
The second moment of Gs(r, t )  is the mean square displacement (AR2(t)>, 
of a particle in the fluid, 

4n: lom dr r4 Gs(r, t )  = (AR2(t)> (373) 

Gs(r, t )  would be known completely if all of its moments (AR"(t)> were 
known. This, however, is not the case at all. Suppose that the mean square 
displacement (AR2(t)> is known. Information theory can then be used to 
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find the optimum Gs(r, t) consistent with the known (AR2(t))  and normal- 
ization. For this purpose define the information entropy, 

00 

S[Gs(r, t ) ]  = -47c I0 dr r2Gs(r, t )  In Gs(r, t) (374) 

This information measure is maximized subject to the constraints of Eqs. 
(372) and (373). The optimum function turns out to be 

where 
Gs(r, t )  = [ 2 7 c ~ ( t ) ] - ~ / ~ e - ” ~ ~ ~ ( ~ )  (375) 

1 
3 

~ ( t )  = - (AR2(t))  

This is the well-known Gaussian approximation for Gs(r, t). Vineyard82 
motivated the Gaussian approximation for monatomic systems when he 
pointed out that G&, t )  is a Gaussian for a particle which is moving in a 
gas, or diffusing according to the simple diffusion equation, or vibrating 
in an harmonic lattice. Dasannacharya and Rao73 have determined Gs(r, t) 
experimentally for liquid argon by Fourier inversion of their incoherent 
differential scattering cross sections for slow neutrons. They found that, 
within experimental error, Gs(r, t )  is also a Gaussian in liquid argon. Janik 
and KowaIska’ have suggested that the Gaussian approximation might 
also be extended to systems with internal degrees of freedom. However, 
Rahman’s molecular dynamics studies of liquid argon32*74 indicate that 
G&, t )  is not a Gaussian except for short and long times. We also find non- 
Gaussian corrections to our Van Hove functions, but before we discuss 
these corrections it is informative to examine models which can account for 
the non-Gaussian behavior. The Gaussian approximation leads to the 
intermediate scattering function 

(376) Fs(k, t )  = e-(k2/6)<AR3(t)> 

The long-time behavior of Fdk, t) can be extracted from the memory 
function equation by using a technique originally due to Zwanzig.” If 
Fs(k, s) and &(S) denote the Laplace transforms of Fs(k, t) and @)2k(t), 
then Laplace transformation of the memory function equation yields 

Inversion symmetry shows that 
function can be expressed as 

= &2zk(t) 

(377) 

so that the memory 
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The function F,(k, t) is the inverse Laplace transform of the preceding 
equation 

1 1 
F d k ,  t )  = - $ dS e"' 

2x1' + *k2A k ( S )  

The Zwanzig techniq~e'~ proceeds as follows: the variables z and x are so 
defined that 

S = k2x 

t =-z  1 (381) 
k2 

Introducing the reduced variables x and z into Eq. (380) leads to 

1 1 
F,(k, t )  = - $ dx 8' 

2xi X + * & k ( k 2 X )  

The long-time behavior of F,(k, t) is simply 

1 1 
Fs(k, t) = - lim $ dx e"' 

2ni k 2 . 4  x + 3A,(k2x) (383) 
x, r const 

where the limit is taken such that k + 0 whereas t -, co and S+ 0 in such 
a way that x and z remain constant. kZ acts like a parameter of smallness. 
It follows that the long time behavior of Fdk, t) is 

1 1 
F,(k, t )  = - f dx 8' 

2ni x + +AO(O) 
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From the definition of the projection operator it is easy to evaluate the 
k2 + 0 limit. Then 

Ao(0) = IW dt (V(0) V ( t ) )  
0 

Call 
1 rw 

D = dt (V(0) V( t ) )  3 Jo 
Then 

Fs(k, t )  = e-k'Dt 

(384) 

Thus from the memory function equation we have succeeded in showing 
that Fs(k, t) satisfies the diffusion equation 

(387) 
a 
at 
- Fs(k, t )  = - kZ D Fs(k, t )  

at long times with a diffusion coefficient D. Moreover, we have succeeded 
in showing that the diffusion coefficient is determined by the velocity 
autocorrelation function according to Eq. (385). This is a simple example 
of a Kubo relation." 

In order to apply the memory function formalism to the collective 
coordinates of Eq. (367), it is necessary to define the dimensionless 
normalized collective coordinates, 

where the classical scalar product is intended. The structure factor S(k) 
is defined as F(k, 0), or 

From the preceding formulas we see that the structure factor is related to 
the pair correlation function 

47cn 
S(k) = 1 + I dr &r)r sin kt 

0 
(390) 

The intermediate scattering functions can be expressed in terms of the 
normalized properties I U, k) and I UZk> 

F(k, 2) = S(k)( ul kI eiLr 1 ul k)  (391) 
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and 

F&, t ,  = < u Z k l  e'"IU2k) (392) 
F(k, t) and Fs(k, 1) consequently satisfy memory function equations with 
corresponding memories 

lo lk)  

1 O2k) 

1(1-P1)Lt 

1( 1 - P2)Lt 
= < o l k l  e 

oZk( t )  = < o Z k l  e (393) 

where 10, k) = iL I u1 k), 10, k) = iL I Uzk), and the projection operators 

Consider Grst the memory function equation for F&, t). From Eqs. 
(167) and (168) it is seen that the short-time behavior of the memory 
function (Pzk(t) is 

are I u l k ) < u l k l  and pZk = ~ ~ Z k ) < u Z k ~ *  

(394) 
1 t 2  2 1 

2 9  @zk(t) = 5 k2(u2) - - [- < ~ ~ ) ~ k ~  + 5 <a2)k2] + * * - 
To second order in the momentum transfer it can be shown that 

1 
@ z k ( ? )  = 5 <u2)k2$(t) + 0(k4) (395) 

where +(t)  is the normalized velocity autocorrelation function. Thus for 
sufficiently small values of k, 

3 

To get some idea of the values of k for which this approximation may be 
valid, let us look at the second term in the short-time behavior of (Pzk(f). 

Note that the term of order k4 can be neglected if k is such that 

or for our conditions k 4 4AO-I. The interesting feature of the approxi- 
mate memory function in Eq. (396) is that it will lead to a non-Gaussian 
G&, t) ,  and may thus provide an approximate method for determining 
the self Van Hove correlation function, Gs(r, t), for intermediate values of k 
when it is known that this function deviates from Gaussian behavior. It 
should be noted that this approximation correctly gives the initial time 
dependence of <ARC.M.2"(t)) only for n = 1, whereas the Gaussian 
approximation correctly accounts for all of these moments at short times, 
and the diffusion approximation fails completely at short times. 
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Fs(k, t )  for different values of k is presented in Figure 43 ; these functions 
were evaluated using the series expansion for F d k ,  t) discussed in Appendix 
C and the coefficients ct.(t) from the modified Stockmayer simulation. The 
memory functions for these intermediate scattering functions are presented 
in Figure 44. Both of these memories were computed using the numerical 
method outlined in Appendix B. The absolute error in recovering Fs(k, t )  
from 02&(t) was 20.005 for all times t 7 lo-'' s. Note that although the 
two scattering functions are quite different, their normalized memories are 
very similar. Note further that these normalized memories resemble the 
velocity autocorrelation function for this simulation (see Figure 10). In 
addition the approximate memory function, Eq. (396), is used to compute 
approximate intermediate scattering functions, Fs(k, t). The results of this 
approximate theory are presented along with the corresponding experi- 
mental functions in Figure 47. Note that this approximate theory is better 
than the Gaussian Gs(r, t )  for intermediate values of k. 

There is another approach to the problem of determining Fs(k, t). Note 
that, 

d 2  
dt2 - FS@> t )  = -cs(k, t> 

Cs(k, t )  = (k - v eiker leiLr I k - v eikar) (397) 
CS@, 0) = (k - v I k * V) = 3k2(u2) 

Fs(k, t )  can be determined from Cs(k, t), which in turn satisfies the 
memory function equation 

(398) 
a - Cs(k, t )  = - f dz L4(k, z)C#, t - z) 
at 0 

where 

and 

It follows from these formulae that 

lim Cs(k, t )  = $(t) 
&+O 

where 
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Since es(k,  t) is equal to the normalized velocity autocorrelation function, 
it follows from Eq. (399) that the memory function L,(k, t )  has the k -+ 0 
limit 

lim L,(k, t) = L4(0, t )  = K#(t) 
k+O 

where KJt )  is the memory function corresponding to the velocity. 

Let 

L,(k, t> = K#@) + G(k, 0 

lim G(k, t) = 0 

(402) 

(403) 

where G(k, t) has the limit, 

k - 0  

as required by Eq. (401). 

time, z(k), so that 
Suppose now that G(k, t) decays with a single k-dependent relaxation 

Gfk, t) = g(k)e (404) 

where g(k) + 0 as k -+ 0. Note that in this case 

(405) 
(a2> 
(u2> 

L(k, 0) = KJO) + g(k) = - + g(k) 

This last result follows from Eq. (417). 

exact short-time behavior of L(k, t) is 
In order to identify the function g(k) it is necessary to know that the 

t2  
Lfk, f )  = ( 0 4 k 1 0 4 k )  - [ ( U , k l u i , k >  - ( < 0 1 4 k l o 4 k ) ) 2 1  (406) 

which is explicitly 

L(k,t) = 

(407) 

Consequently the function g(k) in the single relaxation time equation turns 
out to be 

g(k) = k2(v2) 
and 

L4(t) = KJt )  + k2<v2)e (408) 
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It is our intention to use either approximate or exact forms of K,(t) in 
the approximate memory function L4(t). The relaxation time z(k) can be 
found in the following way. Since 

it follows that 

Z4(0) E y(k) = y + k2<u2)2(k) (410) 

According to this formula the k-dependent friction coefficient, 

is equal to the sum of the friction coefficient y = KT/MD and the term 
k2(v2)z(k).  If y(k) is determined from the computer experiments, z(k) can 
be determined, and c&, t )  and the corresponding F,(k, t) can be deter- 
mined. The trouble with this approximation is that it does not predict the 
correct moments (dR”(t))  for short times. 

An alternative procedure is to assume the form, 

G(k, t) = g(k) e-u2(k)tz (412) 

and then to evaluate the functions g(k) and a(k) from the equilibrium 
moments in Eq. (407). By carrying out this precedure it is found that 

g(k) = k2(u2) 

Consequently the Gaussian approximation is 

E4(t) = K,(t) + k2(02)  exp (- 13 (v2> (aZ> + 2 k 2 ( u 2 ) ] )  (414) 

The Laplace transform of this is 

so that 
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Note that 

which is roughly the time it takes an average particle to traverse a distance 
of the order of a wavelength h/2n. 

Similar  method^'^-^^ have been applied to the study of F(k, t). In two 
entirely independent studies F@, t) was computed from “ generalized 
hydrodynamics.” In this theory memory function equations were derived 
for the normal hydrodynamic variables-mass, momentum, and energy 
density. The derivation follows a development that is similar to the treat- 
ment of multivariate processes presented in this review (the major differ- 
ence being the definition of the projection operator). The memory func- 
tions are then chosen so that these equations reduce in the hydrodynamic 
limit (k + 0, t + 00, such that k2t = const.) to the known hydrodynamic 
equations. Moreover, these memory functions are also chosen to give the 
correct short time behavior (i.e., moments). Given these constraints 
functional forms are chosen for the memories with parameters fixed in 
terms of equilibrium moments and transport coefficients. The generalized 
hydrodynamic equations (memory function equations) are solved and 
F(k, t )  is determined. These calculations are very much in the spirit of the 
earlier  paper^^^.^' on the memory function approach to the calculation 
of the velocity autocorrelation function and F a ,  r). 

G. Van Hove Self-Correlation Functions from Computer Experiments 

We shall now discuss three Van Hove correlation functions ob- 
tained from our CO simulations. These functions are defined as follows: 

(1) G&, t) is the probability that the C.M. of a molecule moves a dis- 

(2) GsC(r, t) is the probability that the carbon atom on a given molecule 

(3) Gso(r, t) is the probability that the oxygen atom on agivenmolecule 

Gso(r, t) and GSC(r, t) determine the incoherent differential scattering 
cross section for slow neutrons from CO through a weighted sum of their 
space-time Fourier transforms. Each of these functions is normalized to 
unity when integrated over all space. 

If one wanted to predict slow neutron incoherent scattering from CO 
then, in the Gaussian approximation, all one would need would be the 

tance r in time t given that it was at the origin at t = 0. 

moves a distance r in time t given that it was at the origin at t = 0. 

moves a distance r in time t given it was at the origin at t = 0. 
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mean square displacements of the carbon and oxygen atoms, i.e., 
((ARC(t))?> and ((ARo(f))2), respectively. These two functions depend in 
general on both the average translational and rotational behavior of a 
molecule as well as translational-rotational coupling. For example, if we 
express Rc and Ro in relative and C.M. coordinates, then it is easy to show 

where p is a unit vector pointing along the internuclear axis from the 
oxygen atom to the carbon atom, ro is the equilibrium internuclear separa- 
tion, Ap = p ( t )  - p(O), and A R C . M . ( t )  = RC.M.(t) - Rc.M.(O).  Note that the 
atomic displacement functions depend on the dipolar correlation function. 
Hence this portion of these functions could be determined from infrared 
bandshape studies. One can prove that 

<(ARC.M.(t))2> = 2<u2> J” ( t  - t’)$(t’)dt’ (4 1 8) 
0 

Therefore the approximate velocity autocorrelation functions we consi- 
dered previously could be used to generate ((ARC.M.(t))Z>. In fact Berne*’ 
and Desai and Yip82 have used the exponential memory to generate the 
approximate mean square displacement of an argon atom in the liquid. 
Desai and Yip then used this Gaussian approximation to predict neutron 
scattering from liquid argon.’? 

The translational-rotational term, ((ARCaM.(f) Ap)(t)), is much more 
difficult to treat. However, for homonuclear diatomic molecules this term 
vanishes,* and for the two systems we studied this term contributed less to 
the mean square displacements than either the translational or the rotation- 
al terms. If we ignore the coupling term then for short times we have 

* This follows from the invariance of the Hamiltonian to the interchange of the two 
atoms in a homonuclear diatomic molecule. 
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((ARC(?))') = ~ [ 3  KT + 2 Mo - ] I  2 + O(t4)  
MC 

Mc 2 

MO 

KT 
<(ARo(t))2> = M [3 + 2 -1 t + o(t4) 

Since Mo is greater than Mc, the displacement of the carbon atom should 
be initially greater than the displacement of the oxygen atom which in turn 
should be greater than the displacement of the C.M. Since 1 - (p(0) p(t)> 
is positive for t > 0, the above order of displacements should persist for all 
time. That is, provided the translational-rotational term can be neglected. 
In the diffusion limit, or equivalently, for long times we have 

((ARC.M.(t))2> = 6Dt + c (422) 

= 6Dt + C + 2 - rp)' 
((ARO(t))') = 6Dt + C + 2 - rGr0)l 

(423) 

(424) 

where C is a constant that allows for the fact that a molecule in a fluid is 
moving coherently initially. Note that for long times the net atomic dis- 
placements should be parallel to the C.M. displacement provided again 
that the translational-rotational terms can be neglected. These character- 
istics are all illustrated in Figures 35 and 39 where the atomic and C.M. 
displacement functions from the Stockmayer and modified Stockmayer 
simulations are presented. The translational-rotational coupling function, 
2ro<bRc.M.(t) Ap(t)), is also presented in these figures. This coupling 
term is largest for long times in the modified Stockmayer simulation. The 
translational, rotational, and translational-rotational coupling contribu- 
tions to the mean square displacement of a carbon atom in the Stockmayer 
and modified Stockmayer simulations are presented in Figures 36 and 40, 
respectively. The maximum contribution from the coupling term is - 3 % 
in the Stockmayer simulation and - 8 %  in the modified Stockmayer 
simulation. Initially the translational and rotational motions contribute 
approximately equally to the carbon atom displacement. In the modified 
Stockmayer simulation which represents hindered rotational motion, the 
translational contribution is larger than the rotational contribution for all 
times. In fact for t 5 s the translational contribution is -4  times the 
rotational one. On the other hand, in the Stockmayer simulation which 
represents free rotational motion there is a region near t = 5 x s 
where the rotational contribution is larger than the translational one. 
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Fig. 35. The atomic displacement functions from the Stockmayer simulation of CO. 
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Fig. 36. Contributions to the mean square displacement of the C atom in Stcckmayer 
simulation of CO. 
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Fig. 37. Non-Gaussian behavior of GStV)(r, t )  in the Stockmayer simulation of CO 
using 216 molecules. 
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Fig. 38. Non-Gaussian behavior of GS(")(r, t )  in the Stockmayer simulation of CO 
using 512 molecules. 
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Fig. 39. The atomic displacement functions from the modified Stockmayer simulation 
of co. 
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Fig. 40. Contributions to the mean square displacement of the C atom in the modified 
Stockmayer simulation of CO. 
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Fig. 41. Non-Gaussian behavior of GJ’)(r, t )  in the Stockmayer simulation of CO. 

However, for long times the translational contribution is again larger than 
the rotational contribution in this simulation. 

We shall now discuss the non-Gaussian behavior of our self-correlation 
functions. R a h m a ~ ~ ~ ~  pointed out that it is convenient to do this by intro- 
ducing the coefficients c lN( t )  which for Gs(r, t )  are defined as 

where CN is given by 
1 x 3 x * ’ *  x ( 2 N +  1) 

3N 
CN = 



Fig. 42. Gdr, t ) [ 3 / 2 ~ < r ~ > ] - ~ ’ ~  for the C atom in the modified Stockmayer simulation 
of CO at t = 7.75 x lo1-’ s. Gdr, 1 )  shows its maximum departure from a Gaussian at 

this time. 
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Fig. 43. Intermediate scattering functions for the C.M. motion of a CO molecule 
from the modified Stockmayer simulation. 
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Fig. 44. Intermediate scattering memory functions for the C.M. motion of a CO 
molecule from the modified Stockmayer simulation. 
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Fig. 46. (P2(p(0) p((t))> from the modified Stockmayer simulation of CO and 
(P2(p(0). p(t))> as predicted from information theory. 
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Fig. 47. Intermediate scattering functions for the C.M. motion of a CO molecule 
from the modified Stockmayer potential and from Eqs. (376) and (396). 
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The coefficients for Gso(r, t )  and GsC(t, r) are defined in a similar manner. 
If a self-correlation function is a Gaussian, then the corresponding coeffi- 
cients olN(t) will vanish, For example, for short times ((ARC.M.(t))2N) = 
( VzN)tZN and ( VzN> = CN(V2)N.  Therefore, for short times the coeffi- 
cients for G&,t) should vanish. 

These coefficients are strongly dependent on the number of molecules 
used in the simulations. For example, Figures 37 and 38 present the coeffi- 
cients from the Stockmayer simulation using 216 and 512 molecules, re- 
spectively. The corresponding coefficients from the 216 and 512 molecule 
systems differ substantially from each other. Therefore, we feel that these 
coefficients from our simulations are only qualitative indications of the 
non-Gaussian behavior of our self-correlation functions. Figure 41 presents 
the coefficients from the modified Stockmayer simulation. Comparing the 
results for the two simulations we see: 

(1) None of the self-correlation functions is a Gaussian for all time. 
(2) The self-correlation functions from the Stockmayer simulation are 

closer to Gaussians than those from the modified Stockmayer simulation. 
(3) The modified Stockmayer coefficients are always nonnegative in 

contrast to the Stockmayer coefficients. 
(4) The Stockmayer coefficients for G&, t )  do not vanish for short times. 

Rahman has shown that the Van Hove functions may be expanded in 
the Hermite  polynomial^,^^ He, N(x),  where the coefficients in this expan- 
sion depend on the coefficients a&). This expansion and its derivation are 
discussed in Appendix C. It is informative to compare the Gaussian 
approximation for GsC(r, t )  to this series expansion. The largest difference 
between Gsc(r, t )  and the Gaussian approximation should occur at 
7.75 x s in the modified Stockmayer simulation. That is, at this time 
GsC(r, t )  shows its largest departure from a Gaussian. GsC(r, t )  and its 
Gaussian approximation at 7.75 x s are presented in Figure 42. For 
convenience GsC(r, t )  is plotted against P = r/[<(ARc(t))2)1/2]. The largest 
difference between two curves is for small distances. That is, the Gaussian 
approximation favors small displacements of the C atoms more than 
GsC(r, t )  does. 

VII. CONCLUSION 

In this article the memory function formalism has been used to compute 
time-correlation functions. It has been shown that a number of seemingly 
disparate attempts to account for the dynamical behavior of time correla- 
tion functions, such as those of Z w a n ~ i g , ~ ~ ~ ~ ~  M 0 r i , 4 ~ 9 ~ ~  and Martin,16 are 
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completely equivalent. The memory function formalism yields time-correla- 
tion functions which are in qualitative and in some cases quantitative 
agreement with computer experiments. In all cases time-correlation funo 
tions are obtained which are consistent with physical intuition. For ex- 
ample, the velocity autocorrelation functions in liquids has a negative 
region which reflects the fact that the velocity of a fluid particle is on the 
average reversed by collision with the cage of nearest neighbors. Likewise, 
when the noncentral potential is large, the angular momentum correlation 
function has a negative region which reflects the fact that a fluid molecule's 
angular momentum is on the average reversed by a collision with the cage 
of nearest neighbors. When the noncentral potential is weak the torques 
are small and there is no such negative region in the angular momentum 
correlation function. This is as it should be. It is encouraging to note that 
the memory function approximations predict this behavior. 

No attempt was made in this article to describe the few exact analytical 
calculations of time-correlation functions that exist. It is appropriate in 
closing, nevertheless, to mention some of the interesting papers that have 
appeared. Lebowitz and co-workerss3 have computed the velocity auto- 
correlation function, and the Van Hove space time correlation functions 
for a one dimensional system of hard rods. Nossala4 has computed the 
classical velocity autocorrelation function of a particle in a one-dimensional 
box. Recently Kinsey, Deutch, and Silbey have determined the quantum- 
mechanical velocity autocorrelation function of a particle in a one-dimen- 
sional box and have analyzed recurrence times and the semiclassical limit.'' 
Fixman and Riders6 have determined classical orientational time-correla- 
tion functions, and Steelea7 has analyzed their quantum-mechanical 
counterparts. Lastly, Zwanzig" has presented an analysis of the velocity 
correlation function based on a generalization of the Navier-Stokes 
equation with frequency-dependent viscosity coefficients. 

APPENDIX A. Numerical Integration of Difierential Equations 

This appendix contains a few remarks on the numerical integration of 
the large systems of differential equations dealt with in the dynamics 
calculations. There have been a number of general numerical methods or 
algorithms developed for integrating such systems. Therefore one prob- 
lem in solving these equations is finding the particular algorithm which is 
best suited to them. We used the following criteria in making our selection 
of such an algorithm: 

(1) It must use a minimum amount of computer storage to integrate a 
given number of differential equations. This was a major consideration 
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because such a method would also maximize the number of molecules that 
could be followed in the dynamics calculations. This would in turn mini- 
mize the periodic boundary effects on calculated properties such as auto- 
correlation functions, etc. 

(2) It must minimize the computer time needed to get the solutions to a 
given point in real time. This was purely an economic consideration. 

(3) It must be stable. That is, the numerical solutions must not diverge 
exponentially with time from the true solutions. 

(4) It must minimize the error in the solutions in getting to a given 
point in real time. 

For convenience, consider the equations of motion for a single particle 
of mass M moving in one dimension and acted on by a force g(x, t): 

dx -- - V 
dt X(to) = Xo 

dV 1 - = - g(x, t )  = f (x ,  r )  
dt M 

Let x(t)  and V( t )  be the actual solutions to these differential equations. In 
general a given algorithm will replace these differential equations by a 
particular set of difference equations. These difference equations will then 
give approximate values of x(t)  and V(t )  at discrete, equally spaced points 
in time: tl, t z ,  . . . , t ,  where tj+l = t ,  + At. The differences between the 
solutions to the difference equations at f N  and the solutions to the differ- 
ential equations at t , depend critically on the time step At. If At is too large, 
the system of difference equations may be unstable or be in error due to 
truncation effects. On the other hand, if At is too small, the solutions to the 
difference equations may be in error due to the accumulation of machine 
rounding of intermediate results. 

In our search for a suitable algorithm, we tested four different.integra- 
tion procedures. The general analysis leading to each of these procedures is 
discussed by Ralston and Wilf.47 The first we tried was used by Verlet in 
his study of liquid argon.44 It replaces Eq. (A.l) and (A.2) by 

X N + I  = - X N - ~  + 2 X ,  + Arzf(X,,  f , )  + e(At4) (A.3) 

VN = ( X N + I  - X,-,)/2At + €)(At2) (A.4) 

e(At") implies the truncation error in this formula is proportional to AtN.  
This method only requires storage for X,, X N - l ,  andf(X,, t,). However, 
Eq. (A.4) can contribute machine-rounding errors to V, if At and the 
floating point word length of X, and X,-l are small. Verlet used a CDC 
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6600 for his work which has a word length of 60 bits in contrast to our 
machine, an IBM 7094, which has a word length of 36 bits. Therefore our 
velocities would suffer more from this problem than his. This method is not 
self-starting, i.e., one needs both X, and XI to start. A non self-starting 
algorithm such as this requires a second algorithm to get its auxiliary initial 
values. In this case, a Taylor’s series expansion of X around X, would 
probably suffice to get X,. A non self-starting method used to obtain 
velocities presents extra difficulties in the equilibration phase of dynamics 
calculations. During this phase, the velocities are changed frequently. This 
implies that after every velocity change the second algorithm must be used 
to obtain new auxiliary values before equilibration can proceed. Verlet’s 
method requires only one derivative evaluation per step. This latter 
property is a decided advantage since most of the computer time used in 
these calculations is for derivative evaluations. 

The second method we tried was used by Rahman32 in his original study 
of argon. It replaces Eqs. (A.l) and (A.2) by 

8,+, = X N d l  + 2AtVN + 6(At3) 

V N + ,  = V N - ~  + 2Ag(X(x,, f N )  + 0(At3) 

X N + 1  = X, + -)At[V, + VM+1] + 6(At3) 

v,+~ = V ,  + wr.w,, t,) + f ( ~ , + ~ ,  tN+,)l + ec4t3) (pr.8) 

( A 3  

( A 4  

(A.7) 

This method is not self-starting and requires two derivative evaluations per 
step. It also requires storage for XN-,, X,, VN-,, V,, f ( X , ,  f,), and 
f(XN+l, f N + l ) -  

The third method we tried replaces Eqs. (A.1) and (A.2) by4’ 

X N + I  = X N - 3  + 4Ar[2VN - V N - l +  2VN-2]+ 6(At5) (A.9) 

V N + l  = VN-3 + !fAt[2f(xN, f N )  - f ( X N - I ,  f N - l )  

+ 2f(X,-2,~*-2)1+ W 5 )  (A.10) 

This method at first looked very attractive because it has a very small 
truncation error and requires only one derivative evaluation per step. 
However, it requires much more storage than any of the other methods and 
is not self-starting. 

The final method we tried is the Runga-Kutta-Gill algorithm4’ which 
replaces Eq. (A.2) by 

VN+, = V ,  + &Kl + -$(1 - J1/2)K2 + -$(1 + @)K3 + 4K4 + 6(Ar5) 
(A. 11) 
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(A.12) 

(A. 13) 

K4 = Atf(xN - Ak2 + (l + &lK2 Y t N + i )  (A.15) 
It replaces Eq. (A.1) by a similar formula for X, + l .  The Runga-Kutta-Gill 
method can be programmed to minimize storage and rounding error 
accumulation.47 When this is done, it requires storage equivafent to X,, 
XN-l, VN, VN-l, andf(XN, tN). It has a very small truncationerrorandis 
self-starting. However, it requires 4 derivative evaluations per step. 

Each of these algorithms has a different range of time steps At which 
yields stable solutions to the differential equations. We tried to find each 
algorithm’s stability region by using its set of difference equations to inte- 
grate the equations of motion for two CO molecules. These molecules were 
assumed to interact via the Stockmayer potential described previously. We 
integrated these equations in double precision using a variety of initial 
conditions and times steps, It was found that an unstable solution to these 
differential equations quickly lead to an exponential elongation of the CO 
bond length, This suggested that we could get an estimate of an algorithm’s 
stability region by considering the solutions to 

where K is the CO molecule’s vibrational force constant, p is its reduced 
mass, and q is the deviation in the internuclear separation from its equili- 
brium value. This does indeed give a fairly good estimate. For example, 
consider Verlet’s method applied to Eq. (A.16) 

The solution to this difference equation is 

qN = A[b+IN + B[b-lN (A. 18) 

where A and B depend on the initial boundary conditions and the accumu- 
lated error up to the Nth step. b, is given by 

(A.19) 
2~ - KAt2 f At(K2At2 - 4Kp)lI2 

2P 
b, = 
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Since A and B are not necessarily zero, this difference equation will be 
stable only if lb*l S 1 or equivalently only if At s ~ ( P / K ) ” ~ .  For CO this 
implies At has to be less than or equal 4.89 x lo-‘’ s. Verlet’s method gave 
stable solutions to the equations of motion for At = 2.5 x lo-’’ s but 
unstable solutions for At  = 5 x s. This is in remarkable agreement 
with the above results. 

The “ experimentally ” determined stability regions for Rahman’s 
method, the Runga-Kutta-Gill method, and the third method were 
At 2.5 x s, At ”< 5 x s, and At 2: 1 x lo-’’ s, respectively 
The Runga-Kutta-Gill method with At = 5 x lo-’’ s was chosen to be 
used in the dynamics calculations because: 

(1) It took less machine time and used fewer storage locations than the 
3rd method. 

(2) It took less storage than Rahman’s and was self-starting. 
(3) It was more accurate than Verlet’s method in terms of energy con- 

servation. For example, in one experiment in which the equations of motion 
were integrated from t = 0 to t = 3.75 x s, the Runga-Kutta-Gill 
method with At = 5 x lo-’’ s conserved energy to 7.31 x while 
Verlet’s method with At  = 2.5 x lo-’’ s conserved energy to 3.96 x %. 
In all of these experiments, both of these methods conserved the total 
momenta to all 8 figures printed. 

APPENDIX B. The Numerical Solution of the Volterra Quation 

The general problem is to solve the Volterra equation 

_ - -  2 - J-1 Ky(f‘)y(f - t’) dt’ 

for either y ( t )  given Ky(t)  or Ky(t) given y(t).  

is the normalized autocorrelation function for the dynamical property 
a(t) and Ky(t)  is the memory function for that property. Specifically we are 
considering y( t )  to be either the velocity or the angular momentum or the 
dipolar autocorrelation function. However, the general numerical method 
outlined here is applicable to the solution of the Volterra equation for any 
autocorrelation function. 

The following properties of y ( t )  and Ky(t)  are exploited in solving the 
general problem : 
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(1) y ( t )  is an even function in time and may be expanded for short times 
as 

1 ((a)2> 1 ((a)2> t 4  y ( t )  = 1 - - - t 2 + - -  
2 (a2) 4! (a2) 

(2) Ky(t)  is also an even function and may be expanded for short times as 

The important point to note here is that the 2nd moment of Ky(f )  
depends on the 2nd and 4th moments of y ( t ) .  The 2nd moments of each of 
the three previously mentioned autocorrelation functions may be calcula- 
ted from ensemble averages of appropriate functions of the positions, 
velocities, and accelerations created in the dynamics calculations. Likewise, 
the 4th moment of the dipolar autocorrelation function may also be cal- 
culated in this manner. However the 4th moments of the velocity and angu- 
lar momentum correlation functions depend on the derivative with respect 
to time of the force and torque acting on a molecule and, hence, cannot be 
evaluated directly from the primary dynamics information. Therefore, these 
moments must be calculated in another manner before Eq. (B.3) may be 
used. 

Ky from A t )  
Consider first the problem of developing Ky(t)  from y ( t ) .  y ( t )  from the 

molecular dynamics calculations is tabulated for the equally spaced times 

ti  = iAt i = 0,. . . ,499 (B.5) 

where t = 0.05 with time in units of s. Therefore, it is necessary to 
determine Ky(ti) i = 0, . . . , 499 from y( t i )  i = 0, . . . ,499. It is more ad- 
vantageous in terms of stability to do this by considering the first derivative 
of Eq. (B.l) rather than Eq. (B.l) itself: 

Approximating the integral on the right-hand side of Eq. (B.6) by a closed 
quadrature formulaag such as the trapezoidal rule, one obtains. 

(B.7) 
dY 

dt2 1, j = o  j dt  

I 

Ky(ti)  = - 9 I - At 1 o j K  ( t  )- (ti - t j )  

i = O ,  ..., 499 
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where oj is the weight assigned to thejth point of the integrand. oj will 
depend on the particular formula used to perform the integration. In this 
form the right-hand side of Eq. (B.7) depends only on values of Ky(rj) for 
ti I ti-l because 

However, in order to actually use Eq. (B.7) one needs: 

(1) dy /d t  I,, and d2y/dt2 I,, for ti  i = 1, . . . , 499 

(2) Accurate starting values of Ky(t) ,  i.e., 

K y O O ) ,  K,(tl)Y K,(t,), K y ( t 3 )  

(3) A convenient and accurate quadrature formula. 

The derivatives of p(t) were obtained by two different methods: one used 
for short times and the other used for long times. For short times, 
0 5 t i  I t ,  , y ( t )  was approximated by Eq. (B.3). If the 4th moment of y(t) 
was not known, then y(t)  was first fit via least squares to Eq. (B.3) to 
obtain ((uz))/(a2). 4th moments of the velocity and angular momentum 
autocorrelation functions determined this way are tabulated in Table 1V. 
The error quoted for each of these values of ((&)2)/(a2) is the statistical 
error from the least square fit which amounts to - 10 %. The number of 
points used in the least squares process in general depends on how fast 
the autocorrelation function changes around t o .  For the velocity and angu- 
lar momentum autocorrelation functions, 8 points were used to determine 
((&)2)/(a2). dy/dt(t, and dzy/dt21ri for t o ,  . . . , t4 were then calculated by 
evaluating Eq. (B.3) at the points to,  . . . , t4 .  For long times, t ,  I t ,  I t4,9,  
y( t )  was assumed to be represented by the interpolating polynomial for 
y( t )  :'I9 

6 

At each point t i ,  t S  I t i  5 t497 , the coefficients a,' were determined such 
that 

(B.lO) 

In other words, the exact form of the interpolating polynomials varied 
from point to point. dy/dtlt, and d2y/dtz)t, for t5 I t ,  I r499 were then cal- 
culated by evaluating the fist  and second derivatives of the appropriate 
interpolating polynomial, y*&). 

y*[(t,) = y(t,) j = i - 3, i - 2, . . . , i + 3 
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Ky(fO) or ((&)2)/(u2) was calculated directly from appropriate en- 
semble averages of the molecular dynamics information (see Tables 11, 
111, and V). Ky(rl), Ky(t2), and Ky(t,) were determined by using Day’s’’ 
starting method applied to Eq. (B.3). After applying Day’s method and 
exploiting the odd property of dyldt, one obtains three linear equations 
involving Ky(t,), Ky(t2), and Ky(t3) which can easily be solved: 

(B.12) 

(B.13) 

Day’s method essentially replaces the integral in Eq. (B.6) by a different 
quadrature formula at each of the times t l ,  t2  , and t 3 .  Each of these quadra- 
ture formulas approximates its appropriate integral with an error which is 
8(At 5). Therefore, this method gives very accurate starting values for 

For Ky(ti), t ,  5 t ,  5 t499, the integral in Eq. (B.6) was approximated by 
KY(t1), Ky(h), and K y ( t 3 ) .  

the Gregory formula.90i91 

(B.14) 

The Gregory formula used here has the advantage that it requires no 
special considerations as to whether or not the integral involves an odd or 
even number of points, in contrast to other integration formulas such as 
the composite Simpson’s rule. 
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The computational scheme outlined above was tested with the testing 
set 

KyT(ti)  = e-"l2 (B.15) 

yT(ti)  = e-tf/2[cos [T J3 ti] + J 3 .  sin [T f i  ti]] i = 0, . . . ,499 (B.16) 

which behaves approximately like the autocorrelation functions obtained 
from the dynamics calculations. However, this particular testing function 
does not satisfy Eq. (B.3). Therefore, in order to get dy/dtlt and d2y/dtZIE 
for short times, y(t) was approximately by the interpolating polynomial 

7 

M = 2  
y*g-(t) = a0 + c a# (B. 17) 

where the coefficients aM were determined such that 

i = 0, . . . , 6 y*T(ti) = yT(tl)  (B.18) 

was recovered to within a maximum absolute error KyT(ti) for t i  5 
30.0009. 

Y V )  from K,(t) 

The problem of developing y(t) numerically from K J t )  is much simpler 
than the reverse problem. One reason for this is that Ky(t) is usually a 
two- or three-parameter, analytic approximation to the true Ky(t)  for the 
system under consideration. Therefore, one need not worry about statisti- 
cal errors in Ky(t) .  The following scheme was used in developing y ( t )  from 
Ky(t)  which depend on properties of y( t )  and Ky(t)  given in Eqs. (B.l), 
(B.3), and (B.4). 

YOo) = 1 (B. 19) 

r(t1) = 1 - tKy(to)t12 (B.20) 

A t 2 1  = 1 - (W2[KY(tl) + Ky(tolr(t1)l (B.21) 

Y(4.1)  = Y(ti-1) - (W2[Ky(0 + Ky(tolr(~J1 
1-1  

- 2(At)' c Ky(tlly(t, - ti> 2 I i (B.22) 
j = 2  

Equations (B.21) and (B.22) involve approximating dy/dtl,, by 

W i + l )  - Ati-1) 

2At 
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and by approximating the integral in Eq. (B.l) by the trapezoidal rule. 
The above scheme was tested by using the testing set given in Eq. (B.15) 

and (B.16). y(tJ for t i  I s was recovered to within a maximum 
absolute error of 20.0003. All computations for both schemes were done 
in double precision on an IBM 360. 

The error in KJt)  generated in the first scheme from the experimental 
autocorrelation function was also examined by taking the generated K,,(t) 
and using it as input to the 2nd scheme to try to recover the original auto- 
correlation function. The original autocorrelation functions were all 
recovered in this manner within a maximum absolute error 20.002 for all 
times. r I s. 

A P P E m E  c. f i O p e d e S  Of the POlyIIOIUials HeN(X) 

This appendix gives some of the properties of the Hermite polynomials, 
He,(x). These polynomials form a basis set for R a h m a n ' ~ ~ ~  expansion of 
GS(')(r, t) and play a fundamental role in the discussion of the non-Gaussian 
behavior of this latter function. Brief sketches of this expansion and of the 
calculation of FJ') (K,  r )  are also given. 

The polynomials HeN(x) are defined byg2 

They are related to the Hermite polynomials HN(x), which are the solu- 
tions to the Schrodingen equation for a harmonic 

HN(x) for N = 0 ,  . . . , 10 are given in Pading and ~ i l s o n . ' ~  HeN(x) 
satisfy the recursion relations 

He&) = 1 (C.4) 

He,(x) = x (C.5) 

HeN+,(X) = XHeN(X) - NHeN-i(X) N 2 1 (C.6) 
They also satisfy the. orthogonality relationg2 

m 

He, ( X )  e(-x2/2) He,(x) d X  = (2X)''2N!6M,N (C.7) 
- m  



ON THE CALCULATION OF TIME CORRELATION FUNCTIONS 223 

Finally the first six even polynomials used in the expansion of GS(')(r, t) are 

He,(x) = 1 (C.8) 
Hez(x) = x' - 1 (C.9) 
He4@) = x4 - 6x' + 3 (C.10) 
He,(X) = X6 - 1 5X4 + 45X2 - 15 (C.11) 
He&) = x8 - 28x6 + 210x4 - 420x' + 105 (C.12) 

He,,($ = xi* - 45x8 + 630x6 - 3150x4 + 4725~' - 945 (C.13) 

The expansion of Gs(')(t, t )  in the polynomials HeN(x) proceeds by 
determining the coefficients bzN(')(t) in the expression3' 

GS(")(r, t )  = b Z N ( ' ) ( f )  e(-x2'2) HeN(X) (C. 14) 
N = O  

where x' = 3rz/((Ar(")(t))') and Ar(')(t) = r(')(t) - r('j(0). 

relations on Gs(V)(r, t) are satisfied: 
These coefficients are determined such that the following five moment 

4rc JOm r G &, t )  dr = 1 (C. 15) 

(C.16) 

Using the properties of He,(x) given above and a great deal of algebra, 
one obtains Rahman's3' expressions for bzN(')(t) : 

b?)(t) = 1 (C.17) 

b'(")(?) = b ' p ( t )  = 0 (C.18) 

(C.19) 
1 
48 

1 
384 

1 
3840 

4x lo* rZM" G s( r , t) = ((Ar(')(t))2M) M = 1,  2, 3, 4 

b p (  t )  = - ap( t )  

(C.20) 

(C.21) 

b>)(t) = - [a,'"(t) - 4ap)(t)] 

blo(Y)(t) = - [aT)( t )  - 5a,'v)(t) + 10a,(v'(t)] 

where 

(C.22) 

and C N  = 1 x 3 x 5 x * * *  (2N + 1)/3,. 
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The intermediate scattering function for an isotropic system is given by 

(C.23) 
4n 
k 

FS(')(k, t )  = - jo r sin [kr ]G/ ) ( r ,  t )  dr 

Using Eq. (C.14) for G(')(r, t )  and the relation32 

~omxe(-xz~z) He,k(x) sin Bx dx = (- i)N+1B[2NB2N-Z - B2N]e(-B2"Z) 

One obtains Rahman and Nijboer'sg5 expression for F,(')(k, t ) :  

(C.24) 

where 

kz((Ar(')(?))z> 
6 

yz = 

a,'Y'(t) = 1 

u p ( ? )  = 0 

(C.25) 

(C. 26) 

(C.27) 

(C.28) 

(C.29) 

(C.30) 

1 
4! 

a?)(?) = 16[bP)(t) + lOb,,,(")(t)] = - [ap)(f) - 4ap)(t) + 6a,'y)(t)] 

(C.31) 

1 
5 !  

alo(v)(t) = -32blo(')(t) = - - [a,(')(t) - 5a,(V)(t) + lk,(Y)(t)] (C.32) 
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