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A reviewof the basic strategiesthat we have developedfor thesimulationof dynamiccorrelationfunctions in quantum
systemsis provided. Threemethodsare considered:(a) the analytic continuationof imaginary(thermal) time correlation
functions to real times; (b) direct evaluationof thermally symmetrizedversion of the time correlationfunctions;(c) direct
simulationof the powerspectrum.All of thesemethodsare basedon the path integral representationof time correlation
functions.Thegeneralizationof thesemethodsfor thecomputationof electronicspectrum,which involves theconsiderationof
two potentialenergysurfaces,is alsopresented.We alsodiscusstheapproachbasedon numericalintegrationof an effective
time-dependentSchrodmgerequationfor the simulationof electronicabsorptionand emissionspectrafor mixed quantum
classicalsystems.

1. Introduction

Path integral Monte Carlo techniqueshave been exploited to determineequilibrium propertiesof
manybodyquantum systemsin a variety of contexts [1,2] *• If exchangebetweenidentical quantum
particlesis neglected,thenusingadiscretizedversionof the Feynmanpath integral representationof the
canonicaldensity matrix the partition function for a N-particle quantumsystemcan be shown to be
isomorphicto N x P particleclassicalsystemwith P being the numberof pointsusedin the discretization
scheme[3]. This allows oneto usewell-known numericaltechniques,like Monte Carlo [4—6]or molecular
dynamics methods[7] to simulate equilibrium propertiesof quantum systems. (For a discussionof
nonergodicityproblemsin the moleculardynamicsmethodseeref. [8].) A straightforwardextensionof this
method,for problemswherereal-time quantumdynamicsis needed,is difficult. The majorreasonfor this
difficulty is due to the presenceof e”1”~ involved in the dynamicswhich leads to the “alternating
weights” problem.It has beenshownthat usingthe standardMetropolisMonte Carlo scheme,dynamical
information in thesesystemsmay be obtained by evaluatingthe appropriatecorrelation functions in
Eucideantime[9,24].OnecananalyticallycontinueEucidean-timecorrelationfunctionsin Laplacespace
to obtainthe dynamical(real-time)correlationfunctions.This procedureis well known andthe uniqueness
of the analytic continuationfor theseproblemshasbeenshown by Baym andMermin [10]. The obvious

1 Author to whom correspondenceshouldbe addressed.
* For a recentreview describingtheuseof quantumMonteCarlo methodsin chemicalphysics, see ref. [1]. Reference[2] gives the

applicationof quantumMonteCarlo methodsto a variety of problems.
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advantageof this methodis that the evaluationof euclideancorrelation functionsis no moredifficult that
calculatingtheequilibrium propertiesof quantumsystems.Themajor drawbackwith this methodis that it
is difficult to numerically perform the analytic continuation [9], and one needsextremely accurate
estimatesof the imaginary-time correlation functions. In order to avoid the analytic continuation,
Behrmanet al. [11]attempteda direct Monte Carlo importancesamplingon the discretizedpath integral
representationof the time correlation functions (TCF). However, becauseof the oscillatory factors
involved, this methodis at best accurateonly for short times.Evaluationof dynamiccorrelationfunctions
for shorttimescanbeaccomplishedas follows (seefor example,ref. [12]): Expandthe correlationfunction
as a power seriesin time. The coefficientsin this powerseriesare thenequilibrium momentswhich canbe
expressedin terms of path integrals in Eucidean time. Consequently,the momentscan be readily
computed by the path integral Monte Carlo technique. The moment method may be of interest in
providingupperandlowerboundson time correlationfunctions.Thedrawbackof thismethodis that very
many momentsare usuallyneededto representintermediatetime decayof correlationfunctions.Finally,
short-timebehaviormay also be obtainedfrom the applicationof the Gaussianwavepacketdynamicsto
quantumsystems[13].

In this brief review we presentseveralmethodsthat we havedevelopedfor the simulation of TCF in
quantum systems. The basis of most of these methodslies in path integral representationof the
propagators,e- Hr where H is the Hamiltonian of the system, and T is in generalcomplex. In the next
sectionthreedifferent methodsare presentedfor the simulationof TCF. The first methodis basedon the
analytic continuationprocedure[9], the secondinvolves the direct simulationof the synmietrizedversion
of the dynamiccorrelationfunctions [14]. Both thesemethodshavebeenappliedto simpleproblemsand
to certainnontrivial systems.The third method,which we presentherefor the first time, is an algorithm
for a directsimulationof the power spectrumof the TCF. This method is a finite-temperaturegeneraliza-
tion of the algorithmdueto Hirsch and Schrieffer[15] who presentedthe zero-temperatureversion some
yearsago.

In section3 weconsiderthe generalizationof someof thesetechniquesto the calculationof electronic
spectrainvolving two potential surfaces.Two methodsarepresented.In the first oneit is shownhow path
integralmethodscanbe usedfor the computationof theelectronicspectrumwithout invoking the familiar
Franck—Condonapproximation.Thesecondmethod discussesthe calculationof the spectrumof quantum
systemsinteractingwith a classicalbath. A solution to the time-dependentSchrodingerequationusing
Gaussianwavepacketsis discussedwith emphasison thesimulationof electronicabsorptionandemission
spectraof a diatomic moleculein a classicalenvironment.The review is concludedwith a few additional
remarksin section4.

2. Time correlationfunctionsin quantumsystems

In this sectionwe considerthe simulation of time correlationfunctionsin quantumsystemsusing the
methodsthat we developeda few yearsago. Someof thesemethodshavebeenextendedin new andnovel
ways by severalinvestigators[16,17].Theseimprovementsare not explicitly consideredin this article. A
partial review of thesetechniquesmay be found elsewhere[18]. In section 2.3 we presenta new, but
untested,method for the direct simulation of the frequencyspectrumof finite temperaturecorrelation
functions.

2.1. Analyticcontinuationof thermalcorrelationfunctions

Considera systemspecifiedby a Hamiltonian H, and let A be any quantum mechanicaloperator
representingsomedynamicalquantity. The time correlationfunction <A (t )A(0)> is given by

CAA(t) = Tr<e~”A(t)A(0)>/Tr e~”, (2.1)
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whereA(t) = e”~~A(0) ehhIt~~’h, andthe temperatureof the systemT is given by$’/k8 with kB being
the Boltzmannconstant.The Fourier transformor the powerspectrumis definedby

CAA(~)= e’~CAA(t) dt. (2.2)

The basis of the method of the analytic continuationof the imaginary-timecorrelation function (the
analogof the Wick rotation) lies in the observationthat CAA(~)can be calculated directly from the
knowledgeof the spectralfunction or susceptibilityx “ ( w) [10]. Furthermorex” ( w) can be computed
from the knowledge of the imaginary correlation function CAA(X) with 0 � A � 13h. Specifically the
susceptibility

x”(c~)= i(1 — e~~)CAA(c~,) (2.3a)

canbe expressedas

x”(co) = i[f(~ + i�) —f(ci — i�)] , (2.36b)

wherethe analyticfunction f( Z) evaluatedat the MatsubarafrequenciesZ = Z~= 2 ‘rrn/( — i/3h) is given
by

f(Z~)= ~-j~dA eZ~~~CAA(X). (2.3c)

Thus to computex”( w) we analytically continuef(Z~)to all complex valuesof Z and use eq. (2.3b).
Notice that the computationof f(Zn) requires the calculationof the Eucideancorrelation function
CAA(A) given by

CAA(A)=Tr[p(/3—X/h)Ap(A/h)A]/Trp(ffl, (2.4a)

where

p(/3)=e~”. (2.4b)

The evaluationof CAA(A) canbe donein principle by path integralMonte Carlo methods[9]. This method
was appliedto obtain the spectraof two one-dimensionalproblems,namelythe linear harmonicoscillator
and the Morse oscillator. Although the results were encouragingit was pointed out that very accurate
representationCA.4(X) for 0 � A � $h wasrequiredfor a stableanalyticcontinuation.

The abovemethod hasnot beenpursuedin the chemicalphysicscontext.However, in the solid state
physicscommunitytherehavebeensomerecentdevelopmentsin devisingbettermethodsfor analytically
continuingthe function f(Zn). Thesemethodswere suggestedso that the numericaleffect of noise (or
round-off errors) that inevitably results in the evaluationof CAA(A) is minimized. The first method was
basedon a least-squaresfitting andwas introducedby SchuttlerandScalapino[19]. RecentlyJarrelland
Biham [20] haveprovided a dynamic approachto obtain the spectral function x”(w). This method is
basedon anexpansionof x”(w) in termsof a seriesof s-functions

(2.4)

m

wherethereal frequencies~ are chosenon a grid of spacingL~w.Fromeq.(2.3b) it follows that x”@~)can
be computedfrom the imaginarypart of

dc.., “(w)
f(Zn)=f~j(~Z). (2.5)
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usingeqs.(2.3b) and(2.5) is easyto show that the coefficientsAm satisfy

Im f(Zn) = - m~m/~ + ~ (2.6)

where v,, = 2’rrn/$h.
JarrellandBinham[20] madethe observationthat the coefficients(Am) canbeviewedas a steady-state

solutionof a dynamicalequationin a fictious time suchthat eq.(2.6) is identically satisfied.To illustrate
the origin of the dynamicequationlet usassumethat the grid for the real frequencyWm is the sameasthe
imaginaryfrequencyv,. The simplestpotential consistentwith the steady-stateeq. (2.6) is [20]

V(Am} = Vi{Am} + V
2(Am}, (2.7a)

where

Vl(Am)=Imf(Zn)+~ 2~2 (2.7b)
n,m m n

and

V2(Am} =ai(~A~1) +a2~(A~_1— 2A~+A~÷1)
2/(~)4. (2.7c)

It is clear that minimization of Vi(Am) with respect to Am leads to eq. (2.7a). Since Vi(Am) is a
quadraticpotential in the space{ Am) it has a singleunique minimum. Howeverit may not be easyto
locatethis minimumnumericallyif the spaceof coefficients(Am } is verylarge.The first termin eq.(2.7c)
enforcesthe sumruleconstrainton x “(w) while the secondterm is introducedto preventfluctuationsin

x (w) dueto noisydataby makinglarge gradientsenergeticallyunfavorable.The coefficientsa
1 and a2

arechosenso thatoncethe constraintsare satisfied,V1(Am) dominatesover V2( Am) are always restricted
to bepositive,andthiscanbeachievedby imposinginfinite potentialbarrierswhenever{ Am } becomeless
thanzero.With theseconstraintsthe dynamicsassociatedwith (Am) becomes

aA~/at=—aV(Am)/aAn. (2.8)

This correspondsto having a set of masslessparticles with dissipation, The solutions to eq. (2.6)
correspondsto thefixed-point condition0A~/Bt 0. The resulting (An) canbe usedto constructx”(’~).
The aboveprocedurewassuccessfullyappliedto obtain x”(w) for the symmetricAndersonmodel at low
temperatures.Sincethe method automaticallytakesthe variousconstraintsinto accountandthe spectral
function is directly obtainedusing a sensibledynamicsit is expectedthat onecan obtain fairly accurate
resultsusing imaginary-timecorrelation function. It would be interesting to apply this to problems in
chemicalphysics.

2.2. Direct evaluation

For severalproblemsthe direct evaluationof the dynamiccorrelationfunctionsgiven by eq. (2.6) is of
interest.The direct evaluationof CAA(t) for the case of spin-bosonproblems was first consideredby
Behrmanet al. usingpath integralmethods[11]. It is well known that the direct evaluationof CAA(t) by
Monte Carlo techniqueis difficult becausethetime evaluationoperatore~hhu/~his oscillatory.This leadsto
samplingconfigurationswith negativeweights and thus leadsto numericalinstability. Despite this for
certainvaluesof theparameterin the spin-bosonproblemBehrmanet al. [11] were ableto obtain results
for the spin—spincorrelationfor relativelylong times.Although this methodhasnot beenheavily usedit
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appearsthat recent advances,which use somevariant of stationary phaseMonte Carlo method,may
enableevaluationof CAA(t) for timesgreaterthan$h [21].

Thirumalai and Berne [14] observedthat instead of evaluatingC.4.4(t) it shouldbe more convenient
from a simulationperspectiveto considerthe symmetrizedforms of the correlationfunction [22]

G.4.4(t) = -~Tr(AeHT/hA ~ (2.9a)

where

= ($h/2 — it). (2.9b)

They pointedout that the simulationof GAA(t) shouldgreatlyreducethe phasecancellationproblem[14],
andhenceit shouldbe possibleto directly evaluatereal-timecorrelationfunctionsfor t > $h. Using the
cyclic invarianceof the traceoperationit is easyto show that

CAA(t + i$h/2) = GAA(t) (2.10)

andthat G(t) is a real functionof t, i.e. G(t) = G(— t). Consequentlythe Fourier transformsGAA(w) and
are relatedby

C.4.4(~.)=e~~’~’
2G.4.4(c~,). (2.11)

If A is aposition-dependentoperatorthe coordinaterepresentationof G.4.4(t) is

GAA(t) = ~fdxfdx’A(x)A(x’) I<x Ie~Ix’) 2 (2.12)

As an exampleThirumalai and Berne [14] calculatedthe dipole—dipolecorrelationfunction of a proton
moving in a bistablepotentialwith parametersthat correspondto a model for proton tunnelingin H 202.

Forthe verylow temperatureconsideredby theseauthorsonly two lowest statescontributeto G,~(t).Thus
G,~(t)is given by

G~= ~I~L12I e o~i)/2 cos(&~t/h), (2.13)

where ~ is the transition dipole moment, and &, = (E
2 — E1) I h is the tunnel splitting. Using the

numericalmatrix multiplication (NMM) method [23] they were able to accuratelycomputeG~(t)for
timesof the order of 100 $h. It shouldbe emphasizedthat althoughNMM is free of statisticalerrors the
methodis applicableonly to systemswith a few degreesof freedomonly [23]. Thus a true testof thedirect
simulation of G~(t) should involve the computationof real-time correlationfunction for a nontrivial
system.

Wefirst arguewhy Monte Carlomethodsshouldbe stablefor a directevaluationof GAA(t). Thiscanbe
appreciatedby studyingthe explicit path integral form of GAA(t)[14]. In thecoordinaterepresentationwe
canwrite GAA(t) as

fdxi . ..dx2~A(x1)F(x1,...,x2~)A(x~÷1)P(x1,x2,..., x2~)
G.4.4(t) = ____________________________________________________

fdxi...dx2pF(xi x2~)P(x2,x2,..., x2~)

<A(xi)F(x1 x2~)A(x~±1)>/<F(x1,...,x2~)>, (2.14)
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whereF(x1,..., x2~)is the imaginarypartarising from the propagatorrepresentationof Q = e~fr.
and P(x1, x2 x2~)is the correspondingreal part. The average<...> indicatedin eq. (2.14)is carried
out with respectto P(x1, x2 x2~).The basic approachis to samplethe configurations(x1 x2~)
from P(x1, x2 x2~)and computethe averagesin eq. (2.14). BecauseF involves a phasefactor that
dependson the differencesbetweenfunctionsof the sampledconfigurationsit is expectedthat cancella-
tions will result and that the averagewill be much morestable thanwould be the casefor a directattack
on C.4.4(t). This was borne out in the study of the one-dimensionaltunneling problem [14]. (The
symmetrizedversions of time correlation functions arise naturally in the reaction rate formalism for
bimolecularreactions[24].)TheaboveMonte Carlo algorithmhasbeenpictorially interpretedby Behrman
andWolynes[25].

In an interestingpaperBehrmanandWolynes[25]haveusedthis basicalgorithmto studythe dynamics
of a two-level systemcoupledto a dissipativebath.They havealso discussedsomeadditionaladvantages
for consideringthe directsimulationof the correlationfunction G.4.4(t). They wereableto obtainreal-time
dynamicsof the spin—spin correlation function for long enoughtimes to critically assessthe validity of
various approximatetheories. Their conclusionwas that real-time Monte Carlo algorithmis a practical
tool to check analyticalapproximations.In addition it waspointed out that the Monte Carlo Algorithm
could be greatlyimproved by using techniquessuch as importancesampling. In fact recently Doll and
co-workers[18] havebegunapplying stationaryphaseMonte Carlo methodsfor the computationof the
thermallysymmetrizedcorrelationfunctions. It is obvious that whateveradvancesonecan maketo make
the calculationsof CAA(t), thesevery samemethodsshouldwork moreefficiently whenappliedto G.4.4(t).

2.3. Direct simulation of thepower spectrum

Sometime ago Hirsch and Schrieffer [15] proposedan algorithm for the direct simulation of the
zero-temperaturepowerspectrumof the time correlationfunction. This methodwasnumericallytestedby
computingthe vibrationalspectraof simple models.Subsequentlyit wasshown by Thirumalai et al. [26]
that this method could in principle form the basis for using path integral methodsfor microcanonical
ensemble.In particular we showed that path integral methodscan be used to calculate quantum
microcanonicalrateconstantsfor bimolecularreactions[24,27]for a giventotal energyof collision. In this
sectionwe show how this method can be generalizedfor the simulation of finite temperaturepower
spectrumof TCF.The Fourier transformof the dynamiccorrelationfunction C.4B ( ~)‘ whereA and B are
any quantummechanicaloperators,canbe written using the eigenstatesof H as

C.45(~)= ~ ~e E~AB6[w — (Em — En)]. (2.15)

The 8-functionin theaboveequationcan be expressedas a convolution

6[O;~_(Em_En)1=fdS6(w_Em+S)8(S_En). (2.16a)

With this CAB(~)becomes

C.45(w) = ~~fds~ ~e’~AmnBnm6(~i — Em + s)6(s — En). (2.16b)

The algorithm for the direct simulation of CAB(w) is based on the Gaussianrepresentationof the
6-function,

— a) = lim ~exp[ —$~(~ — a)21. (2.17)
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In practiceoneusesa largebut finite $~andthiscanbe interpretedasafinite experimentalresolutionof
the spectrum.The aboveidentity allows oneto write CAB(c~)as

CAB(~)= lim ~ fds Tr{e He1 —s))~e~2~
2B} (2.18a)

Pl,$

2~

which in the coordinaterepresentationbecomes

$1$2 ç , ,, (H—(~+s))

2
= lim ~ j dsdx dx dx p(x, x ; $)<x le 1 Ix >

$~

A(x”)<x” Ie2~2 I x>B(x). (2.18b)

ThereforeCAB(~)can be evaluatedby discretizedpath integral methodsprovideda suitable coordinate
representationfor theGaussianoperatoris found. The Gaussianoperatorsappearingin eq. (2.18)canalso
be evaluatedusingthe Trotterformula, i.e.

(2.19)where~ = /3
1/L. Inserting the resolutionof unity in the coordinaterepresentationthe representationthe

matrix elementof the Gaussianoperatorbecomes

<X’ Ie~’~”~~
2

= Jdqi . . . dqL<x’ Ie’~~2 I q
1><q1 Ie1~)

2 I q
2> <~LIe1~)

2 I x”>. (2.20)

For a largeenoughvalueof L, <q
1 Ie~”~’~

2I q,÷
1>canbe evaluatedusingthe Trotter formula [15,26]

<q, Ie~”~’~
2I — e ~i( ~)_A)2g(q

1, q~÷i)e,+~)
2, (2.21a)

whereg(x, x’) is given by

g(x, x’)= dp cosp(x—x’) exp{_i(~ + f[V(x)+ V(x’)_2A])J. (2.21b)4m m

The integral in eq. (2.21b) cannot be done in closed form, and it has to be evaluatednumerically.
Substitutingeqs.(2.21)into eq. (2.18) yieldsa complicatedmultidimensionalintegralwhich, in general,has
to be evaluatedby a Monte Carlo algorithmsuitablydesignedfor the negativeweights that could arise
from the short-timeapproximationto the Gaussianpropagator,~ Iexp(— ~ H — A )2 I q~+1>. In particular
the integral g(x, x’) in eq.(2.21b)canhavenegativeregionsfor certainvaluesof x, x’. This will greatly
dependon thepotential.

So far this methodhas only beenappliedto simpleproblems[15]. Thirumalai et al. [26] usedthisbasic
method to calculatemicrocanonicalreactionprobability, expressedin termsof flux operatorsevaluatedon
a given energy shell, for theEckart potential.The calculatedvaluesare in very good agreementwith the
exactresults[26].We also showedthat the regionswheretheintegrandin the multidimensionalexpression
for the microcanomcalrate constantbecomesnegativeis small. Furthermorethe degreeof negative
contribution to the weights appearsto be negligible. For the general evaluationof CAB(a) one has to
contentwith a (P + 4L )-dimensionalintegralwhereP is the numberof discretizedpoints in the density
matrix p(x, x’; fi) and L is the numberof discretizationpoints for eachGaussianpropagator.Because
the negativeweightsfor this methodmaynotbe assevereas for the direct computationof CAB(t) it should
beworth applying thismethodto othernontrivial cases.
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3. Simulation of electronicspectra

The electronicabsorptionspectrum1(w) canbe expressedas [28]

I(w)=~—fdtexp(_iwt)ç(t), (3.1)

where C~( t) is the dipolar autocorrelationfunction which in the Born—Oppenheimerapproximationfor
the transitionfrom the electronicstatesi to f is given by

C’,
1(t) = Tr{ p,p~,1e1~~1t./Flp~,j~ )/Tr{e” }. (3.2)

We are assumingthat the ground electronicstatehas a thermal distribution of vibrational states.The
electronictransition momentis in general a function of the nuclearcoordinates,H1 and H1 are the
Hamiltonianscorrespondingto the upperand lowerpotential surfacesrespectively.The densityoperator
p, = e— ~

t1’/Tr e— ~“ is for the rot—vib stateson the electronicsurfacei, andTr(...) denotesthe traceover
theserot—vib states.In whatfollows wedescribetwo methodsto compute1(w). Thefirst methoddescribes
the extensionof path integral techniquesfor computingTCF involving two potential surfacesand is in
principle applicable to any situation. The secondmethod is most suited for systemsin which a few
quantumdegreesinteractstronglywith classicaldegreesof freedom.

3.1. Path integral methods

It was shown by Thirumalai and Berne [29] andindependentlyby Coalson[30] that one can use the
symmetrizedversion of C,~(t)namely G

1(t) for a direct simulation evenwhen two different potential
surfacesare involved.Following CTB we introducethe function [29,30]

G,1(t) =Tr(p1~t,j(R)exp(—H1r)~t1j(R)exp(_11~.T*)}/Tr(exp(_$HI)}. (3.3)

It can be easily shown that C,1(t) = G.1(t — if3h/2) and consequently1(w) is related to the Fourier
transformof G.1(t) by

1(w) = e1S~~”
2G~j(w). (3.4)

For reasoningsimilar to that given in section2.2 it is more convenientto simulateG.
1(t) directly than

C,1(t). In the coordinaterepresentationG1(t) becomes

G,1(t) = fdR’fdRiL1j(R’) . ~.s.,-(R)<RIexp( —HJT) I R’)<R’ Iexp( —I1~’r’)I R>. (3.5)

Once the propagatorsare determinedit is possibleto evaluate the spectrum for any well-behaved
functional form for the transitiondipole moment ~ (R), so that the usual Condon approximation,

~ (R) — ~z,j( R~)= constant,neednotbe made.Here Re denotesthe equilibrium positionsof the nuclei.
As an applicationweconsideredthe computationof 1(w) for a model diatomic moleculardiscussedby

Reimerset al. [31]. The spectrawascalculatedin the Condonapproximation~ (R) = 1.1,j (Re)= constant
andin the approximationp11(R) z (R — Re). The calculatedresultsfor 1(w) in the Condonapproxima-
tion are in excellentagreementwith the numericallyexactcalculationspresentedby Reimerset al. [31].
For the case in which 1211(R)cc (R — R~)Reimers et al. computedthe band contour using Gaussian
wavepacketdynamicsby Fourier transformingonly the initial decayof C~1(t).Becauseof the truncation
after only short times they did not observeany structurein the spectrum.However they noted that
anharmomcityin the wavepacketpropagationbecomesmore severewhen the Condonapproximationis
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relaxed.We showedthat the bandcontourobtainedby our method is in very good agreementwith the
result reportedby Reimerset al. [31]. In additionbecauseof the stability of this methodone can obtain
C11(t) for sufficiently long times when applied to arbitrary potential surfacesand s1f(R). Thus the
detailedstructureof the absorptionspectrumcould be resolved.We showedthat for this model diatomic
moleculeconsideredby Reimerset al. relaxing the Condonapproximationyields qualitatively different
absorptioncross-section.It appearsthat this method in conjunctionwith the stationary-phaseMonte
Carlo techniquecan beused for the computationof electronicspectrumin condensedphasesystems.

3.2. Electronic spectrumin mixedquantum—classicalsystems

The formulation describedin the previous subsectionis valid in general,and follows from linear
responsetheory. Howeverthereare many examplesin chemicalphysicswhereonecan treatpart of the
systeminvolving very few degreesof freedomquantummechanically,and the restof the systemscanbe
treated classically. Such systemsare called mixed quantum—classicalsystems. Few of the physically
interestingexamplesworthy of mentionare electron transferreactionsin condensedphase,electronic
spectroscopyin matrices,andmobility of an excesselectronin classicalfluids.

Thirumalai et al. [32] provided an algorithm for the treatmentof a singlequantumdegreeof freedom
interactingwith a classicalsolventin the contextof the calculationof absorptionandemissionspectraof a
diatomic moleculein a cold matrix. This basicalgorithmhasbeenrecentlyused in a variety of different
problemswherethe strict conditionsfor which the methodis applicableappearsto be violated. Thusit is
useful to emphasizeonce again the limits of applicability of the algorithm. Let the Hamiltonian of the
systemson the two surfacesH(f) be

H,(f)=TQ+J’ç(f)(Q)+V(Q, x)+H(P, x)

h,(f)(Q, x) + H(P, x), (3.6)

whereTQ is the kinetic energyoperatorthequantumdegreeof freedom,J’c(f)(Q) is the electronicpotential
surfacefor the lower i [upper (f)] electronicstates,V(Q, X) is thepotentialof interactionbetweenQ and
X which for simplicity is takento be independentof i or f, and H( P, X) is the Hamiltonian for the
classicaldegreesof freedom.The traceoperationin eq.(3.2) is overbothQ and X, formally let J’jn(Q, X)

and i4ij,,(Q, X) representthe stationaryeigenstatesof h.(Q, X) and h1(Q, X) with energiesE,n(X) and
Effl(X) respectively.Here n labels the additional quantumnumbers,(if any) required to specify the
stationarystatein a givenelectronicpotential energysurface,i.e.

h,(Q, x)~1~(Q,x) Ein(X)1i(iin(Q, x). (3.7)

If the temperatureis sufficiently low thenwe canassumethat only the groundstate i,ti~~of h contributes
to the trace,thenit is easyto showthat

C11(t) = Tr~e~<~j(t) I ~1(t)>/Q0, (3.8a)

where

= Tr~e”~”~, (3.8b)

I ~1(t)> ~u~1eJ~~t~~hI ‘ho> (3.8c)

and

41(t)> ~euJhft~~.LjjI’ho). (3.8d)
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The evaluationof C,1(T) is further simplified if p.,1 is independentof Q, although this is not always
justified. Equation(3.6a)canbe evaluatedby propagatingI ‘he> in the upperandlowersurfacefor a time
t andthen evaluatingthe resultingoverlap.The states I ‘P,(f) (t)> obey the time-dependentSchrodinger
equation

ih~ I ‘h(J)(t)> = + ~(f)(Q)V[Q, x(t)] } I ~1(f)(t)>, (3.9)

wherethe potential V[ Q, X( t)] is a function of the classicaltrajectory X( t), andhenceis time dependent.
The trajectoryX( t) is obtainedby solving the classicalequationof motion.Thirumalai et al. [32] showed
using an earlier result due to Pechukas[33] that the time-dependentpotential seenby the classical
coordinatesX(t) is givenby [34]

= u[x(t)] + <‘h(f)(t) I V(Q, X(t)) I ‘h(f)(t)>. (3.10)

A few commentsaboutthe aboveequationare worth making: (a) The abovealgorithmbasedon eqs.(3.9)
and (3.10) first usedby Thirumalai et al. [32] for many-bodysystemsis currently referred to as the
adiabaticmoleculardynamics.It is obvious the W~Wdependson the electronicsurface.(b) The above
form of equationfor WC~

1~is necessaryto ensurethat total energyof the systemis conserved[32] In order
to derive the equationsof motion (cf. eq. (3.10)),a certaintransition-matrixelementwasevaluatedusing
first-order perturbationtheory. This is justified provided the propagationtime step is sufficiently small.
Since energy exchangebetweenthe classical and quantumdegreesof freedomis proportional to the
transition-matrixelement,energy is conservedonly to the lowest order in perturbationtheory. (c) The
derivationprovidedby us clearly demonstratesthat thisalgorithmis valid only for adiabaticdynamics.If
the statesof thequantumdegreesof freedom(‘I~.(f) ( Q, x)) arecoupledthenmodificationsare requiredto
accountfor suchcoupling.(For recentpapersaddressingcurve crossingin condensedphases,seeref. [35].)
In principle one can obtain the appropriateequationsof motion following the method given in the
appendixof the paperby Thirumalai et al. (d) Recently this basicalgorithmhasbeenusedto study the
adiabaticdynamicsof localized statesof an excesselectronin moltensalts[36], ammonia[37], and water
clusters[38]. While this is interestingtheseauthorshavealso attemptedto obtain transportcoefficients
from the effectiveadiabaticdynamics.It is not clear that thisprocedureis equivalentto linear response
theory which shows that for transportcoupling betweenelectronic states is required even when the
thermodynamicsis dominatedby the groundstate.Underthesecircumstancesthe abovealgorithmcannot
be used.(e) Equations(3)—(9) and Hamilton’s equationfor X(t) with the potential given by eq. (3.10)
constitutea self-consistentset of equationsfor the mixed quantum—classicalsystems[32].

The numericalsolution of the time-dependentSchrodingerequationcanbedonein severalways. In our
original applicationwe useda semiclassicalapproximationby using a Gaussianwavepacketto describe

‘ho(t) [13]. This ansatzis appropriatefor the problemweconsiderednamelythe simulation of electronic
absorptionandemissionspectraof Br

2 in anAr matrix. The shortcomingsof usingGaussianwavepacket
techniqueshavealreadybeendiscussedextensively.Howeverour studiesshowedthat certain qualitative
featuresof the spectracommonlyfound in experimentscould be theoreticallysimulated.In particular the
low-resolutionspectrawe calculatedfor Br2 in an Ar matrix was in accordancewith the experimental
findings [39]. Furthermorethe emissionspectrumdisplayed the vibrational progressionseenin experi-
ments.

Becauseof the limitationsof wavepacketdynamics it is fruitful to solve the time-dependentSchrödi-
nger’sequationnumerically.RecentlySellom et al. haveusedreal-time fast Fourier transformpropagator
approachto evolve the time-dependentSchrodingerequationfor the motion of the quantumdegreesof
freedom[36], and haveobtained X(t) by solving Newton’s equationof motion. The resulting dynamic
wavefunctionis in a mixed state,andtheyuseeq. (3.10) to calculatethe forceson the classicaldegreesof
freedom.It hasbeenemphasizedthateq.(3.10) assumesthat the couplingbetweenthe electronicstatesare
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zero[32]. Thusalthoughthe simulationsof Selloni et al. are interestingthe interpretation(specificallywith
respectto the calculationof transportquantities)of the resultsare difficult becauseof the inconsistentuse
of the algorithm. Neverthelesstheir method of solving eq. (3.9) may be useful for computing transport
coefficientsfor mixed quantum—classicalsystemsafter a proper formulation of the problem in terms of
effective eigenstates‘h(f)( X, Q) is made.

4. Conclusions

In this article we have provided a brief assessmentof the successof severalmethodsthat we have
introducedfor simulatingtimecorrelationfunctionsin quantumandmixed quantum—classicalsystems.At
presentit is not clear that any onemethod is superior.It appearsthat the direct real-time simulations
[11,14,25]havesomeobviousadvantagesover the analyticcontinuationmethod[9,19,20].Clearly progress
madeto obtain spectral function from thermal correlation functions makes the analytic continuation
techniquequitepractical[19,20].It would also beinterestingto testthemethod,wehavesuggestedherefor
the first time in section 2.3, by applying to certainnontrivial cases.

Recentnumericaldevelopments[18] canbe usedto obtain efficient algorithmsfor the computationof
electronicspectrausing path integral techniques.It shouldbe emphasizedthat the use of symmetrized
version of TCF may not prove to be very advantageouswhensimulating electronicspectra[29,30]. The
reasonfor this is that the argumentsleadingto phasecancellationpresentedin section2.2whenappliedto
G,1( t) show that if the potentialsurfacefor the electronicstateis very differentform the initial state then
the imaginarypart (correspondingto F(X1,..., X2) in eq. (2.14) could be highly oscillatory. This would
result in largenumericalerrorsin the simulation of G,1 ( t).

Centralto the simulationof quantumtimecorrelationfunctionsby pathintegralmethodsis the issueof
samplingstrategies.The introductionof new methodsto copewith the alternatingsign problemleadsto
useof samplingfunctionsthatare quite different than theusualBoltzmannfactorsencounteredin classical
Monte Carlo simulations.The representationof the quantum degreesof freedomby auxiliary classical
degreesof freedom leadsto the presenceof additional time and length scalesthat haveto be treated
properlyto ensurethat simulationsare properlyconverged.Onestrategyfor circumventingtheoscillatory
problemarising in the direct real-timeevaluationof dynamiccorrelationfunctionsis the stationaryphase
Monte Carlo method [16—18].This method essentiallyexploits the fact that mostof the contributionto
C.4.4(t) would arise when the phase obtained by collecting the imaginary part in a path integral
representationof C.4 .4(t) is stationary.Doll andco-workershaveattemptedsome ways of locating these
stationaryphaseregionsusingfiltering functions.This methodhasonly beenappliedto simpleproblems,
and the generalityof this promising techniqueis yet to be established.In an attempt to locatethe
stationary-phaseregion without resortingto the use of filtering functions Mak and Chandler[21] have
useda distortion of the coordinatevariables into the complex plane. The location of thesestationary
pointswasdone by simulatedannealingfor the spin-bosonproblem.This methodis clearly computation-
ally intensiveunlessonehasa-priori someideaof the location of the stationaryphaseregions.As pointed
out by theseauthors for any complex problem it is reasonableto expect multiple solutions to the
stationary-phaseequation.If this provesto be the casethe methodmaynot proveto be too practical.In
theabsenceof othermethodstheseproblemshaveto be resolvedbeforeonecanhope for efficient methods
for quantumsimulationof time correlationfunctionsbasedon path integral methods.
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