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Abstract

We assess the current status, advantages and limitations of the numerical analytic continuation approach to com-
puting time correlation functions in large many-body quantum systems characteristic of condensed phase chemical
processes. We determine the quantum correlation function as a function of complex time, and use its analytic properties
to select a suitable contour in the complex time plane along which the function can be evaluated efficiently by stochastic
simulation methods. The simulation data are then used to obtain the values of the correlation function along the real-
time axis through a maximum entropy numerical analytic continuation procedure. This approach is used to compute
the dynamical properties of several condensed phase processes including vibrational relaxation lineshapes and canonical
reaction rates. We discuss how to improve the accuracy of the numerical analytic continuation methods. © 2001

Elsevier Science B.V. All rights reserved.

1. Introduction

Many properties of complex chemical systems
that are both important and accessible exper-
imentally are of time-dependent nature. Some
examples include quantities such as transport
coefficients, inelastic light and neutron scattering
cross-sections, dipole relaxation times and reaction
rates. The experimental methods used to measure
these quantities share a common characteristic,
that is they monitor the response of the system to a
perturbation caused by a weak external field. In
this regime, the dynamics of the system is ade-
quately described by the linear response theory,
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which implies that the measured dynamic proper-
ties can be expressed in terms of two-point time
correlation functions of the corresponding dy-
namic operators [1].

Molecular dynamics (MD) [2,3] methods, based
on integrating equations of motion, have been
successfully used to compute time correlation func-
tions in classical systems. However, in many chemi-
cal systems of interest, quantum effects play a
significant role in the dynamics, and classical treat-
ment is not adequate for the accurate determina-
tion of time-dependent properties. It is thus highly
desirable to develop a method for computing time-
correlation functions of an arbitrary many-body
quantum system.

A general quantum time correlation function
is given by
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where A and B are quantum mechanical operators
corresponding to measurable observables, H is the
Hamiltonian of the system, and f = 1/kT is the
inverse temperature, and Z is the canonical parti-
tion function. Evaluating the above requires sim-
ulating the time evolution of a finite temperature
many-body quantum mechanical system, which
has proven to be a formidable problem. Due to
large system size, basis-set methods and wave-
packet propagation techniques often used to solve
the time-dependent Schroedinger equation for
small systems cannot be used directly. This leaves
path integral methods as the only feasible alter-
native. However, in contrast to equilibrium prop-
erties, computation of time-dependent canonical
averages using path integrals requires evaluation
of multidimensional integrals over rapidly oscil-
lating exponentials due to the presence of real-
time propagators. Therefore, the number of paths
that must be summed to obtain a statistically
converged result grows exponentially with the prop-
agation time, which leads to inefficiency and in-
evitable failure of stochastic methods based on
importance sampling. This phenomenon is known
as the “sign problem”, and is the primary obsta-
cle to using computer simulations to compute
quantum time-correlation functions. It has been
pointed out by Feynman that this problem is
NP complete and he suggested that quantum
computers could offer a solution [4].

Several approximate approaches have been de-
veloped in an effort to avoid the above difficulty.
Mixed quantum/classical methods [5-12] use nu-
merically exact methods to propagate a few rele-
vant quantum degrees of freedom, while the rest of
the system is treated classically. Semiclassical
methods [13-18] treat all degrees of freedom
within the semiclassical approximation. The cent-
roid molecular dynamics (CMD) [19-21] method
provides an approximate means of computing
approximate time correlation functions of opera-
tors which are linear in position and momentum
for very large systems. The method is exact for
purely harmonic systems, and gives physically rea-
sonable results in cases which do not deviate sub-
stantially from this limit.

Other approaches seek to suppress the sign
problem in evaluating real-time integrals. These
include methods based on the use of stationary
phase filtering [22-27], optimized reference systems
[28-30], and more recently renormalization tech-
niques [31-34]. While these methods introduce
great advantages over direct sampling of real-time
path integrals, they are limited to either certain
types of systems or relatively modest system sizes.

In this paper we address an alternative ap-
proach, based on exploiting analytic properties of
quantum time correlation functions. In general,
the quantum time correlation functions are eval-
uated using path integral methods along a suitable
finite contour in the complex time plane, and these
data is used to obtain the values along the real
time axis through a numerical analytic continua-
tion procedure. This approach possesses several
desirable properties: it allows the entire system to
be treated fully quantum mechanically, without
making a priori approximations; it is computa-
tionally feasible for large systems; it is applicable
to arbitrary many-body systems. As such, it seems
to offer a viable path to a general method for
simulation of quantum dynamics, which would be
capable of handling large systems with strongly
anharmonic interactions, which is characteristic of
chemical reactions in liquids.

For all the cases in this paper, the environ-
ment or bath is described by harmonic oscillators
and the system and bath are bilinearly coupled.
Therefore following Zwanzig [35] and Caldeira
and Leggett [36] the total Hamiltonian is given
by

H(x, {x,},p, {Ps})
_ )2 l 2.2\
= H(x,p) + Z . + zmyw&xd xz CoXys
(2)

where H,(x,p) is system Hamiltonian and coordi-
nate and momentum (x,, p,) correspond to a har-
monic mode of the environment with mass m, and
frequency w,. We describe the environment in
terms of the spectral density function J(w)

2
o

J(w) :g 3 mcw 5w — ). (3)
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Although the numerical analytic continuation ap-
proach presented in this review is applicable to a
general condensed phase system we use the har-
monic bath model to demonstrate the method
since there are often exact solutions available.

In Section 2 we discuss the analytic properties of
quantum time correlation functions by considering
several complex time contours leading to various
forms of correlation functions related to each
other through analytic continuation. In Section 3
we outline the maximum entropy (ME) procedure
used to perform the analytic continuations nu-
merically. We present several applications of the
method in calculating vibrational relaxation line-
shapes and quantum reaction rates in Sections 4
and 5 respectively. We conclude with Section 6.

2. Complex time contours and analytic continuation
relationships

In order to investigate the analytic properties of
the time correlation function, one can consider a
more general form, which is a function of a com-
plex time variable z = ¢ — ir,

C(z) = (4(2)B(0)). 4)

For the remainder of this paper, we limit our dis-
cussion to autocorrelation functions, namely 4 =
B. Baym and Mermin have shown [37] that if the
function C(z) is known along the imaginary time
axis, that is the contour z = —irt, for 0 < © < i
(shown in Fig. 1), one can infer its values along
the real time axis (contour z = ¢ in Fig. 1) through
an analytic continuation procedure.

In general, for the purpose of expressing the
analytic continuation relationships it is convenient
to introduce /(w), the power spectrum of C(z),
such that

c@:%/ﬁmww@. (5)

To illustrate the utility of the above results, con-
sider a position basis representation of C(z):
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Fig. 1. A schematic representation of the contours in the
complex time plane along which C(z) is evaluated. The solid
line is the z = ¢ contour corresponding to the real-time corre-
lation function, the dotted line is the z = ¢ + if is the contour
along which the symmetrized time correlation function is
evaluated, and the dashed line shows the z = —ir, the imaginary
time contour which is bounded by 0 < 7 < fh.
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where we have used one dimensional notation and
assumed A4 to be diagonal in x for clarity. The
determination of C(z) along the real-time contour,
z = t requires the evaluation of integrals over pairs
of forward and backward real-time paths, con-
necting x and x” as well as x” and x to compute
matrix elements (x'|e”/"|x") and (x”|e”""/"|x). One
should note that these paths have no positive
definite weights due to the presence of real-time
propagators with purely imaginary phases. As a
result, stochastic importance sampling meth-
ods cannot be used to evaluate these integrals
directly. In contrast, evaluating C(z) along the
imaginary time axis, z = —ir, requires one to
compute the product (x'[ef*/"|x")(x"|e=#*/"|x). This
involves integrals over imaginary time paths which
have positive definite weights, and can hence be



24 G. Krilov et al. | Chemical Physics 268 (2001) 21-34

efficiently computed by Monte Carlo sampling
even for very large systems. In other words, while
it is very difficult to evaluate C(z) along z =1, it
can be readily computed along z = —it. C(—it),
which is often called the imaginary time correla-
tion function, is related to C(¢) through

C(t) = % /_OO dweI(w), (7
and
C(—ir) = /jc dowe ™ I(w). (8)

To compute C(¢) from C(—ir) it is necessary to
obtain /(w) by performing an inverse transform of
Eq. (8). Typically, the value of C(—it) is available
from computer simulations at several values of t
with finite statistical errors. In this case, the inverse
transform must be performed numerically, which
is a highly unstable operation. Inverse Laplace
transformation of noisy data is an ill-posed prob-
lem due to the highly singular nature of the
Laplace kernel. As a consequence, specialized
methods need to be used in order to control the
numerical instability.

Methods based on maximum entropy and sin-
gular value decomposition have been employed in
this context for a range of dynamical problems,
including lattice models [38], and an electron sol-
vation [39,40], vibrational relaxation [41,42], ad-
sorbate vibrational lineshape [43], and quantum
reaction rates [44]. In all the cases it was found
that very accurate data for C(—it) are necessary in
order to obtain satisfactory results. Even then, the
unstable nature of the inverse Laplace transform
due to the singular nature of the kernel results in
correlation functions that are accurate over rela-
tively short times, so the method was limited to
cases in which quantum correlations decay on that
time scale.

A possible way of alleviating this problem is to
evaluate C(z) along a different contour in the
complex time plane [45], one which would be re-
lated to the z = ¢ contour through a more stable
numerical analytic continuation. We consider one
such contour, namely z = ¢ —iffi/2. The related
correlation function, G(¢) = C(¢ — if7/2)

G(t) = <A (z - iﬁTE)B(O)>

_ %Tr( QIH (i1 /2) [ g o =iH (1=ip/2) B) (9)

is known as the symmetrized time correlation
function and has been considered before by Berne
and co-workers [46,47]. They showed that the re-
sulting path integrals that need to be computed to
evaluate the matrix elements of complex time
propagators in the above expression involve inte-
grals over paths with complex weights, the real
parts of which can be used as a weight in Monte
Carlo sampling. Furthermore, the cancellation of
phases in forward and backward complex time
paths should reduce the severity of the sign prob-
lem, allowing one to compute G(¢) by computer
simulations up to moderate but short times for
arbitrary large systems.

On the other hand, to determine /(w) from G(¢)
one needs to numerically invert

G(t) = % /0oo dw cos (wt)e P21 (w), (10)

which is expected to be much more stable than the
inverse Laplace transform required in Eq. (8) due
to a better behaving kernel. One thus evaluates
G(¢) by simulation up to a finite value of time ¢,
and then performs numerical analytic continuation
to invert Eq. (10) and obtain C(¢).

It should be noted that in both cases, the sim-
ulation data will be available only at a finite
number of values of z, and each of those will be
known within a statistical uncertainty. Thus in
both cases, there will be a range of solutions con-
sistent with a set of simulation data. In the next
section, we describe the maximum entropy method,
which provides a means of selecting the most
probable one among various possible solutions.
We have used simulation data for C(z) evaluated
at various combinations of z= —it and z=1¢—
if%/2 contours and tested the approach for several
systems of interest, with the results presented in
the following sections.
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3. Maximum entropy method

The maximum entropy (ME) [48,49] inversion
method has been shown to be useful for many
problems in which there are incomplete and noisy
data. The method itself requires only the knowl-
edge of the transformation which relates the data
and the solution. Furthermore, prior knowledge
about the solution is included in a logically con-
sistent fashion. As such, ME is ideally suited for
solving ill-posed mathematical problems. A par-
ticularly important class of such problems involves
inverting integral equations of the type

D(r) = /dwK(r,w)A(w), (11)

where K (7, w) is a singular kernel. Egs. (7) and (8)
relating the real-time correlation functions evalu-
ated along various complex time contours belong
to this class. If the data set D() is noisy and in-
complete, the solution A(w), also referred to as the
map, cannot be determined uniquely. Maximum
entropy criteria provide a method for determining
the most probable inversion consistent with the
data. This method is based on Bayesian inference.
Typically, the data are known only at a discrete set
of points {;}, and we likewise seek a solution at a
discrete set of points {e;}. The maximum entropy
method selects a solution which maximizes the
probability of the map A given a data set D,
known as the posterior probability [38,48]

2(AD) x exp(aS — 12/2) = 2. (12)

Here #? is the standard mean squared deviation

from the data

c=> (Dj - ZKlel) [ (Dk - ZK"’A1>

| (13)

where Cj is the covariance matrix

Ci :M(jwl_ 1) ZM: ((Dj> - Dj('l)) ((Dk> - D/((I))

=1

(14)

with M being the number of measurements.

S is the information entropy, the form of which
is axiomatically chosen to be

A
S:ZAw(Ak—mk—Akln—k) (15)
k

my

In this formulation the entropy is measured rela-
tive to a default model m(w) which can contain
prior information about the solution and « is a
positive regularization parameter.

Finding a map A which maximizes the posterior
probability is a maximization problem in N vari-
ables, where N is the number of points {w,} at
which the solution is evaluated. The solution ob-
tained in this way is still conditional on the arbi-
trary parameter o, which can be interpreted as a
regularization parameter controlling the smooth-
ness of the map. Large values of « lead to a result
primarily determined by the entropy function and
hence the default model. Small « in turn lead to a
map determined mostly by the ¥*> and thus to a
closer fitting of the data. The principal drawback is
that, along with the data, the errors would be fit as
well. The optimal value of o is determined by the
L-curve method [50,51]. The value of « is selected
by constructing a plot of log[—S(A)] vs. log y>.
This curve has a characteristic L-shape, and the
corner of the L, or the point of maximum curva-
ture, corresponds to the value of o« which is the best
compromise between fitting the data and obtaining
a smooth solution. We note that there are other
methods for selecting o [38,49], however we found
that the L-curve method is adequate for our pur-
pose.

In our studies thus far we have used a flat de-
fault map, which satisfies a known sum rule, such
as the integral over 4(w). Other choices of m(w)
and their effect on the quality of the results will be
the subject of future investigation.

4. Dipolar time correlation functions and spectral
lineshapes

We have computed spectral lineshapes of the
position autocorrelation functions for several
bound systems, i.e., 4(x) = B(x) = x in Eq. (1) for
system coupled bilinearly to harmonic bath [39].
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These are in turn related to the photon absorption
cross section given by
47 _

o(w) = <%>a)(l — e " (w). (16)
We discuss two systems namely a harmonically
bound electron and a proton in a quartic well.
Details of the study are in our previous work [42].
In addition to being a classic model for vibra-
tional relaxation processes, the harmonic oscilla-
tor system coupled to harmonic bath is the only
many body system for which exact solutions for
quantum position autocorrelation functions are
available. In particular, it was shown that the
classical photon absorption cross-section, obtained

in closed form by solving the generalized Langevin
equation [52] is equal to the quantum one [53] and

this system was studied previously by analytic
continuation of the imaginary time correlation
function [41].

For the harmonic system potential, symmetrized
real time correlation data was included up to ¢t =
ph/2 = 0.125 a.u., which is the same as the imag-
inary time range, since C(—it) is symmetric around
T = Phi/2 and the data for p7/2 < v < i do not
provide any new information. The ME inversions
were performed using imaginary time data alone,
symmetrized time correlation function alone and
the combination of the two [42]. The results for
power spectra and the real parts of the corre-
sponding position autocorrelation functions are
shown in Fig. 2(a) and (b) in comparison with
exact results. The same procedure was then per-
formed using G(¢) data for real-time up to # = 0.25
a.u. (computed by MC according to the prescrip-

0.06 T T T I T

(©)

0.04

0.02

Re[C(t)]

-0.02 1 | 1 | 1
0 0.2 0.4 0.6 0.8

t[a.u.]

Fig. 2. Analytic continuation results for a harmonic oscillator coupled to a harmonic environment. In (a) we show the power spectra
and in (b) the real parts of the corresponding real-time position correlation functions obtained by ME continuation of imaginary time
data (broken line), symmetrized time correlation data (dot-dashed line) and the combination of the two (solid line) in comparison with
the exact result (dotted line). The symmetrized time correlation function data was included up to # = 0.5 a.u. In (c) and (d) we show the
same results using symmetrized time correlation data up to # = 1.0 a.u. This figure is reproduced from Fig. 4 of Ref. [42].
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tion of Refs. [42,47,54]) with the results shown in
Fig. 2(c) and (d). Including symmetrized time
correlation function data leads to an improve-
ment. The analytic continuation using imaginary
time data results in a real-time correlation function
accurate to t = 0.3 a.u., or on the order of 4. This
is superior to the results using only G(¢) data in the
first case, but in the second case, continuation
using longer time symmetrized correlation func-
tion data (up to ¢t =0.25 a.u.) yields a real-time
correlation function accurate to ¢ = 0.45 a.u. In
particular, the low frequency portion of the spec-
trum is well reconstructed. This behavior is not
unexpected, as the power spectrum of G(¢) is re-
lated to I(w) through G(w) = e /2 [(w), it is thus
primarily determined by the low frequency region
of I(w).

Similar behavior was observed in a highly an-
harmonic system, namely a quartic oscillator in-
teracting with a dissipative environment [42]. For
this case we used G(¢) data up to z=790 a.u.
(0.5ph). The resulting power spectra are shown in
Fig. 3(a) and the real parts of the corresponding
real-time correlation functions in Fig. 3(b). Due to
the presence of the anharmonic potential, the full
quantum dynamics cannot be obtained exactly.
However, it is possible to compute the symmet-
rized correlation functions up to intermediate
times (several multiples of f%) using a non sto-
chastic approach based on exact evaluation of in-
tegrals in the discrete variable representation of
path integrals. These are shown in Fig. 3(c) in
comparison with the symmetrized time correlation
functions computed from the power spectra in Fig.
3(a) using Eq. (10).

A systematic improvement can be observed as
the time domain of the simulated G(¢) data is ex-
tended. We used ME analytic continuation to
compute the real-time correlation functions from
symmetrized correlation functions, for several sets
of G(f) with increasing cutoff time #.. The results
for the power spectra, and the real-time and
symmetrized time correlation functions computed
from the former are shown in Fig. 4(a)-(c) re-
spectively at temperature 7 = 200 K. The improve-
ment is evident in comparison with exact G(¢)
results in Fig. 4(c), which is accurately reproduced
as the cutoff time is increased. It should be noted

that the gain in the time range (i.e. the range
over which the analytically continued real-time
results are accurate compared to the cutoff time up
to which the G(¢) data are available) appears to
increase with increasing cutoff time. As the com-
putational effort for real-time path integrals in-
creases exponentially with time, this is particularly
significant, as it allows one to compute accurate
quantum time correlation functions for signifi-
cantly longer times than that could be attained by
direct simulation of G(z).

To summarize, in both cases, the real time cor-
relation functions obtained using the combination
of imaginary and symmetrized time correlation
data in the analytic continuation process were
accurate over much longer times than those ob-
tained from imaginary time data alone. In partic-
ular, we observed that as the time domain (i.e. the
cutoff time up to which simulation data is avail-
able) of the symmetrized time correlation data
used in analytic continuation is lengthened, the
range over which the real-time correlation func-
tions are accurate increases substantially. More-
over, for longer time domains, the symmetrized
time correlation data dominates in the ME inver-
sion scheme, and combination with imaginary time
data leads to the same result as using G(¢) data on
its own. This clearly shows that expanding the time
domain leads to a more stable inversion.

In contrast to analytic continuation utilizing
only imaginary time correlation data, analytic
continuation using the symmetrized time correla-
tion function can be systematically improved by
increasing the real-time cutoff. This is particularly
evident in results for the quartic oscillator in Fig.
4, where using increasing values of the cutoff
time for the G(¢) data leads to real-time correla-
tion functions that are accurate over progressively
longer times.

5. Quantum reaction rate constants

Rabani et al. [44] and Sim et al. [54] have applied
short time analytic continuation to the calcula-
tion of quantum reaction rate constants. Follow-
ing Miller et al. [55], the Boltzmann averaged
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Fig. 3. Analytic continuation results for a quartic oscillator coupled to a harmonic environment at the temperature of 200 K. The
symmetrized time correlation function data was included up to # = 790 a.u. In (a) we show the power spectra and in (b) the real parts of
the corresponding real-time position correlation functions computed by ME continuation of imaginary time data (broken line),
symmetrized time correlation data (dot-dashed line) and the combination of the two (solid line). In (c) we show the symmetrized
correlation functions calculated from the power spectra in (a) in comparison with the exact result (empty circles). This figure is re-

produced from Fig. 5 of Ref. [42].

quantum mechanical canonical rate constant is
given by

k:%/jdz@(r), (17)
where Cg(¢) is a flux autocorrelation function
Cr(t) = YTr[Feeift/h fe-itlt/hg=(b=A], (18)
Here F is the symmetrized flux operator

F= % 66 + 65, (19)

and, for the sake of simplicity, the dividing surface
through which the reactive flux is measured is lo-
cated at s = 0. The rate constant expression in Eq.
(17) was shown to be invariant to the value of 4
(0 < A< B) [55]. Since the correlation function is an
even function of time, one can change the inte-
gration range and the rate is given by

k= % [ : dt e (1) (20)

for clarity, from this point forward, Cg(¢) includes
the partition function ratio prefactor. One can
then define a frequency dependent rate constant
k(w) [44],

k(o) = % [ " deeCe(r) (21)

such that the zero frequency value of k(w) corre-
sponds to the rate constant in Eq. (20).

For the purpose of obtaining the rate constants,
the two complex contours described in Section 2
were used. The choice of the value of 1= /2 in
Eq. (18) leads to a symmetric form of the flux
autocorrelation function [54-56]

Gr(f) = JTr[Felle/hFeitie/n), (22)

t.=1t—1iph/2 is a complex time that arises from
combining the time evolution operator with the
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Fig. 4. Analytic continuation results for a quartic oscillator coupled to a harmonic environment at the temperature of 200 K. In (a) we
show the power spectra and in (b) the real parts of the corresponding real-time position correlation functions computed by ME
continuation of symmetrized time correlation function data computed by simulation up to the cutoff time 7, = 800 a.u. (broken line),
t. = 1600 a.u. (dot-dashed line) and #. = 2400 a.u. (solid line). In (c) we show the symmetrized correlation functions calculated from the
power spectra in (a) in comparison with the exact result (empty circles). This figure was reproduced from Fig. 7 of Ref. [42].

Boltzmann operator. Z and Z. denote the total
canonical partition function and the reactant side
partition function, respectively, such that
Z  Trle "

—=— (23)
Z:  Trle FEh,)
with &, being the reactant side projection operator.
In order to relate the frequency dependent rate to
the short-time symmetrized flux autocorrelation
data Eq. (21) was inverted

Gr(t) = % [ oo doe ™ k(w). (24)

Then the replacement t — —it in Eq. (24) gives [44]

Cp(—it) = % /_OO dwe™k(w), (25)

where ¢, T > 0, Cp(—it) being the imaginary time
flux autocorrelation function. Unlike the real time
flux autocorrelation function, it is straightforward

to obtain the imaginary time flux autocorrela-
tion function using PIMC simulations even for
a many-body system. Analytic continuation was
performed by inverting the integral equation to
obtain k(w). This inversion is possible only if
Cr(—ir) is analytic over the desired range of 7 [37].
It turns out that for 2 = 0 the imaginary time flux
autocorrelation function is not analytic at 7 = 0,
which is the reason for introducing the parameter
A with a small positive value.

The numerical analytic continuation method
can thus be used to compute the rate from either
finite-time Gg(¢) by inverting Eq. (24) or alterna-
tively from Cg(—it) by inverting Eq. (25). We give
examples of rate constants that were obtained by
using both approaches.

5.1. Double-well coupled to a harmonic bath

We model a typical proton transfer reaction by a
double well bilinearly coupled to a harmonic bath.
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The harmonic bath model was chosen to allow
comparison of the results obtained by our method
with those obtained from exact quantum me-
chanical calculations [56]. The two cases studied
include a high barrier model with a wide spectral
density labeled DW1, and a lower barrier model
with a narrower spectral density labeled DW2. The
rate constant was studied as a function of the
friction constant as well as the temperature.

Fig. 5 shows several typical reactive flux corre-
lation functions with A= /2 obtained by ME
numerical analytic continuation of the simulation
data available up to ¢ = S (left side of the vertical
dotted line) [54]. The reactive flux correlation
function R(¢) is a time integral of the symmetrized
flux autocorrelation function Gg(#). Note that
there are dynamically important events that occur
after the time ¢ = % and the results for all three
different friction constants well illustrate that the
long time behavior of crossing and recrossing
events is successfully predicted by the short time
analytic continuation procedure.

7 T T T
=
=1
=
g
=
—
©
= i — 1/m,©,=0.05
[ --- n/mw,=0.375
U
H —-- n/mw,=1.0
3 *:,’ .
il
L
f
o U . . 1 . 1 . 1 .
0 1 2 3 4 5

t/Bh

Fig. 5. Analytically continued results of reactive flux correla-
tion functions, in arbitrary units as a function of time at
T =200 K. The friction strength, 5/msw,, of the solid line is
0.05, the dashed line 0.3752 and the dot-dashed line 1.0. Dotted
line indicates the time up to which the symmetrized correlation
function data was computed by simulation and analytically
continued. Note the recrossing and crossing events predicted by
maximum entropy method occur after the cutoff time f#. This
figure was reproduced from Fig. 2 of Ref. [54].

The flux correlation function data were com-
puted by path integral MC (PIMC) simulations by
two different methods. In the first case, the sym-
metrized flux autocorrelation function was com-
puted using the influence functional formalism
[54], while in the second case, the explicit bath
modes were used to compute the imaginary time
correlation function [44]. The explicit bath modes
were used for the latter to demonstrate that our
approach does not require a harmonic bath ap-
proximation, but is readily applicable to a general
many-body system. The coupling coefficients c,
between the reactive system and the bath were
determined from the Ohmic spectral density func-
tion using the relation in Eq. (3),

2 g 2 —wm/wcA
€, = _myyle o. (26)

In Fig. 6 we show the dependence of the trans-
mission coefficient, k = k/krst, on the damping
parameter n/mw, where krsr is the classical tran-
sition state theory rate constant. These results are
compared with the numerically exact calculations
by Topaler and Makri [56]. The results are in very
good agreement with those by Topaler and Makri
over the entire range of frictions for both DW1
and DW2. In Fig. 6(a) we show the quantum
transmission coefficient computed by analytic con-
tinuation of symmetrized flux autocorrelation
function. Note that we only used the symmetrized
flux data up to ¢ = i = 1578 a.u. In the high
friction regime, the recrossing is inhibited by the
rapid dissipation due to the bath. As a result, the
real-time flux autocorrelation function decays on a
fast time scale ensuring that the calculation of the
rate using short-time data is accurate. More im-
portantly, the rate constants estimated through
analytic continuation exhibit excellent agreement
with the exact quantum results in the weak cou-
pling regime as well, even though significant re-
crossing is possible under these conditions.

In view of that, it is interesting to assess the
accuracy of our method for a system in which
dynamic effects play more important role, i.e.,
which exhibits larger deviation from the quantum
transition state theory. Such a system is DW2
studied by Topaler and Makri [56]. For this case
we used imaginary time flux correlation data
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n/mo,

Fig. 6. Quantum transmission coefficient of proton transfer as
a function of the friction strength at 7 = 200 K. (a) The case of
DWI1 using symmetrized flux autocorrelation data up to
t = ph = 1578 a.u. (b) The case of DW2 using the imaginary
time flux autocorrelation data. Hollow circles are the numeri-
cally exact results from Fig. 9(b) of Ref. [56]. The results ob-
tained by analytic continuation are shown by solid squares.

computed by PIMC using the discrete bath model
[44]. The classical transmission coefficients for this
case differ by almost an order of magnitude com-
pared to their quantum mechanical counterparts
[56]. The results capture the turnover in the
transmission coefficient signifying the crossover
from energy to spatial diffusion.

Arrhenius plots of the rate constant for DW1
[44,54] are shown in Fig. 7. The data for the
turnover friction (Fig. 7(a)) were computed from
imaginary time flux data [44]. At higher tempera-
tures we obtained excellent agreement with the
exact results, but at lower temperatures we were
unable to converge simulation data to sufficient
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Fig. 7. The logarithm of the rate constant for DWI as a
function of inverse temperature for the friction strength, (a)
n/mswp = 0.5 and (b) n/msw, = 0.05. The results in (a) were
obtained by analytic continuation of imaginary time data, and
those in (b) from the symmetrized flux autocorrelation function
evaluated up to ¢t = f/i a.u. Hollow circles are the numerically
exact results from Fig. 12 of Ref. [56] and the rates obtained by
the method presented in this paper are shown by solid squares.

accuracy to allow stable inversion. For the weak
friction case shown in Fig. 7(b), at the tempera-
tures higher than the crossover temperature (es-
timated as T, =~ 100 K), we observed a linear
behavior characteristic of activated barrier cross-
ing [54]. Conversely, at lower temperatures, tun-
neling dominates the dynamic process and the rate
constant becomes temperature independent. Note
that, in this case, the correct temperature in-
dependent tunneling rates were obtained at low
temperatures as well, which additionally con-
firms the applicability of the analytic continuation
method which includes even the deep tunneling
regime.
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5.2. Primary charge separation in the photosyn-
thetic reaction center

In contrast to the typical adiabatic reaction
studied in the previous section, we consider a non-
adiabatic reaction in this section. The primary
charge separation of photosynthesis in bacterial
reaction centers involves electron transfer from an
excited special chlorophyll pair (the donor) to a
bacteriopheophytin of the L branch (the acceptor)
[57-64]. We investigate three different types of re-
action center including the wild type, a single
mutant [57] and a double mutant [64].

The simplest model of non-adiabatic electron
transfer is that of a discrete two state system
coupled to a harmonic model of the medium. In
this model, the two states, donor and acceptor, are
coupled to each other as well as to a harmonic
bath that describes collective modes of polariza-
tion fluctuations of the medium surrounding the
reaction complex. Following the approach in To-
paler and Makri [56], the flux operator is written as

l%:—[HS, p} (27)

where H corresponds to the system Hamiltonian
and fzp is the product side projection operator.

In order to model the two state electron transfer,
we assume that in long-distance tunneling the
electronic coupling is due to superexchange. For
this purpose, we used [54] McConnell’s product
form for the superexchange coupling matrix ele-
ment [65]. The environment is described with the
friction constant of the Ohmic spectral density.

The experimentally measured time constant for
this particular double mutant reaction center is
20 ps [64], while the theoretically predicted time
constant from the three-state reduced density
matrix calculation is 21 ps [66]. Using our method
the time constant obtained from the two state su-
perexchange model was found to be 28 ps. The
same result was obtained using a different spectral
density obtained numerically from MD simula-
tions by Marchi et al. [67]. The reason for this
slower kinetics is the assumption of the superex-
change electron transfer mechanism of two state
model. It has been shown that the bridge state
participates in the electron transfer resulting in a

sequential electron transfer mechanism [66,68] so
that the superexchange model of this study using
the effective coupling of the superexchange trans-
fer [65,69] was expected to give a slower rate, i.e., a
larger time constant.

Based on the flux operator expression in Eq.
(27) we also studied discrete three level system
model which includes the bridge state (bacterio-
chlorophyll monomer) spatially located in between
the donor and the acceptor. Two reaction centers
are considered: the wild type and the single mutant
system studied by Holten et al. [57]. The time
constants that we obtained are 4.9 ps and 2.6 ps
for the wild type and Holten’s mutant system, re-
spectively, while the experimentally measured time
constant from both systems is 3 ps [57,62].

In brief, the analytic continuation approach
appears to give accurate results for canonical rate
constants for variety of reactive quantum con-
densed phase processes. In particular, use of the
symmetrized time correlation function as an in-
put to analytic continuation enabled us to obtain
quantitatively accurate results for rate constants
even in conditions of weak coupling as well as
the tunneling dominated low temperature regime,
which have been traditionally difficult to explore.

6. Concluding remarks

We have investigated the capabilities and limi-
tations of the Bayesian numerical analytic con-
tinuation approach for calculating quantum time
correlation functions in large anharmonic con-
densed phase systems. We used the method to
compute the spectroscopic lineshape and the re-
action rate constants in several systems described
by a system-harmonic bath model. This particular
model was chosen to allow comparison with the
exact results, however, it should be noted that the
method is not limited to such model but is rather
applicable to a general many body system.

We have considered the correlation function as
a function of complex time variable z. It was found
that the quality of the results in some cases is af-
fected considerably by the choice of the contour
along which C(z) is computed by simulations. In
general, while the imaginary time contour is the
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most suitable one for path integral simulations
(since all the paths have real weights and therefore
simulations do not suffer from the “sign problem’)
the analytic continuation procedure which requires
one to perform an inverse Laplace transform is
very unstable, thus limiting the range of accuracy
of the real-time correlation function computed in
this fashion to relatively short times. In contrast,
computing C(z) along the z=¢—1if#%/2 contour
(i.e., G(¢)) by MC for short real-time provides for
more stable inversion, however, the complex phase
gives rise to the sign problem in simulations (al-
though the sign problem is not as severe as in the
case of z =1 contour due to cancellations of the
forward and backward path phases). Nonetheless,
we found that the numerical analytic continuation
of G(¢) results in real time correlation functions
that are accurate over longer time ranges provided
that G(¢) data can be computed accurately to a
sufficiently long cutoff time f#.. Fortunately, the
required ¢, appears to be quite short. In most
cases, it appears that for cutoff time longer than
t. = Ph/2 using G(t) gives superior results to use
C(—ir) alone. Hence, for example, we were able to
compute the tunneling rates by the analytic con-
tinuation of the symmetrized flux autocorrelation
function whereas the imaginary time data could
not be calculated to sufficient accuracy to allow
stable inversion in this regime.

Thus one possibility for improving the method
would be to determine a complex time contour
with optimal properties from both simulation and
inversion stand points. For example, one may
consider the contour z = (1 — 1), 0 <7 < fA, first
suggested by Baym and Mermin [37].
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