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Abstract. The details of an efficient global optimization approach, quantum thermal
annealing with renormalization (QTAR) (Y. H. Lee and B. J. Berne, J. Phys. Chem. A,
in press (2000)) are presented in this paper. This method is based on the application of
the Migdal-Kadanoff method for decimating Trotter time slices in the staging and primitive
algorithms for sampling path integrals using Monte Carlo methods. In a nutshell, one starts
in a strong quantum regime where the number of Trotter beads representing each quantum
particle and the value of Planck’s constant are large, thereby allowing for efficient tunneling
through the barriers of a rough energy landscape typical in the folding of proteins, and
anneals the system methodically to the classical limit where the values of the aforementioned
quantities are 1 and 0, respectively. Global optimization of the system is achieved through
the iterative use of such quantum-to-classical annealing cycles. The QTAR algorithm applied
to a highly frustrated BLN model protein with 46 residues more efficiently locates the global
energy minimum than established methods like simulated annealing.
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1 Introduction

In this paper, we outline an efficient global optimization algorithm, quantum thermal
annealing with renormalization (QTAR), that is able to locate global energy minima
in complex systems with rough energy landscapes. This method finds the global mini-
mum of a system by annealing it from the quantum regime back to the classical realm.
In a previous publication [1], we have shown that quantization of a system moving
on a very rough energy landscape softens its potential, thus allowing for faster con-
vergence to its classical ground state upon annealing. The amount of “quantumness”
of the system was controlled and annealed essentially through Planck’s “constant”
h̄. In fact, one can go further with quantum thermal annealing by enhancing the
quantization of the system to a much higher degree. In a path integral Monte Carlo
(PIMC) approach, this means the use of a large Trotter number P to represent the
system in the beginning. This allows for very effective tunneling events during the
course of a simulation run. This increase in the number of degrees of freedom is tamed
a In partial fulfillment of the Ph.D. in the Department of Physics, Columbia University.
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by systematically reducing the number of Trotter beads during annealing, through
the use of a renormalization approach [2]. In addition to cost saving, this method
also allows the isomorphic classical system to sample a hierarchy of energy and length
scales in its search for the global minimum. We note that many useful global opti-
mization algorithms [3–19] are available. However, very rugged or frustrated energy
landscapes might present difficulties for various methods in practice. QTAR is very
effective in dealing with such problems. The main aim of the current paper is to
present the details of the renormalization approach used to manage the sampling of
the path integrals in QTAR. The algorithm is then tested on a well known frustrated
system, a 46-residue BLN model protein of Honeycutt and Thirumalai [20–22], with
very encouraging results.

This article is organized as follows. In Sec. 2, we present a brief overview of the
underlying physical and computational foundations of QTAR. In Sec. 3, we study in
detail the renormalization methodology used in our approach, including the derivation
of relevant renormalization transformations of the Hamiltonians used in our scheme.
Sec. 4 describes the BLN protein model and the QTAR annealing schedule employed
to locate the global minimum of the frustrated 46-mer. In addition, we summarize
the results of a comparative study of the global optimization of the aforementioned
protein using QTAR and simulated annealing. The conclusions are presented in Sec. 5.

2 Method

The quantum canonical partition function in Feynman’s formulation of quantum sta-
tistical mechanics is written in terms of a path integral [23]. The path integral can be
discretized in different ways for computational purposes. Two such discrete expressions
are results of the primitive approximation [24–27] and staging transformation [28, 29].
For a system of size N in 3 dimensions, the partition function with the primitive
Hamiltonian is given by

Qprim
P (β) =

(
Pm

2πβh̄2

)3NP/2 ∫
dr1,1 · · ·dri,t · · ·drN,P (1)

× exp

[
− β

(
N∑

i=1

P∑
t=1

mω2
P

2
|ri,t − ri,t+1|2 +

1
P

P∑
t=1

Vcl ({ri}; t)

)]
,

where the Trotter number P is an integer that denotes the number of “time” slices
used in the discretization, and ωP ≡ (βh̄)−1

√
P . The 3-vector position of the Trotter

bead of the i-th particle in the t-th time slice is given by ri,t, while the total classical
potential energy evaluated at time slice t is represented by Vcl ({ri}; t). P is a measure
of the “quantumness” of a system: accurate treatment of a highly quantum system
requires a large value for P , while a purely classical system has P = 1. In fact, the
equilibrium properties of a strongly quantum system, where P is large, can be sampled
more efficiently with the staging Hamiltonian. The corresponding partition function
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is [29]

Qstag
P (β) =

{
βmω2

j

2π

j∏
k=2

(
βmkω

2
P

2π

)}3Nn/2 ∫
du1,1 · · ·dui,t · · ·duN,P

× exp

[
− β

(
N∑

i=1

n−1∑
s=0

mω2
j

2
|ui,sj+1 − ui,(s+1)j+1|2 (2)

+
N∑

i=1

n−1∑
s=0

j∑
k=2

mkω
2
P

2
u2

i,sj+k +
1
P

P∑
t=1

Vcl ({ri(u)}; t)

)]
,

with nj = P , where n and j are the number of end-point and staging Trotter beads,
respectively. The staging coordinates are ui,t, with mk = mk/(k − 1) and ωj ≡
(βh̄)−1

√
P/j.

The other quantity in our formalism that determines the “quantumness” of a sys-
tem is Planck’s “constant” h̄. We use it as an adjustable parameter: a large value for
h̄ represents a strong quantum regime, while h̄ = 0 gives us the classical limit. For
the present QTAR method, quantum thermal annealing is achieved by methodically
reducing both P and h̄. In each quantum-to-classical cycle, we wish to systemati-
cally remove half of the total number of Trotter time slices of the primitive or staging
Hamiltonians in stages until we reach P = 1 (classical regime):

P0 −→ P0

21
−→ P0

22
−→ P0

23
−→ · · · −→ 2 −→ 1, (3)

where P0 = 2α(α ≥ 1) is the initial number of Trotter time slices used. During
this process, h̄ is annealed from h̄0 to 0, and temperature T from T0 to 0 as well.
The reduction in P is accomplished through the use of a renormalization approach
for both Hamiltonians. The number of Trotter beads P is held constant between
renormalizations, and the system is allowed to explore configuration space via PIMC
moves during this time. In the next section, we take a more detailed look at the
renormalization aspect of the QTAR method.

3 Renormalization in QTAR

To achieve the reduction in the number of degrees of freedom as stipulated by (3), one
has a choice among different types of renormalization schemes. The Migdal-Kadanoff
(MK) approach [30–32] is chosen here because it provides a simple way to incorporate
renormalization in QTAR. First, MK bond moving operations are performed whereby
all bonds representing Vcl({ri}; t) with odd-numbered Trotter time slices are moved to
their adjacent even-numbered sites (the designation of odd and even is arbitrary). As
a result, instead of having Vcl({ri}; t = a+1) at a particular time slice t = a+1 (which
is even), we now have 2 sets of bonds Vcl({ri}; t = a+1)+Vcl({ri}; t = a) at t = a+1.
The MK transformation was originally devised for lattice systems like the Ising model.
However, the BLN 46-mer and other chemical and biological molecules which we are
interested in are off-lattice objects. Consequently, these bond-moving operations do
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not in general result in bonds that fall exactly on top of their targets. Fortunately,
since the configurations corresponding to time slices t = a+ 1 and t = a are adjacent,
they are expected to be quite comparable to each other in terms of configuration and
thus energy. Thus, we take

Vcl

({ri}; t = a+ 1
)

+ Vcl

({ri}; t = a
)

≈ Vcl

({ri}; t = a+ 1
)

+ Vcl

({ri}; t = a+ 1
)

= 2Vcl

({ri}; t = a+ 1
)
.

(4)

If one wishes to move more than one set of bonds (say p of them) instead of just
the nearest-neighbor set, the approximation above is expected to be less valid since it
is not likely that all p adjacent configurations would be similar to one another. Other
renormalization schemes such as those that involve potential averaging might be more
suitable for such a case. However, in addition to the possibility of being more tedious
to implement computationally, these would also add extra computational costs to the
scheme. Hence for quantum thermal annealing purposes, the MK approach is more
appropriate and useful. After performing the MK bond-moving operations, all the
odd-numbered Trotter beads can be integrated (decimated) out. This is because they
are now free from the external potential Vcl ({ri}; t), and are only coupled to adjacent
even-numbered beads through the usual harmonic potential. The outcome is rather
simple. For the primitive Hamiltonian, the functional form remains the same as in
Eq. (1), but with P replaced by P ′ = P/2. The MK renormalization of the staging
Hamiltonian, while more involved, gives an analogous result. This will be investigated
in the next subsection.

3.1 Migdal-Kadanoff renormalization of the staging Hamiltonian

We start by performing the Migdal-Kadanoff bond-moving operation on alternate
staging beads of the quantum chain of each particle. Upon doing this, we end up with
the following for the partition function of the staging Hamiltonian:

Qstag
P (β) =

{
βmω2

j

2π

j∏
k=2

(
βmkω

2
P

2π

)}3Nn/2 ∫
du1,1 · · ·dui,t · · ·duN,P

× exp

[
− β

(
N∑

i=1

n−1∑
s=0

mω2
j

2
|ui,sj+1 − ui,(s+1)j+1|2 (5)

+
N∑

i=1

n−1∑
s=0

j∑
k=2

mkω
2
P

2
u2

i,sj+k +
1
P

P∑
t=1︸︷︷︸

t odd only

2Vcl ({ri(u)}; t)

)]
.

Hence, all the even-numbered Trotter beads are now free from Vcl ({ri(u)}; t), the
external potential, and are only subjected to the influence of the staging potential.
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These beads can readily be decimated out to give:

Qstag
P/2

(β) =

{
βmω2

j

2π

j∏
k=2

(
βαk

π

) j∏
k=2︸︷︷︸

k even only

(
π

βαk

)}3Nn/2 ∫ t odd only︷ ︸︸ ︷
du1,1 · · ·dui,t · · ·duN,P

× exp

[
− β

(
N∑

i=1

n−1∑
s=0

mω2
j

2
|ui,sj+1 − ui,(s+1)j+1|2 (6)

+
N∑

i=1

n−1∑
s=0

j∑
k=2︸︷︷︸

k odd only

αku2
i,sj+k +

2
P

P∑
t=1︸︷︷︸

t odd only

Vcl ({ri(u)}; t)

)]
,

where αk ≡ mkω
2
P /2.

Since P/2 Trotter beads have been integrated out, we change the subscript of the
partition function from P in Eq. (5) to P/2 in Eq. (6). At this point, we have n end-
point beads and j/2 staging beads to give a total of P/2 beads, i.e. nj/2 = P/2. In
what follows, we show how one could recover the exact form of the staging Hamiltonian
fromQstag

P/2(β). Also, in staging PIMC, one must have the freedom to adjust the number
of staging beads in order to maintain a reasonable acceptance rate, for instance 50%.
The j/2 staging beads that we get upon decimation may not give us the acceptance rate
we require. We need to be able to readjust, if necessary, the number of staging beads
(to jnew, say) such that the target acceptance ratio can be sustained, i.e. we would like
to have nnewjnew = P/2 rather than restricting ourselves to nj/2 = P/2. The following
derivation will also address this issue. In what follows, ε = β/P , P ′ = P/2, j′ = j/2,
and ε′ = β/P ′, such that ω2

P ′ = (βh̄)−2P ′ = ω2
P/2 and ω2

j′ = (βh̄)−2(P ′/j′) = ω2
j .

We now proceed by transforming the coordinates of the staging and end-point Trotter
beads as follows:

u′
i,sj′+k′ =

√
2k′ − 1
k′

ui,sj′+k′ , (7)

u′
i,sj′+1 = ui,sj′+1. (8)

The Jacobian for the above coordinate transformation gives:

t odd only︷ ︸︸ ︷
du1,1 · · ·dui,t · · ·duN,P =

j′∏
k′=2

(
k′

2k′ − 1

)3Nn/2

du′
1,1 · · ·du′

i,t · · ·du′
N,P/2 (9)

Upon carrying out the change of coordinates and the associated renumbering of indices,
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we get

Qstag
P/2

(β) =

{
βmω2

j

2π

j∏
k=2︸︷︷︸

k odd only

(
βαk

π

) j′∏
k′=2

(
k′

2k′ − 1

)}3Nn/2

×
∫

du′
1,1 · · ·du′

i,t · · ·du′
N,P ′

× exp

[
−

N∑
i=1

n−1∑
s=0

m

2j′ε′h̄2 |u′
i,sj′+1 − u′

i,(s+1)j′+1|2
]

× exp

[
−

N∑
i=1

n−1∑
s=0

j′∑
k′=2

β

2
mk′ω2

P ′u′2
i,sj′+k′

]

× exp

[
− β

P ′

P ′∑
t=1

Vcl ({ri(u′)}; t)

]
. (10)

Consider the following identity [28,29,33] for PIMC, generalized to 3 dimensions here.
This identity is written for the first staging segment of the i-th quantum particle’s
polymer chain, but it holds true for any staging segment:

ρ0(xi,1,xi,2; ε) · · ·ρ0(xi,j ,xi,j+1; ε) =
j∏

k=2

(
βαk

π

)3/2

exp

[
− βαku′2

i,k

]

×
(

m

2πh̄2jε

)3/2

exp

[
− m

2jεh̄2 |u′
i,1 − u′

i,j+1|2
]
, (11)

where

ρ0(xi,t,xi,t+1; ε) =
(

m

2πh̄2ε

)3/2

exp

[
− m

2h̄2ε
|xi,t − xi,t+1|2

]
. (12)

In the above equations, {xi,t} and {u′
i,t} are related as follows:

u′
i,k = xi,k − x∗

i,k, for k = 2, . . . , j (13)

u′
i,k = xi,k, for k = 1 or j + 1 (14)

where

x∗
i,k =

(k − 1)xi,k+1 + xi,1

k
. (15)

We now express the integrand of Qstag
P/2(β) as a product of factors, each of which has

the same form as Eq. (11). This is done by introducing appropriate prefactors and
regrouping the exponential factors involving end-point and staging beads. After some
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tedious but straight-forward algebra, we get the following simple expression:

Qstag
P/2 (β) =

∫
du′

1,1 · · ·du′
i,t · · ·du′

N,P ′

×
[

N∏
i=1

n−1∏
s=0

ρ0(xi,sj′+1,xi,sj′+2; ε′) · · ·ρ0(xi,(s+1)j′ ,xi,(s+1)j′+1; ε′)︸ ︷︷ ︸
j′ factors of ρ0 ’s

]

× exp

[
− β

P ′

P ′∑
t=1

Vcl ({ri(u′)}; t)

]
. (16)

There are n segments, each consisting of j′ factors of ρ0’s. Therefore the total number
of ρ0 factors is nj′ = nj/2 = P/2. We are free to group jnew of these factors together
such that nnewjnew = P/2. Then,

Qstag
P/2(β) =

∫
du′

1,1 · · ·du′
i,t · · ·du′

N,P ′

×
[

N∏
i=1

nnew−1∏
s=0

ρ0(xi,sjnew+1,xi,sjnew+2; ε′) · · ·ρ0(xi,(s+1)jnew,xi,(s+1)jnew+1; ε′)︸ ︷︷ ︸
jnew factors of ρ0’s

]

× exp

[
− β

P ′

P ′∑
t=1

Vcl ({ri(u′)}; t)

]
. (17)

Finally, using the identity in Eq. (11) in reverse, we obtain:

Qstag
P ′ (β) =

{(
βmω2

jnew

2π

)
jnew∏
k=2

(
βmkω

2
P ′

2π

)}3Nnnew/2∫
du′

1,1 · · ·du′
i,t · · ·du′

N,P ′

× exp

[
− β

(
N∑

i=1

nnew−1∑
s=0

mω2
jnew

2
|u′

i,sjnew+1 − u′
i,(s+1)jnew+1|2 (18)

+
N∑

i=1

nnew−1∑
s=0

jnew∑
k=2

mkω
2
P ′

2
u′2

i,sjnew+k +
1
P ′

P ′∑
t=1

Vcl ({ri(u′)}; t)

)]
.

Hence, we have renormalized the staging Hamiltonian. It has exactly the same
form as Eq. (2), but with only half the total number of degrees of freedom as before,
since there are now P ′ = P/2 instead of P Trotter beads. Clearly, the process can be
repeated until one reaches the classical limit where P = 1, if so wished. In addition,
we have also shown that upon renormalization, we are free to readjust the number
of staging beads such that the target acceptance ratio can be maintained. This is
important computationally for the efficient implementation of staging PIMC.
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4 Investigational Studies

The BLN protein model studied in this paper has the following potential energy:

Vcl ({ri}) =
N−1∑
i=1

kr

2
(|ri+1 − ri| − a)2 +

N−2∑
i=1

kθ

2
(θi − θ0)2

+
N−3∑
i=1

[
Ai

(
1 + cos(φi)

)
+Bi

(
1 + cos(3φi)

)]

+ 4ε
N−3∑
i=1

N∑
j=i+3

Cij

[(
σ

rij

)12

−Dij

(
σ

rij

)6
]
,

(19)

where

Cij = 1, Dij = 1 if i, j ∈ B
Cij = 2

3 , Dij = −1 if i ∈ L, j ∈ B,L
Cij = 1, Dij = 0 if i ∈ N, j ∈ B,L,N.

The letter codes B,L and N represent hydrophobic, hydrophilic and neutral protein
residues, respectively. The sequence of the 46-residue model protein used in this study
is B9N3(LB)4N3B9N3(LB)5L. Reduced units are used throughout this article, unless
otherwise stated. In addition, the mass of each residue m, Boltzmann constant kB,
the energy unit ε, the Lennard-Jones parameter σ, and the bond length a are set
to unity. In Eq. (19), kr = 400ε/a2, kθ = 20ε/rad2, and θ0 = 1.8326 rad. For the
dihedral-angle potential term, if two or more of the four defining residues of φi are
neutral (N), then Ai = 0, Bi = 0.2ε, otherwise Ai = Bi = 1.2ε. A weak boundary
potential Vbp({ri}) =

∑N
i=1(kb/2)(ri − rcom)2 is also utilized to prevent the protein

from dissociation and also to encourage folding.
The procedure for the global optimization of the 46-residue protein with the QTAR

algorithm will be described next. In our implementation, we control the annealing of
h̄ through the parameter kP ≡ mω2

P : a decrease in the value of h̄ (for fixed P ) actually
corresponds to an increase in the value of kP .

1. Generate a random initial protein configuration.

2. Initialize the Trotter number P to P0, the thermal temperature T to T0 and kP

to kP 0. Quantize the classical configuration by going to step 3.

3. Perform nstaging staging PIMC passes with Eq. (2). If P gets relatively smaller
(typically ≤ 64 here), perform nlocal local and nglobal global PIMC passes with
Eq. (1) instead. After each PIMC pass, T is decreased linearly by ∆T , and kP

is increased linearly by ∆kP .

4. Reduce P to P ′ = P/2 by decimating out Trotter beads through renormalization.
The number of PIMC passes for this new P ′-stage is doubled such that the total
number of MC sweeps in each P -stage remains constant. Now go back to step
3. This whole process is repeated until P = 1, when an intermediate classical
configuration is obtained.
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5. Halt if the stop criterion is met. Otherwise, repeat the quantum thermal an-
nealing procedure with the intermediate classical configuration by going to step
2.

Steps 2–4 constitute a QTAR cycle. Twenty simulation trials, each with a different
initial random configuration, are conducted with QTAR. The initial number of Trotter
beads on each residue is set to be P0 = 256. Staging PIMC moves are then performed
for nstaging = 15 passes, after which the renormalization operation is used to remove
half the total number of Trotter beads from the system. The number of staging passes
is then doubled to 30 for P = 128, as described by the procedure above. This scheme
ensures that the amount of configuration space exploration at each quantum regime,
as represented by P = P0, P0/2, . . . , 2, 1, is the same. For P ≤ 64, local and global
moves are used instead of staging moves. PIMC moves and renormalization are thus
carried out sequentially in this manner until we reach P = 1, which is the classical
regime. Within each QTAR cycle, the thermal temperature T is annealed linearly

QTAR SA1 SA2 SA3
(b)
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Fig. 1 (a) QTAR is able to locate the global minimum of a frustrated 46-residue BLN model
protein with a 100% success rate. Simulated annealing (SA), on the other hand, is unable
to locate the global minimum even once, even though 3 separate annealing schedules (SA1
to SA3) are attempted. Each bar represents 20 independent simulation runs done using the
same total amount of CPU time. SA(avg) represents the averaged results of SA1 to SA3.
(b) The corresponding minimum energies attained with the forementioned QTAR and SA
schedules. The global minimum of the 46-mer is represented by the dotted line.
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from 0.2 to 0.02. At the end of each cycle, the intermediate classical configuration
so obtained is subjected to a conjugate gradient refinement of its energy. This whole
process is repeated until the currently known global minimum of the 46-mer is found.

For comparison purposes, we also conducted 3 independent sets of 20 simulated
annealing (SA) runs using different annealing schedules on the same system. Each
set of 20 runs utilizes the same total amount of CPU time as the set of 20 QTAR
trials above. The results from the two methods are shown in Fig. 1. QTAR is able to
locate the correct global minimum of the 46-mer without fail while SA is not able to
do that even once. The presence of a large number of higher energy metastable states,
in addition to the frustrated nature of the 46-mer, both contribute to the failure of
SA in the global optimization of this system. QTAR, on the other hand, is able to
overcome these problems effectively. A more detailed presentation and discussion of
the simulation results can be found in Ref. [2].

5 Conclusions

In this paper, we present the details of our renormalization approach for global opti-
mization with quantum thermal annealing. In particular, the renormalization of the
staging Hamiltonian used in PIMC is carried out in detail to establish the mathe-
matical basis behind our method. A comparison study on a highly frustrated system,
a 46-residue BLN model protein, illustrates the effectiveness and efficiency of QTAR
over an established and widely used method like simulated annealing.

This work was funded by the National Institutes of Health under Grants GM43340 and RR-
06892. One of us (B.J.B.) would like to acknowledge many provocative scientific discussions
with Peter Hänggi who is still young enough to appreciate and to contribute great science.
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