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In modern day simulations of many-body systems much of the computational complexity is shifted to the
identification of slowly changing molecular order parameters called collective variables (CV) or reaction co-
ordinates. A vast array of enhanced sampling methods are based on the identification and biasing of these
low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here
describe a new algorithm for finding optimal low-dimensional collective variables for use in enhanced sampling
biasing methods like umbrella sampling, metadynamics and related methods, when limited prior static and
dynamic information is known about the system, and a much larger set of candidate CVs is specified. The
algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum
path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. Through multiple
practical examples, we show how this post-processing procedure can lead to optimization of CV and several
orders of magnitude improvement in the convergence of the free energy calculated through metadynamics,
essentially giving the ability to extract useful information even from unsuccessful metadynamics runs.

I. INTRODUCTION

With the advent of increasingly accurate force-fields
and powerful computers, Molecular Dynamics (MD) sim-
ulations have become an ubiquitous tool for studying the
static and dynamic properties of systems across disci-
plines. However, most realistic systems of interest are
characterized by deep, multiple free energy basins sepa-
rated by high barriers. The timescales associated with
escaping such barriers can be formidably high compared
to what is accessible with straightforward MD even with
the most powerful computing resources. Thus in order
to accurately characterize such landscapes with atom-
istic simulations, a large number of enhanced sampling
schemes have become popular, starting with the pioneer-
ing works of Torrie, Valleau, Bennett and others1–11.
Many of these schemes involve probing the probabil-
ity distribution along selected low-dimensional collective
variables (CVs), either through a static pre-existing bias
or through a bias constructed on-the-fly, that enhances
the sampling of hard to access but important regions in
the configuration space.

The quality, reliability, and usefulness of the sampled
distribution is in the end deeply dependent on the qual-
ity of the chosen CV. Specifically, one key assumption
inherent in several enhanced sampling methods is that of
time-scale separation12: for efficient and accurate sam-
pling, the chosen CV should encode all the relevant slow
dynamics in the system, and any dynamics not captured
by the CV should be relatively fast. For most practical
applications, there are a large number of possible CVs
that could be chosen, and it is not at all obvious how to
construct the best low-dimensional CV or CVs for biasing
from these various possible options. Success in enhanced
sampling simulations has traditionally relied on an apt
use of physical intuition to construct such low dimen-
sional CVs. Identification of good low dimensional CVs
is in fact useful not just for enhanced sampling simula-

tions such as umbrella sampling and metadynamics but
also for distributed computing techniques like Markov
State Models (MSM)13, allowing one to significantly im-
prove the quality and reliability of the constructed kinetic
models. Last but not the least, having an optimal low di-
mensional CV can also help in the building of Brownian
dynamics type models14,15. Indeed, given the importance
of this problem, there exists a range of methods that have
been proposed to solve it16–23.

In this communication, we report a new and com-
putationally efficient algorithm for designing good low-
dimensional slow CVs. We suggest that the best CV is
one with the maximum separation of timescales between
visible slow and hidden fast processes12,24, or the max-
imum spectral gap. The method is named spectral gap
optimization of order parameters (SGOOP). Note that in
this work henceforth we refer to the best CV in the singu-
lar, without loss of any generality in the treatment. The
notion of such a timescale separation is at the core of not
just enhanced sampling methods but also coarse-grained,
Multiscale and projection operator methods25–27.

Our algorithm involves learning the best linear or non-
linear combination of given candidate CVs, as quantified
by a maximum path entropy28 estimate of the spectral
gap for the dynamics of that CV. The input to the algo-
rithm is any available information about the static and
dynamic properties of the system, accumulated through
(i) a biased simulation performed along a sub-optimal
trial CV, possibly (but not necessarily) complemented
by (ii) short bursts of unbiased MD runs, or (iii) by
knowledge of experimental observables. Any type of bi-
ased simulation could be used in (i), as long as it al-
lows projecting the stationary probability density esti-
mate on generic CVs without having to repeat the sim-
ulation. Metadynamics29 provides this functionality in
a straightforward manner and hence it is our method of
choice here. Given this information we use the principle
of Maximum Caliber28,30 to set up an unbiased master
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equation for the dynamics of various trial CVs. Through
a simple post-processing optimization procedure we then
find the CV with the maximal spectral gap of the associ-
ated transfer matrix. For instance, this optimization can
be performed through a simulated annealing approach
that maximizes the spectral gap by performing a robust
global search in the space of trial CVs.

Through three practical examples, we show how our
post-processing procedure can lead to better choices of
CVs, and to several orders of magnitude improvement
in the convergence of the free energy calculated through
the popular enhanced sampling technique metadynam-
ics. Furthermore, the algorithm is generally applicable
irrespective of the number of stable basins. Our algo-
rithm essentially provides the much needed ability to ex-
tract useful information about relevant CVs even from
unsuccessful metadynamics runs. In addition to use in
free energy sampling methods, the optimized CV can
then also be used in other methods that provide kinetic
rate constants33,34. We expect this algorithm to be of
widespread use in designing CVs for biasing during en-
hanced sampling simulations, making the process signif-
icantly more automatic and far less reliant on human
intuition.

II. THEORY

Let us consider a molecular system with N atoms at
temperature T . We assume there exists a large num-
ber d of available order parameters with 1 � d � N ,
collectively referred to as {Θ}, such that the dynamics
in this d−dimensional space is Markovian. These could
be inter-molecular distances16, torsional angles, solvation
states, nucleus size/shape35, bond order parameters36

etc. The identification of such order parameters poses
another complicated problem, but as routinely done in
other methods aimed at optimizing CVs13,16,22, we as-
sume such order parameters are a priori known.

There are several available biasing techniques that can
sample the probability distribution of the space {Θ}, and
even calculate the rate constants for escape from stable
states in this space33. All of these techniques are feasible
only for a very small number of CVs whose number is
much smaller than d - typically one to three. These are
the order parameters whose fluctuations are deemed to
be most important for the system or process being stud-
ied, and by building a fixed or time-dependent bias of
these CVs, one should be able to determine the true un-
biased probability distribution of the full space {Θ}. But
how does one decide what is an optimal low-dimensional
subset or combination of the available order parameters?
This dimensionality reduction is of central importance to
methods such as umbrella sampling, metadynamics and
others, the answer to which decides the speed of conver-
gence of the biased simulation, or if it it will even ever
converge within practically useful simulation times.

The key idea in the current work is to perform en-

hanced sampling (e.g. metadynamics) with a choice of
trial CVs, complemented by information gathered from
short bursts of unbiased MD simulations and experimen-
tal observables when available, to iteratively improve the
CVs. The maximum Caliber framework28,30,37,38, which
is a dynamical generalization of the hugely popular max-
imum entropy framework39, provides a method for ac-
complishing this.

We start by choosing a trial CV given by f{Θ}, where
f maps the space {Θ} onto a lower dimensional space.
The space along this trial CV f{Θ} is then discretized
in grids labeled n. This CV could be multi-dimensional,
with n then indexing the multidimensional grids. Let
pn(t) denote the instantaneous probability of the sys-
tem being found in grid n. For the sake of clarity,
we assume that f is a linear combination of {Θ}, i.e.
f = c1Θ1 + c2Θ2 + ...+ cdΘd. The treatment developed
here applies to non-linear combinations as well which we
show in the examples. Then, for a fixed ∆t, we write a
master equation:

∆pn(t)

∆t
= Σmωmnpm(t)− Σmωnmpn(t) ≡ ΣmΩnmpm(t)

(1)

where ωnm is the rate of transition from grid n to m per
unit time. The matrix Ωnm is the entirety of all these
rates. If the dynamics of f{Θ} is Markovian, then the
matrix k of transition probabilities is given for small ∆t
by

k = exp(Ω∆t) ≈ I + Ω∆t (2)

should not depend on the value of ∆t used in Eq. 1.
This provides a self-consistency check of whether or not
the CV so generated is Markovian. In the maximum
Caliber approach one uses all available stationary state
and dynamical information to construct probabilities of
micropaths. Instead of defining the entropy as a function
of microstate probabilities as in information theory and
statistical thermodynamics39, one now defines an entropy
S as a functional of the probabilities of micropaths, which
is essentially a path integral. For the Markovian process
of Eq.140:

S = −Σabpakab log kab (3)

Path ensemble averages of time-dependent quantities Aab
can now be calculated as follows28,30, where the sub-
scripts a,b denote grid indices:

〈A〉 = ΣabpakabAab (4)

The path entropy of Eq. 3 incremented by quantities
accounting for constraints placed by our knowledge of
observables {〈Anab〉}, and some other constraints such as
detailed balance, is collectively called Caliber28,30. Max-
imizing the Caliber is then equivalent to being least non-
committal about missing dynamic and static informa-
tion, with the end result being that one obtains a re-
lation between the grid-to-grid rates and the stationary



3

x

y

 

 

−0.4 −0.2 0 0.2 0.4

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

3

3 7 11 15 19

0.85

0.9

0.95

1

path index

λ

 

 

λ
1

λ
2

FIG. 1: In (a), we provide the 2-d De Leon-Berne potential31 with several candidate path CVs imposed on it.
Black circles denote the corresponding milestones32. See SI for further details of the CVs. In (b), the corresponding
eigenvalues λ1 and λ2 (i.e. excluding the stationary eigenvalue λ0) are shown for each of these paths. As per the
spectral gap given here by λ1 − λ2, we identify two possible good paths marked with black circles in (b) and
correspondingly with thicker black lines in (a). Energy is in absolute units and kBT = 0.1.

probabilities as follows:

ωab =
1

∆t

√
pb
pa
e−ΣiρiA

i
ab (5)

Here i runs over the number of available dynamical pieces
of information, and ρi is the Lagrange multiplier for the
associated constraint. As a special case, consider when
the only observable at hand is the mean number of tran-
sitions in observation interval ∆t over the entire grid30

along a trial CV. In this case, the above equation takes
a particularly simple and useful form:

ωab =
1

∆t

√
pb
pa
e−ρ (6)

Our method then involves calculating for various trial
CVs the spectral gap of the transition probability matrix
k, which for a 6= b is kab = ωab∆t and satisfies normal-
ization Σbkab = 1. Let {λ} denote the set of eigenvalues
of k, with λ0 ≡ 1 > λ1 ≥ λ2.... The spectral gap is then
defined as λs − λs+1, where s is the number of barriers
apparent from the free energy estimate projected on the
CV at hand, that are higher than a user-defined threshold
(typically >∼ kBT ). Estimating the Lagrange multiplier
is computationally expensive, so a first estimate for max-
imizing the spectral gap is performed using Eq. 6 where
the Lagrange multiplier ρ need not be computed. Also
note that in the limit of small ∆t, the matrix k will be
diagonally dominated41, and to estimate the spectral gap
one needs only an accurate estimate of relative local free
energies. More static or dynamical information42–47 sim-
ply introduces additional Lagrange multipliers and can
be treated through Eq. 5. This can be done if the inten-
tion is to calculate an accurate kinetic model with correct
estimates of the dominant eigenvalues and not just the
spectral gap.

We are now in a position to describe the actual algo-
rithm. It comprises the following two steps in a sequential
manner, and can be improved by iterating.

1. Perform metadynamics along a trial CV f = c1Θ1+
c2Θ2 + ... + cdΘd to get a crude estimate of the
stationary density.

2. As post-processing, perform optimization in the
space of mixing coefficients {c1, c2...cd} to iden-
tify the CV with the maximal spectral gap. The
reweighting functionality29 of metadynamics allows
projection of free energy estimates on different CVs
with minimal computational effort, and is used to
calculate the k matrix through Eq. 6. We elab-
orate on the optimization procedure details in the
next section (Illustrative Examples).

The optimization procedure gives the best CV as the
one with highest spectral gap, given the information at
hand. As in any maximum entropy framework39, the
better the quality of this information, the more accurate
will be the spectral gap. But even with very poor quality
information, as we show in the examples, the algorithm
still leads to significant improvements in the CV. Fur-
thermore, whether or not the CV is Markovian can also
be checked by repeating step 2 for different time intervals
∆t of observation and determining if the spectral gap is
independent of the value of ∆t.

III. ILLUSTRATIVE EXAMPLES

A. Model 2-d landscapes: The De Leon-Berne potential

The first illustrative example for SGOOP is a model
2-state potential introduced by De Leon and Berne31. To
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FIG. 2: (a) The 5-residue peptide studied in this work. The six dihedral angles are marked. (b) The output of the
simulated annealing algorithm run separately for different θ0 values (blue circles). The starting value with the trial
choice of CV is marked with a magenta colored star. (c) The trial (magenta) and optimized (blue) mixing
coefficients {c} for the 6 dihedrals. (d) The spectrum of eigenvalues for dynamics projected on the trial (magenta)
and optimized (blue) CVs. A distinct improvement can be seen in the spectral gap.

sample this landscape at temperature kBT = 0.1, we per-
form metadynamics with path CVs, a class of widely used
CVs that can capture non-local and non-linear fluctua-
tions (see32 for details). Path CVs require specification of
a series of milestones between two points in configuration
space, where the milestones can be described in terms of
generic order parameters. Fluctuations in the system can
then be enhanced in the direction along and perpendic-
ular to these milestones, leading to efficient exploration
of the space. In Fig. 1 (a) we show the 2-d potential
along with several possible path CVs imposed on it. We
first perform a short trial metadynamics run biasing the
y-coordinate. By post-processing this, we generate the
spectral gaps for various paths using Eq. 6 (Fig. 1 (b)).
By comparing Fig. 1(a) against Fig. 1(b), it is clear how
the path with maximum spectral gap is the minimum en-
ergy pathway passing through the saddle point. In this
case while this result could have simply been obtained
through Nudged Elastic Band type calculations48 - the
point is to use this example to develop intuition for the
method. Also note that moving around the best path

to others that are a bit distant from it, does not lead to
much change in the spectral gap. This is consistent with
the observation that in several enhanced sampling meth-
ods such as metadynamics or umbrella sampling2,6,7, the
CV need not be precisely the true reaction coordinate,
as long as it has a sufficient overlap with it32,49.

In the Supplemental Information (SI), we provide a
similar analysis on another 2-d model potential but with
3 states. The conclusions are similar.

B. 5-residue peptide

Now we move to a more complex system, which has
also been considered as a test case for new enhanced
sampling methods50 in order to establish their useful-
ness. This is the 5-residue peptide Ace − Ala3 − Nme
in vacuum (see Fig. 2 (a)), where there are six possibly
relevant dihedral torsion angles. Here we ask the ques-
tion: what is the best possible 1-d linear combination of
these six dihedrals that we could bias but still maximally
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FIG. 3: (a) and (b) show trajectories obtained from metadynamics biasing the trial CV and the optimized CV
respectively. First 20 ns of the trajectory shown in (a) was used to generate the optimized CV for (b). A very
pronounced improvement in the enhancement of sampling can be seen with the optimized CV.

enhance exploration of the 6-d space comprising all the
dihedrals?

In this problem, for periodicity related numerical rea-
sons, we bias a reference cosine defined by cos(θ − θ0),
where θ is one of the six dihedral angles, and θ0 is some
reference value whose optimal choice we do not know a
priori. Through our algorithm we then seek to identify:

(a) The best choice of mixing coefficients {c} to use in
trial CV f = c1Φ′1 + c2Ψ′1 + c3Φ′2 + c4Ψ′2 + c5Φ′3 +
c6Ψ′3, where we keep the euclidean norm of {c}=1,
and for any angle θ the prime denotes the transfor-
mation θ 7→ 0.5 + cos(θ − θ0).

(b) The best choice of θ0, kept same for all 6 dihedrals.

We start with the trial CV where all members of {c}
are the same subject to euclidean norm of {c}=1, and
an arbitrary choice of θ0 = 0.75 radians is taken. A
short metadynamics run is performed biasing this trial
CV. See supplemental information (SI) for details of the
metadynamics and MD parameters53, and Fig. 3 (a) for
the metadynamics trajectory used for spectral gap opti-
mization. Based on the free energy estimate generated
from this run, a simulated annealing procedure is per-
formed in the space {c} for various θ0 values. Starting
from the spectral gap estimated using Eq. 6 for the trial
CV, this involves executing Metropolis moves in the {c}
space with an attempt to find the global maxima of the
spectral gap. In Fig. 2 (b-d) respectively, we show how
the spectral gap is increased by the simulated anneal-
ing procedure, and the corresponding best estimate of
{c, θ0}. The algorithm suggests the minimal role of the
angles Ψ1,Ψ2,Ψ3 as can be seen through their relatively
low weights50 (Fig. 2 (c)). The spectrum of eigenvalues
for dynamics projected on the trial (magenta) and opti-
mized (blue) CVs, along with respective spectral gaps is
provided in Fig. 2(d). Fig. 3 (a-b) show the metadynam-

ics trajectories for the three dihedral angles Φ1,Φ2,Φ3

with the trial and the optimized CVs respectively. A
very pronounced improvement in the quality of sampling
can be seen. Fig. 4 (a-c) shows the rate of convergence of
the error of the estimated free energy29 with respect to
reference values from other approaches50, through meta-
dynamics runs performed with each of the trial and op-
timized CVs respectively. The error metric is the same
as in50,52, and is calculated for all points within 25 kJ
of the global minimum in the respective 1-d free energy.
The behavior is robust with respect to the choice of this
threshold value. As can be seen, the optimized CV, even
though it was obtained on the basis of a very poorly
converged and short (20 ns) metadynamics run, leads to
several orders of magnitudes improvement in the rate at
which the free energies converge. Interestingly, iterating
the algorithm with the improved 1-d CV did not lead to
much improvement in the sampling, reflecting that the
optimized coefficients {c} are close to the best that can
be achieved with a 1-d CV for this problem.

IV. CONCLUSIONS

To conclude, we have introduced a new approach
named SGOOP (spectral gap optimization of order pa-
rameters) for improving the choice of low-dimensional
CVs for biasing in enhanced sampling in complex sys-
tems. This is accomplished through the use of maximum
Caliber based spectral gap estimates. The algorithm is
iterative in spirit, and attempts to learn how to improve
CVs based on available stationary and dynamic data.
We also provide several proof-of-concept practical exam-
ples to establish the potential usefulness of the method.
For model 2-d potentials the algorithm was shown to
yield the minimum energy pathway. For a small peptide,
we found very significant improvement in determining
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FIG. 4: Errors in the 1-d free energies in kJ calculated with respect to reference free energies50,51 using the error
metric from52. Thin and thick lines denote values using the trial and optimized CVs respectively.

the best 1-d collective variable from six possible func-
tions with no ad hoc or intuition based tuning. Future
work will use this algorithm to treat a range of prob-
lems, especially involving protein-ligand unbinding. For
instance, the displacement of water molecules and pro-
tein flexibility are often slowly varying order parameters
in unbinding34,49,54,55, but do we really need to bias one
or both of these for the purpose of sampling? Another
issue to be considered in future work is can we use these
optimized CVs to obtain reliable dynamical information
from metadynamics23,33, including the very important
off-rate for ligand unbinding49,56.

One central limitation of this algorithm is having to
specify possibly a large number of order parameters that
may be important. But for many physical problems one
does have a sense of which order parameters could be
at work, and this is where we expect this algorithm to
be of tremendous use. Another obvious limitation is with
systems devoid of a time scale separation57 - for example,
in glassy systems where there is an effectively continuous
spectrum of eigenvalues with no discernible time scale
separation. However, the dynamics of many complex and
real-world molecular systems does thankfully show a time
scale separation between few relevant slow modes and
remaining fast ones58, and we expect our algorithm to be
of help in unraveling the thermodynamics and dynamics
in such systems.
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