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A review of the basic strategies that we have developed for the simulation of dynamic correlation functions in quantum
systems is provided. Three methods are considered: (a) the analytic continuation of imaginary (thermal) time correlation
functions to real times; (b) direct evaluation of thermally symmetrized version of the time correlation functions; (c) direct
simulation of the power spectrum. All of these methods are based on the path integral representation of time correlation
functions. The generalization of these methods for the computation of electronic spectrum, which involves the consideration of
two potential energy surfaces, is also presented. We also discuss the approach based on numerical integration of an effective
time-dependent Schrédinger equation for the simulation of electronic absorption and emission spectra for mixed quantum
classical systems.

1. Introduction

Path integral Monte Carlo techniques have been exploited to determine equilibrium properties of
manybody quantum systems in a variety of contexts [1,2] *. If exchange between identical quantum
particles is neglected, then using a discretized version of the Feynman path integral representation of the
canonical density matrix the partition function for a N-particle quantum system can be shown to be
isomorphic to N X P particle classical system with P being the number of points used in the discretization
scheme [3]. This allows one to use well-known numerical techniques, like Monte Carlo {4-6] or molecular
dynamics methods [7] to simulate equilibrium properties of quantum systems. (For a discussion of
nonergodicity problems in the molecular dynamics method see ref. [8].) A straightforward extension of this
method, for problems where real-time quantum dynamics is needed, is difficult. The major reason for this
difficulty is due to the presence of e'/% involved in the dynamics which leads to the “alternating
weights” problem. It has been shown that using the standard Metropolis Monte Carlo scheme, dynamical
information in these systems may be obtained by evaluating the appropriate correlation functions in
Euclidean time [9,24]. One can analytically continue Euclidean-time correlation functions in Laplace space
to obtain the dynamical (real-time) correlation functions. This procedure is well known and the uniqueness
of the analytic continuation for these problems has been shown by Baym and Mermin [10]. The obvious

! Author to whom correspondence should be addressed.
* For a recent review describing the use of quantum Monte Carlo methods in chemical physics, see ref. [1]. Reference [2] gives the
application of quantum Monte Carlo methods to a variety of problems.
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advantage of this method is that the evaluation of euclidean correlation functions is no more difficult that
calculating the equilibrium properties of quantum systems. The major drawback with this method is that it
is difficult to numerically perform the analytic continuation [9], and one needs extremely accurate
estimates of the imaginary-time correlation functions. In order to avoid the analytic continuation,
Behrman et al. [11}] attempted a direct Monte Carlo importance sampling on the discretized path integral
representation of the time correlation functions (TCF). However, because of the oscillatory factors
involved, this method is at best accurate only for short times. Evaluation of dynamic correlation functions
for short times can be accomplished as follows (see for example, ref. [12]): Expand the correlation function
as a power series in time. The coefficients in this power series are then equilibrium moments which can be
expressed in terms of path integrals in Euclidean time. Consequently, the moments can be readily
computed by the path integral Monte Carlo technique. The moment method may be of interest in
providing upper and lower bounds on time correlation functions. The drawback of this method is that very
many moments are usually needed to represent intermediate time decay of correlation functions. Finally,
short-time behavior may also be obtained from the application of the Gaussian wavepacket dynamics to
quantum systems [13].

In this brief review we present several methods that we have developed for the simulation of TCF in
quantum systems. The basis of most of these methods lies in path integral representation of the
propagators, e~ *", where H is the Hamiltonian of the system, and 7 is in general complex. In the next
section three different methods are presented for the simulation of TCF. The first method is based on the
analytic continuation procedure [9], the second involves the direct simulation of the symmetrized version
of the dynamic correlation functions [14]. Both these methods have been applied to simple problems and
to certain nontrivial systems. The third method, which we present here for the first time, is an algorithm
for a direct simulation of the power spectrum of the TCF. This method is a finite-temperature generaliza-
tion of the algorithm due to Hirsch and Schrieffer [15] who presented the zero-temperature version some
years ago.

In section 3 we consider the generalization of some of these techniques to the calculation of electronic
spectra involving two potential surfaces. Two methods are presented. In the first one it is shown how path
integral methods can be used for the computation of the electronic spectrum without invoking the familiar
Franck-Condon approximation. The second method discusses the ‘calculation of the spectrum of quantum
systems interacting with a classical bath. A solution to the time-dependent Schrodinger equation using
Gaussian wavepackets is discussed with emphasis on the simulation of electronic absorption and emission
spectra of a diatomic molecule in a classical environment. The review is concluded with a few additional
remarks in section 4.

2. Time correlation functions in quantum systems

In this section we consider the simulation of time correlation functions in quantum systems using the
methods that we developed a few years ago. Some of these methods have been extended in new and novel
ways by several investigators [16,17]. These improvements are not explicitly considered in this article. A
partial review of these techniques may be found elsewhere [18]. In section 2.3 we present a new, but
untested, method for the direct simulation of the frequency spectrum of finite temperature correlation
functions.

2.1. Analytic continuation of thermal correlation functions

Consider a system specified by a Hamiltonian H, and let 4 be any quantum mechanical operator
representing some dynamical quantity. The time correlation function { A(z)A(0)) is given by

Coi(1) =Tr¢e PHA(1) A(0))/Tr e BH, (2.1)
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where A(t) = e'"/% 4(0) e '#"/? and the temperature of the system 7 is given by 87! /ky with ky being
the Boltzmann constant. The Fourier transform or the power spectrum is defined by

Coi(w) = /:o(g—‘:) e=C, (1) dr. (2.2)

The basis of the method of the analytic continuation of the imaginary-time correlation function (the
analog of the Wick rotation) lies in the observation that C,,(w) can be calculated directly from the
knowledge of the spectral function or susceptibility x”(w) [10]. Furthermore x”'(w) can be computed
from the knowledge of the imaginary correlation function C,,(A) with 0 <A < Bh. Specifically the
susceptibility

X" (@) =i(1 - e )y (w) (2.32)
can be expressed as
x"(w)=i[f(w+ie) —f(w—ic)], (2.36b)

where the analytic function f(Z) evaluated at the Matsubara frequencies Z = Z, = 2mn/(—iBh) is given
by

1 (B
7(2,) = Tf‘* dX e22C, (). (2.3¢)
0
Thus to compute x”'(w) we analytically continue f(Z,) to all complex values of Z and use eq. (2.3b).

Notice that the computation of f(Z,) requires the calculation of the Euclidean correlation function
C,4(X) given by

Cia(N) =Tr[p(B—A/R)Ap(A/h)A] /Tt p(B), (2.4a)
where
p(B)=eP". (2.4b)

The evaluation of C, ,(A) can be done in principle by path integral Monte Carlo methods [9]. This method
was applied to obtain the spectra of two one-dimensional problems, namely the linear harmonic oscillator
and the Morse oscillator. Although the results were encouraging it was pointed out that very accurate
representation C, ,(A) for 0 <A < 8% was required for a stable analytic continuation.

The above method has not been pursued in the chemical physics context. However, in the solid state
physics community there have been some recent developments in devising better methods for analytically
continuing the function f(Z,). These methods were suggested so that the numerical effect of noise (or
round-off errors) that inevitably results in the evaluation of C,,(A) is minimized. The first method was
based on a least-squares fitting and was introduced by Schuttler and Scalapino [19]. Recently Jarrell and
Biham [20] have provided a dynamic approach to obtain the spectral function x”’(w). This method is
based on an expansion of x”'(w) in terms of a series of 8-functions

x"(w)=ZAm8(w—wm), (2.4)

where the real frequencies w are chosen on a grid of spacing Aw. From eq. (2.3b) it follows that x"’(w) can
be computed from the imaginary part of

© do  x"(«)

f(Zn)=/_wm(—Zn—_T)- (2.5)
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using egs. (2.3b) and (2.5) is easy to show that the coefficients A, satisfy

Im f(Z,) (Z,) = — Zw Am/(w,z,,+v,,2), (2.6)

n m= — o0

where v, = 2wn/Bh.

Jarrell and Binham [20] made the observation that the coefficients { 4,,} can be viewed as a steady-state
solution of a dynamical equation in a fictious time such that eq. (2.6) is identically satisfied. To illustrate
the origin of the dynamic equation let us assume that the grid for the real frequency w,, is the same as the
imaginary frequency »,. The simplest potential consistent with the steady-state eq. (2.6) is [20]

V{d,} =Vi{4,} +1{4,}, (2.72)
where

Via,) =m ’;(Z") %nm s = ) (2.7b)
and

AP =a1(Zn:A"_l)p+ azzn;(An,l —24,+ A1)’ /(M) (2.7¢)

It is clear that minimization of V;{4,,} with respect to 4,, leads to eq. (2.7a). Since V;{4,,} is a
quadratic potential in the space { 4,,} it has a single unique minimum. However it may not be easy to
locate this minimum numerically if the space of coefficients { 4,,} is very large. The first term in eq. (2.7c)
enforces the sum rule constraint on x’(w) while the second term is introduced to prevent fluctuations in
x”(w) due to noisy data by making large gradients energetically unfavorable. The coefficients «; and «,
are chosen so that once the constraints are satisfied, V,{ 4,,} dominates over V,{ 4,,} are always restricted
to be positive, and this can be achieved by imposing infinite potential barriers whenever { 4,,} become less
than zero. With these constraints the dynamics associated with { 4,,} becomes

04,/d1=—dV{A, /34, (2.8)

This corresponds to having a set of massless particles with dissipation, The solutions to eq. (2.6)
corresponds to the fixed-point condition 84, /3¢ = 0. The resulting { 4, } can be used to construct x”(w).
The above procedure was successfully applied to obtain x”'(w) for the symmetric Anderson model at low
temperatures. Since the method automatically takes the various constraints into account and the spectral
function is directly obtained using a sensible dynamics it is expected that one can obtain fairly accurate
results using imaginary-time correlation function. It would be interesting to apply this to problems in
chemical physics.

2.2. Direct evaluation

For several problems the direct evaluation of the dynamic correlation functions given by eq. (2.6) is of
interest. The direct evaluation of C,,(¢) for the case of spin-boson problems was first considered by
Behrman et al. using path integral methods [11]. It is well known that the direct evaluation of C, () by
Monte Carlo technique is difficult because the time evaluation operator ¢'#"/* is oscillatory. This leads to
sampling configurations with negative weights and thus leads to numerical instability. Despite this for
certain values of the parameter in the spin-boson problem Behrman et al. [11] were able to obtain results
for the spin—spin correlation for relatively long times. Although this method has not been heavily used it
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appears that recent advances, which use some variant of stationary phase Monte Carlo method, may
enable evaluation of C, ,(¢) for times greater than B4 [21].

Thirumalai and Berne [14] observed that instead of evaluating C, ,(¢) it should be more convenient
from a simulation perspective to consider the symmetrized forms of the correlation function [22]

Gua(2) = %Tr{A e H/hg e HT/RY (2.9a)
where
= (Bh/2—it). (2.9b)

They pointed out that the simulation of G, ,(¢) should greatly reduce the phase cancellation problem {14],
and hence it should be possible to directly evaluate real-time correlation functions for ¢ > 84. Using the
cyclic invariance of the trace operation it is easy to show that

Cia(t+1Bh/2) = G 4(2) (2.10)

and that G(¢) is a real function of ¢, i.e. G(¢) = G(—1). Consequently the Fourier transforms G, ,(w) and
C,4(w) are related by

Ciu(w) =eP*G,,(w). (2.11)

If A is a position-dependent operator the coordinate representation of G, ,(#) is

G (t) = %fdx/dx’A(x)A(x’) [{xfe #m|x"y |2 (2.12)

As an example Thirumalai and Berne [14] calculated the dipole—dipole correlation function of a proton
moving in a bistable potential with parameters that correspond to a model for proton tunneling in H,0,.
For the very low temperature considered by these authors only two lowest states contribute to G,,(¢). Thus
G,,.(1) is given by

1 _
G = 0 lpial® e AEor B2 cos(Awt/h), (2.13)

where p,, is the transition dipole moment, and Aw = (E,— E;)|4 is the tunnel splitting. Using the
numerical matrix multiplication (NMM) method [23] they were able to accurately compute G,.(¢) for
times of the order of 100 B4. It should be emphasized that although NMM is free of statistical errors the
method is applicable only to systems with a few degrees of freedom only [23]. Thus a true test of the direct
simulation of G,,(¢) should involve the computation of real-time correlation function for a nontrivial
system.

We first argue why Monte Carlo methods should be stable for a direct evaluation of G, (¢). This can be
appreciated by studying the explicit path integral form of G, ,(¢) [14]. In the coordinate representation we
can write G, ,(t) as

fdxl...dxsz(xl)F(xl,..., X25) A(Xp 1) P(X1, X500, X5,)

Gaa(2) =
fdxl...dxzpF(xl,...,xzp)P(xz, Xgseens Xg,)

= (A(x) (x5 %0,) A5 01)) /(F (%1500 X3,)), (2.14)
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where F(x,,..., x,,) is the imaginary part arising from the propagator representation of Q = e™ /7. e~ #"",
and P(x,, x,,..., X,,) is the corresponding real part. The average ...) indicated in eq. (2.14) is carried
out with respect to P(x,, X,,..., x,,). The basic approach is to sample the configurations (x,..., X3,)
from P(x,, x,,..., x,,) and compute the averages in eq. (2.14). Because F involves a phase factor that
depends on the differences between functions of the sampled configurations it is expected that cancella-
tions will result and that the average will be much more stable than would be the case for a direct attack
on C,,(¢). This was borne out in the study of the one-dimensional tunneling problem [14]. (The
symmetrized versions of time correlation functions arise naturally in the reaction rate formalism for
bimolecular reactions [24].) The above Monte Carlo algorithm has been pictorially interpreted by Behrman
and Wolynes [25].

In an interesting paper Behrman and Wolynes [25] have used this basic algorithm to study the dynamics
of a two-level system coupled to a dissipative bath. They have also discussed some additional advantages
for considering the direct simulation of the correlation function G, ,(¢). They were able to obtain real-time
dynamics of the spin—-spin correlation function for long enough times to critically assess the validity of
various approximate theories. Their conclusion was that real-time Monte Carlo algorithm is a practical
tool to check analytical approximations. In addition it was pointed out that the Monte Carlo Algorithm
could be greatly improved by using techniques such as importance sampling. In fact recently Doll and
co-workers [18] have begun applying stationary phase Monte Carlo methods for the computation of the
thermally symmetrized correlation functions. It is obvious that whatever advances one can make to make
the calculations of C, ,(7), these very same methods should work more efficiently when applied to G, ,(¢).

2.3. Direct simulation of the power spectrum

Sometime ago Hirsch and Schrieffer [15] proposed an algorithm for the direct simulation of the
zero-temperature power spectrum of the time correlation function. This method was numerically tested by
computing the vibrational spectra of simple models. Subsequently it was shown by Thirumalai et al. [26]
that this method could in principle form the basis for using path integral methods for microcanonical
ensemble. In particular we showed that path integral methods can be used to calculate quantum
microcanonical rate constants for bimolecular reactions [24,27] for a given total energy of collision. In this
section we show how this method can be generalized for the simulation of finite temperature power
spectrum of TCF. The Fourier transform of the dynamic correlation function C,z(w), where 4 and B are
any quantum mechanical operators, can be written using the eigenstates of H as

Canl(0) = G L X e A, B,,8[0 - (E,~E,)]. (215)
The §-function in the above equation can be expressed as a convolution

S[w—(Em—En)]=/ds8(w—Em+s)8(s—En). (2.16a)
With this C,z(w) becomes

Coplw) = —é—fdsz Ye#44q B S8(w—E,+s5)8(s—E,). (2.16b)

The algorithm for the direct simulation of C,z(w) is based on the Gaussian representation of the
é-function,

dw—a)= lim @exp[—ﬁl(w——a)zl. (2.17)
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In practice one uses a large but finite 8, and this can be interpreted as a finite experimental resolution of
the spectrum. The above identity allows one to write C,p(w) as

oy JB:B,
w)= m 5
48 BB~ 0
which in the coordinate representation becomes

Cip(w)=lim alle

B\nBZ_' o TTQ

fds Tr{e BH ¢ AH—(w=sNg ¢~ Al =5’p) (2.18a)

fds dx dx’ dx"p(x, x’; B)(x|e A —(rsn®| 77y

CA(x")(x" [e P97 X)B(x). (2.18b)

Therefore C,p(w) can be evaluated by discretized path integral methods provided a suitable coordinate
representation for the Gaussian operator is found. The Gaussian operators appearing in eq. (2.18) can also
be evaluated using the Trotter formula, i.e.

oAU =N . (gmatH-D) " (2.19)

where €, = 8, /L. Inserting the resolution of unity in the coordinate representation the representation the
matrix element of the Gaussian operator becomes

(x |7 AN X
7y —€ — —e —2a)? —¢ —a)2 ’”
=qu1~“qu<x le™aH =N | g5 (g |eTaH N gy oo (g e T H D x7y, (2.20)
For a large enough value of L, {(g,|e /=" |4,,,) can be evaluated using the Trotter formula [15,26]

_1 —a)? -1 -A)?
<qt|e_(1(H-)\)2|qt+l> =~ ¢ 9@ ~Y g(q,, qz+1) e @D =0) s (2'21a)

where g(x, x') is given by

o) 4 2

g(x, x') = %/O dp cos p(x—x’) exp[—cl(# + 2 [V(x) + V(x') - 2>\])]. (2.21b)
The integral in eq. (2.21b) cannot be done in closed form, and it has to be evaluated numerically.
Substituting eqs. (2.21) into eq. (2.18) yields a complicated multidimensional integral which, in general, has
to be evaluated by a Monte Carlo algorithm suitably designed for the negative weights that could arise
from the short-time approximation to the Gaussian propagator, (g, |exp(—¢,(H —A)*| g, ). In particular
the integral g(x, x’) in eq. (2.21b) can have negative regions for certain values of x, x’. This will greatly
depend on the potential.

So far this method has only been applied to simple problems [15). Thirumalai et al. [26] used this basic
method to calculate microcanonical reaction probability, expressed in terms of flux operators evaluated on
a given energy shell, for the Eckart potential. The calculated values are in very good agreement with the
exact results [26]. We also showed that the regions where the integrand in the multidimensional expression
for the microcanonical rate constant becomes negative is small. Furthermore the degree of negative
contribution to the weights appears to be negligible. For the general evaluation of C,z(w) one has to
content with a (P + 4L )-dimensional integral where P is the number of discretized points in the density
matrix p(x, x’; B) and L is the number of discretization points for each Gaussian propagator. Because
the negative weights for this method may not be as severe as for the direct computation of C,z(¢) it should
be worth applying this method to other nontrivial cases.
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3. Simulation of electronic spectra

The electronic absorption spectrum I(w) can be expressed as [28]
1 ,> .
I(w)=§f_wdz exp(—iwt)C,, (1), (3.1)

where C, (¢) is the dipolar autocorrelation function which in the Born-Oppenheimer approximation for
the transition from the electronic states i to f is given by

Cif(t) = Tr{ Pilkiy eﬂiH/t/hP'i[ etfle/h }/Tr{e_BHi }- (32)

We are assuming that the ground electronic state has a thermal distribution of vibrational states. The
electronic transition moment is in general a function of the nuclear coordinates, H, and H, are the
Hamiltonians corresponding to the upper and lower potential surfaces respectively. The density operator
p;, = e AH /Tr e ¥ is for the rot—vib states on the electronic surface i, and Tr(...) denotes the trace over
these rot-vib states. In what follows we describe two methods to compute /(w). The first method describes
the extension of path integral techniques for computing TCF involving two potential surfaces and is in
principle applicable to any situation. The second method is most suited for systems in which a few
quantum degrees interact strongly with classical degrees of freedom.

3.1. Path integral methods

It was shown by Thirumalai and Berne [29] and independently by Coalson [30] that one can use the
symmetrized version of C, () namely G, (¢) for a direct simulation even when two different potential
surfaces are involved. Following CTB we introduce the function [29,30]

Gif(t) = Tr{PiI»"if(R) exp(—H/'r)p.,-/(R) exp(—H,-'r*)}/Tr{exp(—BH,-)}. (3.3)

It can be easily shown that C; (t)= G, (¢t —iBh/2) and consequently I(w) is related to the Fourier
transform of G, (1) by

() =ef*%G, (). (34)

For reasoning similar to that given in section 2.2 it is more convenient to simulate G, () directly than
C,/(#). In the coordinate representation G;/() becomes

G (1) = [AR’ [dRp, (R') - pr(R)(R [exp(~ Hy7) | R )R |exp(—Hr') | R). (3.5)

Once the propagators are determined it is possible to evaluate the spectrum for any well-behaved
functional form for the transition dipole moment g, (R), so that the usual Condon approximation,
pi(R) ~ p, (R,) = constant, need not be made. Here R, denotes the equilibrium positions of the nuclei.

As an application we considered the computation of I(w) for a model diatomic molecular discussed by
Reimers et al. [31]. The spectra was calculated in the Condon approximation p,,(R) = ,;,(R.) = constant
and in the approximation g, (R) @ (R — R,). The calculated results for I(w) in the Condon approxima-
tion are in excellent agreement with the numerically exact calculations presented by Reimers et al. [31].
For the case in which p, (R) & (R — R,) Reimers et al. computed the band contour using Gaussian
wavepacket dynamics by Fourier transforming only the initial decay of C,/(¢). Because of the truncation
after only short times they did not observe any structure in the spectrum. However they noted that
anharmonicity in the wavepacket propagation becomes more severe when the Condon approximation is
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relaxed. We showed that the band contour obtained by our method is in very good agreement with the
result reported by Reimers et al. [31]. In addition because of the stability of this method one can obtain
C;s(¢) for sufficiently long times when applied to arbitrary potential surfaces and g, (R). Thus the
detailed structure of the absorption spectrum could be resolved. We showed that for this model diatomic
molecule considered by Reimers et al. relaxing the Condon approximation yields qualitatively different
absorption cross-section. It appears that this method in conjunction with the stationary-phase Monte
Carlo technique can be used for the computation of electronic spectrum in condensed phase systems.

3.2. Electronic spectrum in mixed quantum-—classical systems

The formulation described in the previous subsection is valid in general, and follows from linear
response theory. However there are many examples in chemical physics where one can treat part of the
system involving very few degrees of freedom quantum mechanically, and the rest of the systems can be
treated classically. Such systems are called mixed quantum-classical systems. Few of the physically
interesting examples worthy of mention are electron transfer reactions in condensed phase, electronic
spectroscopy in matrices, and mobility of an excess electron in classical fluids.

Thirumalai et al. [32] provided an algorithm for the treatment of a single quantum degree of freedom
interacting with a classical solvent in the context of the calculation of absorption and emission spectra of a
diatomic molecule in a cold matrix. This basic algorithm has been recently used in a variety of different
problems where the strict conditions for which the method is applicable appears to be violated. Thus it is
useful to emphasize once again the limits of applicability of the algorithm. Let the Hamiltonian of the
systems on the two surfaces H;, be

Hy,=To+ V(Q)+V(Q, X)+ H(P, X)
Eh"(f)(Q’ X)+H(P5 X)’ (36)

where 7}, is the kinetic energy operator the quantum degree of freedom, V, /,(Q) is the electronic potential
surface for the lower i [upper ( f)] electronic states, V(Q, X) is the potential of interaction between Q and
X which for simplicity is taken to be independent of i or f, and H(P, X) is the Hamiltonian for the
classical degrees of freedom. The trace operation in eq. (3.2) is over both Q and X, formally let ¢,,(Q, X)
and ¢,(Q, X) represent the stationary eigenstates of h,(Q, X) and 4,(Q, X) with energies E;,(X) and
E;,(X) respectively. Here n labels the additional quantum numbers, (if any) required to specify the
stationary state in a given electronic potential energy surface, i.e.

h(Q, X)¥in(Q, X)=E,(X)¥.,(Q, X). (3.7)

If the temperature is sufficiently low then we can assume that only the ground state y,, of A, contributes
to the trace, then it is easy to show that

Cip () =Try e PHPN¢, (1) 1 ,(1))/ Qo> (3.8a)
where

Qo= Try e™PHEX), (3.8b)

|6:(£)) = iy €7 H 7 | Ys0) (3.8¢)

and

L (£)) = e Ay | i) (3.8d)
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The evaluation of C,(T') is further simplified if p,, is independent of Q, although this is not always
Jjustified. Equation (3.6a) can be evaluated by propagating |,,) in the upper and lower surface for a time
¢ and then evaluating the resulting overlap. The states |y, ,,(#)) obey the time-dependent Schrddinger
equation

ih% |¢"(f)(t)> = {TQ+ I/;(f)(Q)V[Q’ X(t)]} |¢i(f)(t)>’ (3,9)

where the potential F'[Q, X(t)] is a function of the classical trajectory X(z), and hence is time dependent.
The trajectory X(¢) is obtained by solving the classical equation of motion. Thirumalai et al. [32] showed
using an earlier result due to Pechukas [33] that the time-dependent potential seen by the classical
coordinates X(¢) is given by [34]

Wi =u[x(6)] + (i, (D) IV(Q, X(1)) 1y (1)) (3.10)

A few comments about the above equation are worth making: (a) The above algorithm based on egs. (3.9)
and (3.10) first used by Thirumalai et al. [32] for many-body systems is currently referred to as the
adiabatic molecular dynamics. It is obvious the W) depends on the electronic surface. (b) The above
form of equation for W (/) is necessary to ensure that total energy of the system is conserved [32] In order
to derive the equations of motion (cf. eq. (3.10)), a certain transition-matrix element was evaluated using
first-order perturbation theory. This is justified provided the propagation time step is sufficiently small.
Since energy exchange between the classical and quantum degrees of freedom is proportional to the
transition-matrix element, energy is conserved only to the lowest order in perturbation theory. (c) The
derivation provided by us clearly demonstrates that this algorithm is valid only for adiabatic dynamics. If
the states of the quantum degrees of freedom { ¥, ,,(Q, x)} are coupled then modifications are required to
account for such coupling. (For recent papers addressing curve crossing in condensed phases, see ref. [35].)
In principle one can obtain the appropriate equations of motion following the method given in the
appendix of the paper by Thirumalai et al. (d) Recently this basic algorithm has been used to study the
adiabatic dynamics of localized states of an excess electron in molten salts [36], ammonia [37], and water
clusters [38]. While this is interesting these authors have also attempted to obtain transport coefficients
from the effective adiabatic dynamics. It is not clear that this procedure is equivalent to linear response
theory which shows that for transport coupling between electronic states is required even when the
thermodynamics is dominated by the ground state. Under these circumstances the above algorithm cannot
be used. (e) Equations (3)-(9) and Hamilton’s equation for X(z) with the potential given by eq. (3.10)
constitute a self-consistent set of equations for the mixed quantum-—classical systems [32].

The numerical solution of the time-dependent Schridinger equation can be done in several ways. In our
original application we used a semiclassical approximation by using a Gaussian wavepacket to describe
¥;0(¢) [13]. This ansatz is appropriate for the problem we considered namely the simulation of electronic
absorption and emission spectra of Br, in an Ar matrix. The shortcomings of using Gaussian wavepacket
techniques have already been discussed extensively. However our studies showed that certain qualitative
features of the spectra commonly found in experiments could be theoretically simulated. In particular the
low-resolution spectra we calculated for Br, in an Ar matrix was in accordance with the experimental
findings [39]. Furthermore the emission spectrum displayed the vibrational progression seen in experi-
ments.

Because of the limitations of wavepacket dynamics it is fruitful to solve the time-dependent Schrodi-
nger’s equation numerically. Recently Selloni et al. have used real-time fast Fourier transform propagator
approach to evolve the time-dependent Schriodinger equation for the motion of the quantum degrees of
freedom [36], and have obtained X(¢) by solving Newton’s equation of motion. The resulting dynamic
wavefunction is in a mixed state, and they use eq. (3.10) to calculate the forces on the classical degrees of
freedom. It has been emphasized that eq. (3.10) assumes that the coupling between the electronic states are
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zero [32]. Thus although the simulations of Selloni et al. are interesting the interpretation (specifically with
respect to the calculation of transport quantities) of the results are difficult because of the inconsistent use
of the algorithm. Nevertheless their method of solving eq. (3.9) may be useful for computing transport
coefficients for mixed quantum-—classical systems afrer a proper formulation of the problem in terms of
effective eigenstates ¥, (X, Q) is made.

4. Conclusions

In this article we have provided a brief assessment of the success of several methods that we have
introduced for simulating time correlation functions in quantum and mixed quantum-—classical systems. At
present it is not clear that any one method is superior. It appears that the direct real-time simulations
[11,14,25] have some obvious advantages over the analytic continuation method [9,19,20]. Clearly progress
made to obtain spectral function from thermal correlation functions makes the analytic continuation
technique quite practical [19,20]. It would also be interesting to test the method, we have suggested here for
the first time in section 2.3, by applying to certain nontrivial cases.

Recent numerical developments [18] can be used to obtain efficient algorithms for the computation of
electronic spectra using path integral techniques. It should be emphasized that the use of symmetrized
version of TCF may not prove to be very advantageous when simulating electronic spectra [29,30]. The
reason for this is that the arguments leading to phase cancellation presented in section 2.2 when applied to
G,/(t) show that if the potential surface for the electronic state is very different form the initial state then
the imaginary part (corresponding to F(X),..., X;) in eq. (2.14) could be highly oscillatory. This would
result in large numerical errors in the simulation of G,/ (¢).

Central to the simulation of quantum time correlation functions by path integral methods is the issue of
sampling strategies. The introduction of new methods to cope with the alternating sign problem leads to
use of sampling functions that are quite different than the usual Boltzmann factors encountered in classical
Monte Carlo simulations. The representation of the quantum degrees of freedom by auxiliary classical
degrees of freedom leads to the presence of additional time and length scales that have to be treated
properly to ensure that simulations are properly converged. One strategy for circumventing the oscillatory
problem arising in the direct real-time evaluation of dynamic correlation functions is the stationary phase
Monte Carlo method [16—18]. This method essentially exploits the fact that most of the contribution to
C,4(t) would arise when the phase obtained by collecting the imaginary part in a path integral
representation of C, ,(¢) is stationary. Doll and co-workers have attempted some ways of locating these
stationary phase regions using filtering functions. This method has only been applied to simple problems,
and the generality of this promising technique is yet to be established. In an attempt to locate the
stationary-phase region without resorting to the use of filtering functions Mak and Chandler {21] have
used a distortion of the coordinate variables into the complex plane. The location of these stationary
points was done by simulated annealing for the spin-boson problem. This method is clearly computation-
ally intensive unless one has a-priori some idea of the location of the stationary phase regions. As pointed
out by these authors for any complex problem it is reasonable to expect multiple solutions to the
stationary-phase equation. If this proves to be the case the method may not prove to be too practical. In
the absence of other methods these problems have to be resolved before one can hope for efficient methods
for quantum simulation of time correlation functions based on path integral methods.
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