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Abstract. The free energy of formation of a droplet in a finite system containing N particles in a 
box of volume V at a temperature T is examined. For certain values of the supersaturation the 
free energy of formation has a maximunl and a minimum. The maximum gives rise to a barrier 
to nucleation whereas the minimum corresponds to the formation of a stable droplet in equi- 
librium with vapor. Vapor imperfection and the radius dependence of the surface tension of the 
droplet are shown to affect the barrier and associated cluster distributions at equilibrium in 
significant ways. The theory is compared with computer simulation results using a Lennard-Jones 
fluid at a temperature of 84 K. 

1. Introduction 

The format ion of droplets or grains from a homogeneous medium is an ubiqui tous 

phenomenon.  Despite its common occurrence, little is understood about  the thermo- 

dynamics and kinetics of this process (for a review see Zettlemoyer, 1969, and 

Abraham,  1974). Under  what thermodynamic  condit ions are the droplets formed? 

Do the droplets grow adiabatically or isothermally? When there is only a finite 

amoun t  of matter available how are the thermodynamics  and kinetics of these 

droplets modified ? 

With the advent of high-speed digital computers it is possible to study the thermo- 

dynamics and kinetics of well-defined model systems and to throw light on the rela- 

tive importance of various mechanisms of nucleation. With this knowledge a 

theoretician can formulate the appropriate kinetic equations and study the nucleation 

phenomenon .  Moreover, it should be possible to test the idea underlying classical 

nucleat ion theory. 

In this paper we present a study of a model Lennard-Jones fluid using computer  

simulation.  Starting from a homogeneous vapor phase, nucleation is observed in a 

finite system. The final equil ibr ium state consists of a microcluster in equil ibrium with 

vapor. This final state can be predicted using the ideas of classical nucleation theory 

which are based on macroscopic thermodynamic  concepts. 

In the next section we present the thermodynamics  of finite systems, and in Section 

3 we present the computer  simulation results. 
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2. Thermodynamics of Nucleation in Finite Systems 

In classical nucleation theory the Gibbs free energy of  formation,  -XGs, of  a spherical 

droplet of  radius r, from an infinite supersaturated gas maintained at a pressure P 

is found to be 

47rr a 
/kGf = 4~rr27 - - - ~ -  nLk T In S, (2.1) 

where Y is the surface tension, nL the bulk density of  the liquid droplet, S = P / P ~ ( T )  

> 1 the supersaturation, P ~ ( T )  the equilibrium vapor pressure at temperature T, 

and k the Boltzmann constant. The basic assumptions that lead to Equation (2.1) 

are: (a) macroscopic thermodynamics can be applied to microclusters; (b) the free 

energy of  a microcluster is separable into a bulk and surface term; (c) the micro- 

cluster is spherical; (d) the vapor is an ideal gas; (e) the supersaturation is maintained 

constant;  and (f) the surface free energy, 4~rr2y, of  a microcluster can be computed 

using the surface tension of  a macroscopic liquid with a planar surface. 

The first term in Equation (2. I) represents the work required to create a spherical 

surface o f  surface area 4~rr 2 and the second term represents the lowering of  the free 

energy due to the fact that  the chemical potential of  bulk liquid is lower than that of  

supersaturated vapor. As is well known, the interplay between surface and bulk 

terms in Equation (2.1) leads to a free energy maximum, denoted 5G* at a 'critical 

radius '  r* = ( 2 y / n L k T l n  S) .  This is the famous barrier to nucleation, and both ,'XG* 

and r* play a very important  role in nucleation theory. 

There are many situations in which the total amount  of  material available for 

nucleation is fixed. In such situations the pressure of  the system cannot  be kept 

constant during the process of  condensation. This requires a modification of  classical 

nucleation theory and has been the subject o f  some recent investigations (Rao et al., 

1978; Vogelsberger, 1978). In this paper we consider a simple model and study the 

total free energy of  the system using thermodynamic considerations. We show that  

in a finite system we can still identify a 'critical droplet size' and, in addition, there 

exists a ' s table '  droplet whose size depends on N, V and 7". If the total free energy 

of  the drople t -vapor  system is lower than the free energy of  the homogeneous vapor 

phase, nucleation occurs in a finite system. These results are shown in Section 3 to 

be consistent with the computer  simulation results of  a Lennard-Jones fluid at low 

temperatures. 

Let us consider a model fluid where N particles are contained in a volume V at a 
temperature T < Tc (where Tc is the critical temperature) consisting of  N;(r) mole- 

cules in a spherical liquid droplet (of radius r and number  density nz) in equilibrium 

with N o = N - N~(r) gas molecules constrained to move in the free volume V I = 

V - V;(r), where V;(r) = 4rr(r + e/2)a/3 is the excluded volume due to the droplet 

and cr is the diameter of  the molecules. The vapor density is then 

N -  N, (r )  (2.2 / 
n g -  V -  V;(r)' 
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and the vapor  pressure is then given by the virial equation of  state (Hill, 1960) 

P ( r ) =  ngkT{l + ~= ~ B~.+~(T)n@, (2.3) 

where Bk+~(T) is the (k + l)th virial coefficient. In writing Equation (2.3) it ~s 

assumed that  the volume V~ is sufficiently large that  the cluster integrals are volume 
independent.  As we shall see, these virial corrections can effect the barrier to nuclea- 
tion as well as the stable equilibrium. 

The chemical potential/*~(n~, T) per molecule is also given by the virial expansion 
(Hill, 1960) 

t*g(ng, T ) = t * ~  kT{ln(n~kT)+k=z ~ k T--~" I B~+*(T)n@ ' (2.4, 

and the Gibbs  free energy of  the gas is G~ = Ndz~(ng, T). CLearly, in the foregoing, 
if there is no large cluster; that  is, if the system is entirely uniform gas, ng -+ N/V = ft. 

The total Gibbs  free energy is made up of three parts:  

where 

and 

G t o t a  1 = Gg~ + Gjiq~ia + G~,.r~o~, 

Gg~s = Ndz~(ng, T), (2.5) 

Gaiaui~ = N#~(n~, T) (2.6) 

G.~u~-e~oe = 4rrr2y, (2.7) 

where ng and nz depend on the radius of  the droplet ;  rt~ is the chemical potential  

of  the liquid droplet  with a density n~ at a tempera ture  T, and y is the surface tension. 

Usually the surface tension is assumed to vary with the size of  the droplet  (Tolman,  
1949), as given by 

y(r) = y~o 
28s (2.8) 

l + - -  
r 

where y~ is the surface tension of  an infinite fiat sheet and 8~ is the curvature correc- 
tion. 

Note that  

I [P(r)  - P~(T)},  (2.9) ~,,(<, T) = t*,(n, , 7-) + nT 

where nF(T) is the density of  the macroscopic  liquid tinder its vapor  pressure and 
P(r) is the vapor  pressure in a system with a droplet  of  radius r (cf. Equation (2.3)). 

Equation (2.9) is found by integration of (btzjt~P) = l/n z over pressure from Poo(T) 
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to P(r)  with the assumption that the liquid is incompressible. In equilibrium we also 

have 

t,q(n[, T) = t,g(n~ ~ T);  (2.10) 

hence we obtain 

G(r) = {N N~(r)}ffq(n0, T) + N,(r)f fg(n2) + 

+ (n/~-) ZNz(r){P(r) - P~(T)} + 4~r27. (2.1 l) 

In a finite system where N, V and T are constant, the Hehnholtz free energy F(r) ,  

not the Gibbs free energy, should be minimized to find the conditions for stable 

equilibrium. Thus, we use the foregoing equations to compute the Helmholtz free 

energy 

F(r)  = G(r) - p ( r ) V .  (2.12) 

The Helmholtz free energy of  formation of  a droplet of  radius r from an imperfect 

gas of  density fi = N/V ,  at fixed N, V, Tis  thus 

AFRO') = G(r) Ntzg(fi, T)  - {p(r) - p(fi, T ) } V ,  (2.13) 

where p(tJ, T) and ffo(fl, T) are the pressure and chemical potential of  the initial 

supersaturated gas of  density fi, to be computed from Equations (2.3) and (2.4). 

To study how the total fiee energy varies with the size of  the droplet let us consider 

a model system of  N particles in a volume V interacting via a pairwise Eennard-Jones 

potential 

r = v(r) - z'(ro) r d ro = 2.5r 
(2.14) 

= 0  r > r o  

with 

L~,r f  

where ~ and ~ are the Lennard-Jones parameters (c = 119.4 K and c~ = 3.405/~ for 

liquid argon). This system has been studied extensively (Rao and Levesque, 1976; 

Kalos et al., 1977) and the parameters y~, P ~ ( T ) ,  etc., are known. To apply the 

theory outlined above we must determine the virial coefficients corresponding to this 

temperature. For simplicity we use only the second virial coefficient, and we neglect 

the radius dependence o f  the surface tension (cf. Equation (2.8)). The free energy of  

formation of  the droplet, 5FF(r) ,  given by Equation (2.13) is plotted for this system 

in Figure 1 for V / N  = 20, where V is in units of  c~ 3. This corresponds to the initial 

supersaturation density ratio fi/n~ ~ 14. Curve (a) corresponds to Equation (2.13) 

with only the second virial coefficient corrections, whereas curve (b) corresponds to 
Equation (2.13) with no virial corrections (an ideal vapor), Both curves show a 
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AF(r), the Helmholtz free energy of formation of a droplet of radius r in a Lennard- 
Jones system for I//N = 20 (in units of c/a) and a temperature of 84 K. The dots denote the free 
energy without the virial correction. The crosses denote the free energy with virial correction 
(cf. Equation (2.13)). Reduced units are used (energy, in units of e and distances are in units of G). 

m ax imum cor responding  to a barr ier  to nucleat ion.  This is similar to that  observed 

in classical nucleat ion theory in tha t  there is a barr ier  to drople t  format ion.  However,  

there is, in addi t ion,  a min imum in the free energy of  format ion  of  the droplet .  This 

corresponds  to a ' s t ab le  c lus ter '  which exists in equi l ibr ium with the vapor .  The 

stable cluster size predicted is 106 when virial correct ion is employed in Equat ion 

(2.13) and 110 when no virial correct ion is employed in Equat ion (2.13). Note  tha t  

the effect of  the virial  correct ion is to increase the barr ier  to nucleat ion and also to 

destabil ize the cluster. I f  this is correct ,  then the equi l ibr ium cluster d is t r ibut ion of  

such a system must  exhibit  these features. The dis t r ibut ion of  clusters will exhibit  a 

b imodal i ty ;  tha t  is, there will be small clusters (monomers ,  dimers,  etc.) in equi- 

l ibr ium with one large cluster whose size fluctuates. The mean size of  the large 
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cluster will be given by the position of the minimum in free energy of formation. In 
the next section we present computer simulation results supporting this picture. 

3. Computer Simulation of Microelusters 

Molecular dynamics (MD) and Monte Carlo (MC) simulations have been carried 

out on supersaturated systems (Abraham, 1974; Burton, 1977; Zurek and Schieve, 

1978; Rao et  al., 1978). In MD an initial point in phase space is chosen, and the 

canonical equations of motion are solved on the computer (Berne, 1977). In this 

way a trajectory in phase space is generated. The bulk properties of the system 

are then found by time averaging the corresponding microscopic properties over 

the trajectory. Thus, MD allows the study of equilibrium and non-equilibrium 

properties; MC simulations, on the other hand, permit only the study of equilibrium 

properties. Here one generates a random walk in configuration space in such a way 

that the configurations are distributed according to the Boltzmann distribution, 
e ev<r~"N~, where V(rl . . . . .  r~) is the total potential energy of the system corre- 

sponding to the configuration (rl...r~v). In this paper the MC method is used 

(Metropolis et  al.,  1953). A system of 128 particles assumed to interact via the 

potential given in Equation (14) are placed in a periodically replicated box 

corresponding to an average density Oc~a= 0.05 (the same density used in 

Figure 1). The temperature of the system is set at 84 K. Starting from an initial 

random configuration (with a supersaturation S ~ 14), the MC method generates 

Fig, 2. A schematic illustrating the cluster definition in two dimensions. 
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Fig. 3. (a) Distributions of monomers, dimers, etc., in the vapor phase obtained from a Monte 
Carlo simulatioa of a Lennard-Jones fluid at 84 K corresponding to an average density of 
C)c~ a = 0.05 (N = 128). (b) Distribution of large clusters in the equilibrium two-phase system 

(droplet plus gas) from the computer simulation of the same system as in Figure 3(a). 

new configurat ion during the s imulat ion.  After  equi l ibr ium has been establ ished the 

cluster dis t r ibut ion is moni tored .  A cluster is defined as f o l l o w s  I f  any atom lies 

within a cut-q~ distance r~ o f  another particle, the two particles are said to belong to 

the same cluster. A schematic i l lustration of  this cluster definit ion in two dimensions 

is shown in Figure 2. The cut-off  radius re is adjusted exper imental ly  so tha t  the 

observed cluster dis t r ibut ions are not sensitive to the cut-off. 

An average cluster dis t r ibut ion is then obtained from an ensemble average over 

many  configurations.  If N(I)  is the number  of  clusters of  size l, then we have 

lN(l)  = N.  (3.1) 
l 

The probabi l i ty  of  finding a cluster of  size l is given by 

X( l )  (3.2) 
P(/) -- )1~ X ( l )  

In Figure 3(a), N(I)  showing the dis t r ibut ion of  monomers ,  dimers,  etc., is presented 

from a s imulat ion of  half  a million moves after equi l ibr ium has been established. In 
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Figure 3(b) the distribution N(I )  of  the large cluster sizes is plotted. It is clear that  

there are no clusters of  sizes between 9 and 89 and the bimodal distribution predicted 

in the previous section is observed. The average size predicted by minimizing Equa- 

tion (2.13) is 106 when virial correction is employed and I10 when no virial correction 

is employed, compared to the observed size 102. Thus the simple model discussed in 

the previous section predicts the correct features of  the simulation. However, for a 

complete quantitative theory, other aspects have to be examined: for example, the 

role of  the higher order virial corrections, and the curvature dependence of  surface 

tension, etc. 

4. Conclusions 

We have shown that simple extension of  the classical nucleation theory of  finite 

systems seems to predict the computer  simulation results rather well. Using molecular 

dynamics one can further study the effect of  thermal accommodat ion  in the process 

of  nucleation, the kinetics of  cluster formation and growth, etc. In future, computer  

results will play an essential role in understanding the detailed mechanism of  nuclea- 

tion, in identifying the most important  processes, and in helping the theoretician 

set up kinetic models. 
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