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ABSTRACT A random-walk model of motility is used to predict the dynamics of fluc-
tuations in the number of parti'les in a small observation volume. The results show
that number fluctuations provide a measure of the mean swimming speed as well as the
persistence length. Experimental light-scattering results are presented for three strains
of Escherichia coli whose motion appears random-walk in nature. For the strain with
the longest persistence length, excellent agreement is found with theoretical predic-
tions. For the more erratic strains, however, the shape of the measured scattered light
intensity correlation functions indicates the presence of a contribution due to orienta-
tional fluctuations.

INTRODUCTION

Light microscopy ofcommon motile microorganisms indicates that swimming motion
is random-walk in nature. That is, a typical microorganism swims in approximately
linear segments separated by abrupt changes in direction. Experiments demonstratW
that the mean swimming speed <v>, the mean distance between direction changes <L>
and the turn angles X are affected by parameters such as temperature, metabolite con-
centration, and light intensity (14). Detailed characterization of motility is, there-
fore, necessary to the understanding of such primitive responses as thermotaxis,
chemotaxis, and phototaxis.

In this work we develop a light-scattering method for the characterization of
motility. We show theoretically and experimentally that it is possible to measure (v>
and the persistence length (<1> _ <L>I( 1 - <cos x>J by analysis of the fluctuations in
the number of microorganisms in the focused waist of a laser beam. This is true since
the characteristic time TN of number fluctuations is roughly the residence time of a
typical particle within the focused waist. This time is a function of(r> and (v>.
The potential of number fluctuation spectroscopy can be appreciated by considera-

tion oftwo extremes of particle motion. If <r> is much greater than the mean dimen-
sion of the observation or scattering volume <(> then TN - <c)>/<v>. In this free-
particle limit, number fluctuation spectroscopy provides a measure of the swimming
speed and this method has been exploited to study the thermal response of a smoothly
swimming strain ofEscherichia coli (3). In the opposite extreme (<r> << <a>) a typical
particle will execute a many-step random walk within the observation volume. In this
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limit the results of Brownian motion theory can be exploited to demonstrate that
TN ><(o>2/((V>(>). Unfortunately, neither the free-particle nor Brownian limit is
appropriate to common microorganisms so we concentrate here on the intermediate
regime, <r- (<a).

THEORY

Random Walk Motion

The dynamics of stochastic phenomena like number fluctuations must be characterized
in a statistical manner such as through spectra or correlation functions (5). Because
of the very long characteristic time of number fluctuations it is generally convenient
to perform experiments in the time domain through measurement of the correlation
function of the number of particles in a small observation volume. Theoretical work is,
therefore, directed toward calculation of correlation functions. The appropriate
spectra can be obtained by Fourier inversion (5).
Although in some cases it is possible to measure number correlation functions by

direct microscopic observation, it is generally convenient to obtain the data indirectly
through measurement of the correlation function of the scattered light intensity. If
the scattering volume is uniformly illuminated, the scattered light intensity I(T) at
time T directly mirrors the number of particles N(T) within the scattering volume.
The intensity correlation function <I(O)I(T)) is then directly proportional to the
number correlation function (6),

<((0)I(Tr)> = <(>2 + <(I(0)AI(Tr)>
cc (>2 + <(N(0)5N(T)>, (1)

where [5N(r) = N(T) - <N> ] is this fluctuation in the number of particles within the
scattering volume and 51(T) is the fluctuation in the intensity. The corner brackets
denote an ensemble average. If the scattering volume is not uniformly illuminated,
Eq. 1 still applies except that <6N(0)6N(T)> must reflect the appropriate intensity
profile. In fact, Eq. 1 applies if <6N(O)5N(r)> is defined as (7)

(5N(0)5N(r)> = pjf d3rl f d3r2 t2(rl) t2(r2)p(r2 - r,; T), (2)

where p is the number density of scatterers and t(r) is the amplitude of the light field
scattered by a particle when at position r. p(r2 - r,; r) is the probability distribution
for a particle to move from r, to r2 in a time r. Eq. 2 assumes that the particles are iso-
tropic.

In a typical laser scattering experiment t(r) is approximately Gaussian in all three
dimensions. If the beam propagates in this z direction and the scattering angle is 900
then

{(r) x expf[-(X2 + y2)/o}2] - z2/21, (3)
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where a, and 2 are the points where the intensity profile of the incident beam and the
transmission profile of the collection slit are 1l/e2 of their initial value. The Gaussian
profile in the x and y dimensions is expected for the lowest order transverse laser mode
and diffraction at the slit produces an approximate Gaussian profile in the z dimen-
sion.

All the information on the dynamics of particle motion is contained in the model-
dependent distribution p(r2 - rl; T). It is necessary, therefore, to specify this distri-
bution to proceed with the calculation of <6N(O)6N(T)>. If the displacement AR =
r2 - r, is assumed to be a Gaussian random variable then (8)

p(r2 - rl; r) = [7r<(AR 2(r)>]-3/2 exp [- r2 - r I2/ <AR 2()>. (4)

The Gaussian approximation for p(r2 - rl;t) will be applicable to motile micro-
organisms in two possible cases. First of all, in the limit discussed above [<r> << <a>],
Eq. 4 follows since a many-step random walk yields a Gaussian distribution (7) with
<AR2(.r)> = <v> <(> r/(r>. Eq. 4 is also appropriate if the velocity distribution is
Gaussian. Experimental results presented below indicate that this is a reasonable
approximation for E. coli.
Combining Eqs. 2, 3, and 4, the number term of the intensity correlation function

takes the form (7):

<(N(O)6N(r)> = <N> a2&/42 + i(AR2(T)>])J 2/[r/2 + i(AR2(T))]J 1/2, (5)

where <N> is the average number of particles within o(<N> = r3/2a2aI2P). The prob-
lem has, therefore, been reduced to the calculation of the mean-square displacement
<AR2(T)>.
The calculation of (AR2 > requires a detailed model of particle dynamics. To this

end we consider a particle to move with constant speed v along a trajectory consisting
of straight line segments as indicated in Fig. 1. The average segment length <L > is
called the mean free path. The angles through which the particle turns are called X
so that uj- uj+I = cos xj, uj being a unit vector in the direction of motion prior to
thejth turn. Therefore <cos x >gives information about correlation in the direction
of motion. If <cos X> = 1, the particle moves in a straight line, whereas if <cos X> = -1
the particle stays in the region in which it starts. Since the speed is constant, the
velocity on the jth segment is vj = vuj.
To proceed we make three further assumptions: (a) the turns occur at random times

so the probability ofn turns in time r is Poisson distributed:

P,(r) = (1/n!) (vr/<L>)"exp (-vrl <L>); (6)

(b) the dihedral angle aj between the planes defined by (uj-1, uj) and (uj, uj,+ ) is ran-
domly distributed so that <sin a, > = 0; (c) the turning angles X are uncorrelated so
that (cos xicos xj > = <cos x,> <cos xj> for i # j.
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FIGURE I FIGURE 2

FIGURE I Typical trajectory of a microorganism with four turning points.
FIGURE 2 Photocount correlation functions of light scattered from systems under uniform
translational motion perpendicular and parallel to the incident beam. The translation speeds are

VI = 2,765 Mm/s, V - 5,172 Jsm/s. Analysis of the curves yields al - 12.0 Mm, u2 = 7.85 Mm.

With the above assumptions it is possible to calculate <AR 2(T)> by first deriving
an expression for the velocity correlation function<v(O)v(T)>and using an exact
relation between (v(O)v(r)> and the mean free square displacement,

(AR 2(T)> = 2 dT'(T - T') <V(O) V(T')>. (7)

The velocity correlation function, however, can be calculated within the assumptions
listed above.

<V(O) * V(T) > = v E P(r) <U(0) * U(T)>., (8)

= v2 exp(-VT/<r >), (9)
<(17 <L>/(l - <cos X>), (10)

where ( >, denotes an average after n turns. (r> is the persistence length which
eqpals the mean free path <L> if x is randomly distributed (<cos x> = 0). Now
<AR2(T)> follows from Eqs. 7 and 9:

<AR2(r)> = 2<r>vT - 2(r1>21[ - exp(-vT/(l'>)]. (11)

Eq. 1 is valid for any speed distribution P(v). The original assumption leading to
Eq. 5, however, requires that the displacement be a Gaussian random variable, a condi-
dition which is fulfilled for 0 < r < °° if the velocity distribution is Gaussian. A
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Gaussian velocity distribution, however, follows if the directions are random and the
speed distribution has the following form (9),

P(v) = (4v2/r1/2V3)exp (-v2/v2), (12)

where v, = v'i (v>/2 is the most probable speed. Eq. 12 is the Maxwell distribution
familiar in the kinetic theory of gases. Although we have neither physical nor physio-
logical justification for application of this distribution to bacteria our results indicate
that number fluctuation data can be reasonably interpreted using this distribution.
Eq. 11 then, must be averaged over the distribution 12 to give

(AR2(T)>, - 2(r) (v>T - 2(r)2 1 + [vpr/(rl/2<r>)]
- 1I + [v2r2/(2<r>2)]jt1 - erf[v,T/(2(P>)]I
x exp[v,2r2/(4<r>2)]i, (13)

where erf is the error function. The subscript m denotes the Maxwellian average.
Eq. 13 used in conjunction with Eq. 5 yields the predicted number correlation function
as measured by light scattering.
The small and large r limits of Eq. 11 correspond to the free particle and Brownian

motion cases described in the Introduction. In the small r limit

<AR2> = <v2>r2; r<< <r>/(v>. (14)

This limit is applicable whenever <r( is large compared with the linear dimensions of
the scattering volume (<r) >> <a>). This condition is fulfilled for one of the three
strains ofE. coli studied below. If (I>is short compared with the mean dimension of
the scattering volume <a> then the large T limit of Eq. I I applies,

<(ZR2> = 2<)(<v)T;T > (r>/(<v>. (15)

This is the Brownian limit and the motion appears diffusional in nature with an effec-
tive diffusion constant equal to (v>(r> /3.

If the scattering volume parameters a are known, the predicted number correlation
function can be calculated using either Eq. 13, 14, or 15 with Eq. 5.

Uniform Motion
Determination of the scattering volume parameters a is essential to the number fluc-
tuation method. In this section we demonstrate that or and at in Eq. 5 can be ob-
tained from measured number correlation functions for systems under uniform transla-
tional motion. This motion can be achieved by moving the entire sample cell on a
translation stage. If the translation speed is much faster than the swimming motion of
the scatterers; the distributionp(r2 - rl ;t) in Eq. 2 takes the form
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p(r2 - rl;T) = 6[(r2- rl) - Vr],

where V is the translation velocity. Substitution of Eq. 16 into Eq. 2 yields

<(N(O)6N(r)> = pJ drt2(r) 2(r + VT). (17)

Thus the number correlation function is proportional to the convolution of the beam
profile with itself.
The parameters or and 2 can be determined by translating perpendicular and

parallel to the incident beam. For example, if V is perpendicular to the incident beam
Eqs. 17 and 3 yield

<(N(O) AN(r)> = (X>exp (-V2 T2/o 2). (18)

Thus a Gaussian correlation function is predicted whose width is a,. If the sample is
translated parallel to the beam the predicted width is a2 rather than a .

The Photocount Correlation Function

Since the experiments reported below are performed using photon correlation methods
it is necessary to discuss the relationship between the intensity correlation function
(Eq. 1) and the photocount correlation function. The experiment is performed by
placing a phototube in the field of the scattered light and measuring the number of
photocounts n(t) detected in a time interval of length T centered at time t(T << TN).
The photocount correlation function <n(O)n(r)> = (n(t)n(t + T)>, is then con-
structed by means of a real-time hard-wired computer called a correlator.
The photocount correlation function differs from <I(O)I(r)> in three respects. First,

because of the discrete nature of electrical signals <n(O)n(r)> contains a shot-noise
component at r = 0. That is, even if the intensity is constant n(t) fluctuates. The
T = 0 point does not appear in the data reported below. In addition to shot noise, dark
counts in the detector make an important contribution to(n(O)n(T)>. Since dark
counts are random, their effect appears as an additional time-independent contribution
<n(O)n(r)>. Finally, a significant amount of light is scattered from the solvent which
is not accounted for in Eq. 1. The effect of this background scattering is identical to
that of dark counts.

In nd and nb are the number of dark and solvent background counts then <n(O)n(T)>
takes the form (r > 0)

(n(O)n(T)>(<n>2 = 1 + (<6N(O)6N(-r)>, (19)
0 = a2/(a<N> + (nd> + <nb>)2, (20)

where a is a constant proportional to the intensity of light scattered by an individual
microorganism. Thus the time-dependent part of <n(O)n(t)> is proportional to
<(N(O)6N(r)>, but the amplitude of this term is not proportional to (N>- unless
(nd + nb> << a <N>, a condition difficult to achieve in practice.
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EXPERIMENT

The experimental work consists of measurement of the photocount correlation func-
tion for light scattered from three strains of E. coli (cheC497, AW405, and unc602).
Berg and Brown (4) find motility of these strains to be similar to that modeled in Fig. 1.
The trajectories appear as relatively straight "runs" separated by short periods of
orientation-randomizing "twiddles." The three strains differ primarily in the mean
free path (L> which Berg and Brown find to vary from 6 um for unc6O2 to 120 jm for
cheC497. The bacterial bodies are approximately 1 um in diameter and 2.5 jim in
length.

Experimental apparatus consists of a conventional light-scattering photometer con-
nected to a digital correlator. The incident light from a He-Ne laser (Model 125,
Spectra-Physics Inc., Mountain View, Calif.), is attenuated and then focused by a lens
on the center of a 1 cm x 1 cm cuvette containing the sample. The lens also serves as
the window on a temperature-controlled water bath (=0.05TC). The effective focal
length of the lens is 7 cm. The light scattered at 90' is collected through a flat window
and focused onto a narrow slit. To minimize coherent effects the photocathode is large
enough to encompass many coherence areas of the scattered light field.

After amplification and discrimination the photopulses are correlated by a SAICOR
model 42A correlator (SAICOR/Honeywell, Hauppauge, N.Y.). This device was
modified by the manufacturer for four-bit digital correlation. Two of the 100 channels
are used to measure the total number of photocounts and the total number of sampling
intervals. These numbers permit calculation of <n> so that the time-independent back-
ground <n>2 in Eq. 19 can be subtracted.

Samples are grown directly in the scattering cuvettes using modified Hutner's me-
dium (10). We find that the samples are vigorously motile during the late-log and
stationary phases of the growth cycle. We estimate that 0.1 < <N> < 1 for all the
samples studied here.
The sample cell is mounted directly on a translation stage to permit measurement of

al and u2 as discussed above. The bacterial sample itself is used to measure a,
by translating the sample perpendicular to the incident laser beam. a2 is measured by
replacing the sample with a 1 cm x 4 cm x 4 cm cuvette containing a dilute solution
of 1 ,um-diam polystyrene spheres and translating the cell parallel to the beam. Fig. 2
shows the measured photocount correlation function for both translation directions.
The time-independent background has been subtracted. Since the curves show slight
deviation from the Gaussian shape, the parameters a are extracted from the initial
decay of the correlation functions. The values of a obtained from Fig. 2 are used in
the analysis of the strain unc6O2 although translation data for other samples is very
similar.

RESULTS AND DISCUSSION

The measured photocount correlation functions for all three strains are displayed in
Fig. 3. The time-independent background has been removed and the data are normal-
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FIGURE 3 Measured photocount correlation functions for E. coli strains cheC497, AW405, and
unc6O2. The time-independent background is removed and the data are normalized by dividing
the ordinate ofeach point by the ordinate ofthe first point. Data were taken at 30.8'C.
FIGURE 4 Measured photocount correlation function for E. coli cheC497. Solid line represents a
least-squares minimization using Eqs. 5, 14, and 19. Solid line is plotted with (v2>"2 26.9
pm/s. The scattering volume parameters are ,- 13.75 pm, u2 = 7.81 pm.

ized by dividing each ordinate by the ordinate of the first point. The data are plotted
versus T/<o> since the scattering volume is not identical for each sample.
The striking difference in decay times of the curves in Fig. 3 is consistent with the

patterns of motility observed under a microscope. The short correlation time for
cheC497 indicates that the persistence length of this strain is much longer than the
mean dimension of the scattering volume. The much longer decay time of the curves
for AW405 and unc6O2 is indicative of slower swimming speeds and shorter persistence
lengths.
The data for cheC497 are most easily analyzed since this strain behaves as a free

particle over distances of the order of <o>. The cheC497 data are analyzed, therefore,
using Eqs. 5, 14, and 19. A two-parameter (,B and (v2>) least-square minimization
leads to the theoretical curve plotted in Fig. 4. The value <v2>1/2 for the best fit is
consistent with the tracking data on this strain (4). The fact that the theoretical curve
falls within the scatter over most of the curve indicates that the Maxwellian speed
distribution assumed in the derivation of Eq. 5 is reasonable. It should be pointed out,
however, that measured correlation functions are very insensitive to higher moments of
the speed distribution.
For strains AW405 and unc602, data analysis is hampered by the fact that three

parameters are required (#., <v> and <r>) and by the fact that the initial decay of the
measured curves does not follow the T2 behavior predicted by Eq. 5. The three-
parameter problem increases the confidence limits on the measured parameters,
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FIGURE 5 Meaured photocount correlation function for E. coi AW405 Solid line represents a
least-squares minimization using Eqs. 5, 13, and 19. Solid line is plotted with the parameters
(v>- 13.5 pm/s and (r> = 8.0 p&m. The measured scattering volume parameters are or, = 12.5,
dU2 - 7.81.
FIGURE 6 Measured photocurrent correlation function for E. coli unc602. Solid line represents
a least-squares minimization using Eqs. 5, 13, and 19. Solid line is plotted with (v> = 13t2
<m/s and(r> - 3.9 .m. The measured scattering volume parameters are or = 12.0 pm, U2 =
7.85 pm.

whereas the initial linear decay of the correlation function indicates that the assump-
tions leading to Eq. 5 are not fulfilled for small r.
We believe the most reasonable explanation of the linear initial decay observed in

Figs. 5 and 6 is that there is an additional fluctuating component in the scattered light
intensity due to orientation fluctuations. That is, since scatterers are not spherical, the
amplitude of the scattered light field will be modulated as the axis of the particle
changes with respect to the polarization of the incident light and the scattering plane.

Microscopic observation suggests two types of orientational motion: corkscrew rota-
tion as well as changes in swimming direction. The fact that the linear decay is not
observed for the cheC497 indicates that it is the latter type of motion which leads to
the observed linear decay.

Orientation fluctuations would lead to an additional contribution to <I(0)1(T)>
whose characteristic time is the time required for randomization of the swimming
direction. In particular, if A(r) is an orientation-dependent amplitude factor then
I(r) = A(r)N(T) for uniform illumination. IfA(r) and N(r) are independent Eq. I be-
comes

<I(O)1(T)> = <A>2<N>2 + ('>2(6N(0)SN(r)> + <N>2(<A(0)A A(r)>A (21)

Thus <I(O)I(r)> appears as the superposition of a background, number and orienta-
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tion term. If the orientation term (third term of Eq. 21) decays rapidly compared to
the number term then the data in Figs. 5 and 6 are reasonable.

In spite of the orientational contribution to (n(O)n(r)> it is possible to obtain
reasonable values of <v>and <r) by data analysis using Eqs. 5, 13, and 19. This is
true because the orientational effects are small in magnitude and make a significant
contribution to <n(O)n(r)> only at small r. The results of a three-parameter (#, <v>
<r()) minimization (neglecting the first data point) for AW405 and unc6O2, lead to the
solid lines plotted in Figs. 5 and 6, with the corresponding (v> and (r> indicated in
the captions. These values all fall within the distributions measured by Berg and
Brown (4). For both strains, the measured <v> and <r> lead to an orientational cor-
relation time of (>/(v> -O.5s, confirming that orientational effects contribute pri-
marily to the initial decay ofthe curve.

CONCLUSION

We have developed a general theoretical model of the dynamics of number fluctua-
tions. The predictions of this theory were tested using three strains of E. coli with
different persistence lengths. The results indicate that (a) the Gaussian velocity dis-
tribution is a reasonable approximation for the interpretation of E. coli data; (b) that
reasonable values of the swimming speed and persistence length can be extracted from
number fluctuation data; and (c) that orientational contributions to the initial decay
of(n(O)n(r)> are observed due to the aspheric shape of the scatterers.
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Science Foundation.
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