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To study the roles of chaos 1n energy transfer and reaction dynamics in isolated moleculces, we devisc a simple classical

dynamical system with measure preserving ergodic flow. Although the dynamical system 1s completely chaotic, it 1s found
that dynamucal correlations give rise to substantial deviations from RRKM theory.

1. Introduction

To understand how chemical rate laws and rate
constants emerge from molecular dynamics we have
studied the classical dynamics of simple hamultonian
systems consisting of between two and twelve degrees
of freedom [1,2]. These systems were all capable of
undergoing geometrical isomerization, and the transi-
tion from one 1somer to another involved passage
over potential barriers. Barnier crossing requires energy
transfer between the reactive coordinate and the
other molecular internal degrees of freedom. This
process becomes random only if there 1s a transition
from quasiperiodic motion (KAM regime) to chaotic
motion involving reactive trajectones. Thus the reac-
tion process must be studied 1n the light of modern
developments in non-linear dynamics [3,4] .

tn our previous papers {1,2] we studied non-ergodic
hamiltonian systems. In this paper we focus on reac-
tion dynamics 1n an ergodic hamuiltonian system; par-
ticularly with respect to the conditions required for
RRKM behavior. First we devise a ssmple dynamical
system with measure invariant ergodic flow that un-
dergoes geometrical isomerization. Since this system
1s constructed from the stadium billiard [3], we call
1t the Siamese stadium billiard. The system s a K
system — meaning that trajectories starting from
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neighb'oring points in phase space, no matter how
close — separate exponentially in time [4]. This
spreading in phase space occurs with a rate constant
given by the maximal Lyapunov exponent X or equiv-
alently the [5,6] Kolmogorov entropy h. By study-
ing time correlation functions, and particularly the
reactive flux, it is possible to explore under what con-
ditions unimolecular rate laws and rate constants
ex1st, and moreover when RRKM theory is valid [1,2,
7]. In this paper we show that the reaction dynamics
can be correlated with the Kolmogorov entropy (or
equivalently the Lyapunov exponent). We show that
deviations from RRKM behavior occur when the
flow can recross the transition state in a time short
compared to the mixing time 7y, where 7y 1s propor-
tional to A~! (or equivalently to &+~ 1). This leads to
results that at first sight appear to be paradoxical, For
example, for energies very close to the barrier height,
it might be expected that the system will get trapped
n a well for times very long compared to the mixing
time A~} so that by the time the particle recrosses
the barrier 1t has equilibrated in the well. This would
lead one to expect RRKM theory to be valid. Quite
the contrary is observed, and 1t is easy to understand
why this takes place.

In a subsequent paper [8] we study a generaliza-
tion of the model for which the phase space decom-
poses into regular and irregular regions.
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2. Reaction dynamics in the Siamese stadium

The Swamese stadwum billiard (SSB) consists of a
pomt mass, 71 = 1, moving in a plane convex region
with differentiable border (except for the hole)
shown i fig. la.

The billiard moves freely inside the region, but
suffers elastic collisions with the boundary. The par-
ticle can pass through the hole only if mx2/2 > Ey,
otherwise it is elastically scattered from the hole. This
leads to activated barrier crossing. For simplicity we
study the dynamics for fixedm=1,E=1,R=1.
Since barrier crossing can take place only if £>> ED,
1t follows that £y <1.

The stadium billiard (SB) defined in fig. 1b has
played a prominent role in several recent studies [3].
While the circular billiard, y = 0, is completely 1nte-
grable, the stadium buliard, y > 0, was proved by
Bunimovich [9] to be a K flow (cf. fig. | for a defini-
tion of 7). Such systems are stochastic and ergodic. It
1s possible to map each trajectory of the Siamese sta-
dium bilhard (SSB) onto a particular trajectory of the
stadum bulliard (SB) by simply replacing —x by +x
whenever x < 0 1n the Siamese stadium. [t follows
that the Siamese stadium is also a K flow.

In a very lucid and exhaustive study of the stadium

bilhard (fig. 1b), Bennettin and Strelcyn [5] computed

+ x

(o]

Fig 1.(a) The Siamese stadium. (b) The stadium billard con-
sists of a unit pownt mass moving freely inside the boundary
and elastically scattering off the walls The boundary consists
of two semicucles of radius R jomned continuously at points
P}, Pq, Py, Py and P4 to parallel walls of length /, scparated
by a distance 2/ The hole 1n the Siamese stadium 1s of length
a. The parameters refered to 1n the text are ¢ =afl, v = I/2R,
the encrgy barner Eg, and the total energy E. In all studies
R=10andE=1.0.
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the maximum Lyapunov charactenistic number, A, for
a series of stadium bulliards with 0 <7y < 10. These
results are summarized in fig. 4 of ref. [3]. A gives the
rate at which trajectories starting at neighboring points
1n phase space, no matter how close, exponentially sep-
arate, and can thus be thought of as a mixing rate
Bennettin and Streleyn [5] could find no variation of
A with the instial state. It follows from this that the
Kolmogorov entropy h is identical to A. At y=0,\ =
0 (as expected for a regular system). A increases rapid-
ly with 1y, reaches a maximum at -y = 1 and then de-
creases very slowly with v. Thus by varying the aniso-
tropy, v, it is possible to study systems as a function
of mixing rate, A (or mixing time 7y = A1), It is im-
portant to recognize that two stadiums with the same
7 but different energy £, mass /in and area 4, have
different Lyaponov exponents, but these scale as

Ay, m' A" E'Y=X(y,m, A, EYE"Am{CA'm" )2
()

where the area of a stadium 1s given by
A=A{2,n)=(4r+ MR . ()

Bennettin and Strelcyn’s fig. 4 corresponds to a series
of stadiums with 4 =41, 1), E=1/2and m = 1.

Molecular dynamics in the Siamese stadium can be
generated from a study of the stadium. If one samples
trajectories from a microcanonical ensemble, then for
every trajectory crossing the boundary from, say, left
to right, there will be an equivalent trajectory passing
from right to left. Therefore, dynamics 1n the
Siamese stadium is equivalent to “tagging’’ trajecto-
ries in the ordinary stadium each time they hit and
elastically reflect off the transttion state (TS) region
a. If we label the trajectory by 0 = —1 or 1 depending
on whether 1t would pass through the TS or not, then
in addition to recording r and p we must also record
o. Needless to say, whether or not the trajectory
passes through the hole depends on whether or not it
satisfies X2 > 2E. Hence we need only consider
dynamics in the ordinary stadium when determimning
averages over the microcanonical ensemble. It follows
from the foregoing that the Lyaponov exponent X
for the Siamese stadium is identical to that of the sta-
dium,

To study reaction dynamics in the SSB 1t 15 useful
to determine the reactive flux [1,2]
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k(G EYS (X, X)) 1 (0)8(x(0) 0(x(OMe,  (3)

where Xy =Xy = 1/21s the fraction of time spent in
the wells A and B (cf fig. 1b), x 1s the reaction coor-
dinate, X(0)5 (x(0)) 1s the ncident flux through the
TS, and 8(x (1)) is the characteristic function that
measures whether the trajectory s in the right well at
time ¢ Its time dependence 1s recorded through the
taggng process discussed previously. Eq (3) 1s eval-
uated using a microcanomcal ensemble average at
energy E. The delta function requires the system to

be imtially at the transition state x=0 if (¢, £) decays
exponentally (at long time), then the decay rate r‘,"d" 1S
the kinetic rate constant (the sum of the forward and
backward rate constants). The RRKM rate constant is
found from the t - 0+ limit of k£ (1.£) [1.7]. This

gives

TRREM (XaXp) " HE8(x)0(E)E - @)

It 1s thus convenient to define the normalized (dimension-

less) reactive flux, k(f) = k(t,E)Tpri - Evaluation
of thus for the Siamese stadium budliard gives

TRRiy = (3a[A)E - ERIV26(E - Ey). 5)
Eq (3) 1s evaluated using the procedure outhned 1n
appendix B of ref. [2]. The sampling procedure is

used to choose 1mtial states in the SB, and the tagged
trajectories 1n the SB are used to determine £(r, £).

3. Results

Several systems were studied. Each system 1s defin-
ed by the parameters given 1n fig. la. The parameter
K (Z a/l) defines the size of the TS, a, relative to the
length, I, of the straight side of the stadium, The
parameter y (= 1/2R) gwves the length, /, to width, 2R,
rato of the single stadium from which the Siamese
stadium 1s composed. As indicated in fig. 1 the total
energy £, the mass of the billiard /1, and the radius r,
are fixedat E=1,m=1,and r = 1 for all systems stud-
ted The only other parameter considered is the bar-
ner height, Eq < I, that determnes whether or not
the particle can pass through tie hole.

In section 2 it was mentioned that the initial value
of the reaction flux 1s the RKKM rate constant‘rﬁil“\,M .
The normalized reactive flux k(¢) corresponding to
E;=0.45,k =0.02,7=05 s presented in fig. 2Al.
Fig. 2A2 gives the logarithmic plot versus time. The
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flux & (¢) decays exponentially in tume with a decay
constant 7'1n wluch is found to be equal to TE{‘KM )
the RRKM rate constant. Simnce 7p p ¢ Bives an ap-
proxumate measure of the time spent by a trajectory
trapped in either the A or B stadum (cf. fig. 1a), and
since A~ ! gives a measure of the mixing time or corre-
lation time of the trajectories, the quantity ATgrcar
gives a measure of the number of independent mixing
times spent by a trajectory while it is trapped n a
well. If Arppg is large, we expect that the system
will have a chance to equipartition in a well before 1t
has a chance to recross the hole. Using A determined
by Bennettin and Strelcyn [3] (E=2,m=1,7=0.5),
properly transformed using eq. (1) to our system (£ =
1,m=1,v=03),coresponding to fig. 2A1, gives
Arrrica = 97- This is clearly a case where trajectories
get trapped for periods long compared to the time re-
quired for equilibrating the system or equivalently
equipartitioning the system. Because the overall flow
1s ergodic, the system can be described by a statistical
theory of reaction dynamics such as RRKM theory.
1t 1s of interest to see what happens when the sys-
tem is changed to make Argpyyy much smaller. This
1s easly accomplished by making the hole consider-
ably larger Fig.2C1 gives the reactive flux k(t) for
the system (£ =045,k =0.5,7 =0 3). This system
1s dynamically identical to the systemn presented in
fig. 2A1, except that the relative width of the transi-
tion state, k =0 5,1s 25 tumes larger. The flux, k(¢),
now has fine structure. It exhibits decay over two
widely separated time scales There 1s rapid decay 1n a
time of order 1.4, a time corresponding to the time 1t
takes a typical activated trajectory starting at the hole
to cross the width of a stadium and return to the hole.
If the trajectory 1s still activated, that is, still satisfies
the energy condition of £2 > 2Eg, 1t will recross the
TS and cease to contribute 1o the reactive flux until
such time that 1t can cross the hole again. The rap:d
decay 1s due to those trajectones that rapidly recross
the TS. The nse around ¢ = 10 1s due to those trajec-
tories that leave the well and then on the next colli-
sion with the TS return. The long time decay, on the
other hand, 1s due to those trajectories that emerge
from the TS but are not sufficiently activated when
they collide with the TS. Because it takes a time on
the order of A~! to regain the energy to recross, these
trajectories give rise to a slower decay. The long time
decay seems to be exponential, but the relative fluc-
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Ig. 2 Rows A, B and C correspond respectively to Siamese stadia with (Ep =045, k=0 1,y=05),(Eo =095,k =0.1,v=05)
and £9 =043,k =1.0,7=0.5), Columns 1, 2 and 3 correspond respectively to the reactive flux, & (¢) {cf eq. (3)], the logarithm,
—Ink(r), and the short-nme global scction determined by sampling the inital states from ¢q. (6) and following the miotion for a
short time. In A3 and B3, the trajectories were followed for 100 unuts, whereas in C3 they were followed for ~ 15 units The ords-
nate and abscissa of the global section in column 3 are @ and 7 respectively (see text preceeding ¢q (6))
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tuations are so large that they do not permit an accu-
rate determination of the rate constant. An approxi-
mate value is g1 /TRy = 0-5- This should be
noted along with the fact that A\7gpiy = 4.

It 15 clear that even when a system is completely
stochastic, RRKM theory 15 not always valid. Thus
tllustrates the requirement that the system must equi-
partition on a time scale fast compared to the time on
which 1t recrosses the transition state. A K flow
(which 1s a very strong property) does not necessanly
satisfy thus requirement.

[t 1s worth mentioning at thus point that there
exists a measure preserving mapping of the stadium
billiard that is analogous to the Poincaré surface of
section used to locate regular and irregular motion in
continuous systems {3]. A trajectory n the stadium
can be charactenzed by the positions i at whuch the
bithard collides with the boundary, and the angles 0
(or better sin 8) made by the velocity vector with the
mward normal through the boundary at the point of
impact. The collision posttion 1s defined unuquely by
determining the distance one must travel clockwise
froin some reference pont (P1 in fig 1b) to the colli-
ston pomt. 7 is then defined as this distance divided
by the length of the perimeter |I’| of the stadium.
Any trajectory can then be mapped onto the carte-
sian space with @ =sinf as ordinate and 0 <n <1 as
the abscissa This mapping was mntroduced by
Bennettin and Strelcyn, who showed that the map 1s
a global section. The stadium, being a K flow, gives
nise to a random map with a uniform distnbution of
points

Fig 2, column 3 gives maps made by following the
trajectories contnbuting to the reactive flux Each
trajectory is followed for the tune required for the
flux to complete 1ts fast decay The initial states are
sampled from the normalized distribution

 20()8(x)8(E ~ H)
fr.P) = FiFx0(x) ()5 (E —H) " ©)

Fig. 2A3 gives the short-time map of the trajectories
used to compute fig. 2A1. The map looks perfectly
uniform, except for trajectories corresponding to very
simall angles 8. The high density of points at small
valuges of sin @ correspond to trajectones that bounce
back and forth many tunes before reaching the caps
of the stadium where they get randomized. The effect
of these trajectores gives rise to a very small short-
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time decay in the reactive flux (not observable in the
fig.). The short-time map (fig. 2C3) corresponding to
fig. 2C1 is very similar to fig. 2A3 since one is dealing
with the same stadium.

The normalized reactive flux corresponding to £,
=0.95.~ =0.1,and ¥ = 0.5 is shown in fig. 2B1. Fig.
2B2 gves the logarithm versus time. The long-time
decay is seen to be exponential with rate constant
'rﬁln/'rﬁll;\ml = 0 49. Interestingly ATpgrg = 65 for
the system, so that on the face of it we expect RRKM
theory to be valid. Why then does RRKM theory fail
to descnbe reaction dynamics in this system?

Fig. 2B1 exhibits several important features. At
very short times we observe several small oscillations
n k(1) These occur on time scale ¢ = 1 4, and are due
to trajectories of such small & that they return to the
hole in an activated state and can immediately recross
several times The relative weight of these trajectories
is given by the amplitude of the oscillations. This
weight would grow if the hole size were made larger.
A longer time decay, f = 100, is observed, and a very
long time decay over a tume of order 1000 is observed.
The short-time map generated by following the mi-
tially sampled trajectories for a time ¢ = 100 is shown
in fig. 2B3. This map exhibits a very striking non-
unmformity of points. What 1s this highly correlated
short-time motion due to? Remember- over long pe-
riods of time the map should be uniform!

This behavior can be attributed to the fact that for
lugh barners, Eg = 0.95, along the x direction, the int-
tial set of trajectories has velocity vectors pointing
largely along the x direction [the minimum value of
%15 (2E)"/?]. This “cone™ of trajectories widens as
the barrier £, is decreased. Figs. 2B1 —2B3 corresponds
to a very high barrier, £, =0.95, and therefore gives
nse to a velocity distribution that is highly peaked in
the forward direction (small sm 8). It is not difficult
to show that a large fraction of these trajectornies tend
to get reflected back to the transition state with small
sin 8 by the region of the semi-circle meeting with the
two walls. In this case, because of the narrow velocity
distribution, a sizeable fraction of the initial trajec-
tories starting at the transition state continue to have
small sin 8 for many collisions with the walls and re-
tumn to the transition state with small sin8, recrossing
it before spreading out over the energy surface in
phase space. The remaining trajectories that do not
coherently recross get trapped in the well for long
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penods of time and escape through the hole at random
times — hence the long-time exponentral decay.

This mechanism explains the time decay of £ (t)
and the non-uniform feature of the short time map.
The clustering in the map occurs for small values of
sin0, and reflects the sampling of initial states with
velocties peaky1 in the forward direction, and the
fact that small values of sin @ are maintamned by these
trajectories over a long period of time. Since RRKM
theory 15 expected to be valid only if equipartition can
take place before recrossing, the relevant test is whether
A7 is large where 7 1s the time characterizing the
fast decay. In the case corresponding to fig. 2C1,
7c = 100 and A7 =~ 5. Thus a large fraction of the
trajectories recross the TS in a time short compared
to A—!. Thus leads to the breakdown in RRKM theory.
If the TS size is made small enough, the fraction that
gets through Is 5o severely reduced that RRKM is re-
established. We note parenthetically that 1t should be
possible to estimate the mixing time 7y for an nitial
sampling from [6]

T = (—Inup)/A, )

where this formula gives the tume required for a pownt
set of measure g to cover phase space uniformly. For
our purposes ¢ must be chosen as the relative measure
of initial trajectories sampled by the distribution
given in eq. (6). As the barner height mcreases, u de-
creases, and 7y gets larger. Then the condition for
RRKM behavior 1s that

}\TRRKM/(—L"“)> I. (8)

Fig.3 summarizes our findings, The ordinate gives
the rau? of TR\n to TRRI\M Since in an ergodic sys-
tem Tpp ey IS an upper bound on -rR,m the ordinate
varies between 0 and 1. The abscissa is Arppcpg -

Curve (A) corresponds to a series with £g =045, 7=
0.5 as a function of relative TS size, k. According to
eq. (5) TRRKM increases as k decreases. Since X is
fixed, increasing ATppim corresponds to decreasmg
hole size, and it is seen that R (= TR\n/TRRl\M) n-
creases monotonically with ATp gy reaching unity —
at which point RRKM theory is valid. All this means
is that for small enough hole size equipartitioning
takes place rapidly compared to recrossing of the hole.
Curve (B) corresponds to a series with y=0.5,k =
0.1,and £ varying between 0 and 0.95. From eq.(5)
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Fig. 3. A plot of the 1atio R ol the measured raic constant o
the RRKM rate constant, versus the Lyapunov cxponent
times the RRKM hifetime 1n a well, Argray Curve (A) cor-
responds to a series of Stamese stadia (Ep =045,v=0.5)
with vamable k. Curve (B) corresponds 1o 4 series of Siamese
stadia with (K =0 1,y =0 5) with varuble Eg varying from
0 to 0 95 Curve (C) corresponds to a series of Stamese stadia
with (@ =0 2, Eg = 0 95) with vanable 4 (by varymg v at
constant R =1 0)

it can be seen the 7 gy increases as £ increases.
Since « is constant for the system, 1t follows that in-
creasing ATy implies increasing Eyy. Curve (B)
shows that R decreases monotomcally with ATgpiy -
This 1s consistent with the foregoing discussion which
shows that as £y increases, the trajectories contnbut-
ing to k(tﬁ are dominated by those with small s;n0,
which can return from one collision with the “rando-
rmizing™ cap of the stadium with again a small siné
and thereby cross. This happens i a tume short com-
pared 1o the equipartition time and leads to a non-
statistical rate constant. If R 1s plotted versus A7, or
AT, , We expect a monotonic mcrease to R = 1. Curve
(C) corresponds to a series at Ey =095, fixed hole
sizea = 0.2, but variable 7. Here 7ppcyq 15 fixed, but
7 1s vaned (by varying -y at constant R = 1). From the
work of Bennettin and Strelcyn [scaled by eq. (1)]
we are able to determine the value of A and thereby
ATRRE M - For small values of y (small 7), A 1s small,
As 7 is increased ATppyyg INCTEAsEs and we observe
that R grows, monotonically. Because £y = 0.95 we
never observe pure RRKM behavior. This follows
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from our previous discusston, The overall behavior of
the curve is consistent with the view that over and
above thus £y = 0.95 behavior, there is a dependence
of the reaction dynamics and its associated rate con-
stant on the ime required for equipartitioning com-
pared to the time between recrossings, which is con-
trolled by .

Thus we conclude that even in purely stochastic
measure preserving flows 1t is still possible to find in-
teresting dynamical correlations that mvalidate the
assumptions on which RRKM theory is based. [t has
been shown that 1t is possible to correlate the dynam-
1¢c contributions to the rate constant with the
Lyapunov exponent. This correlation gives rise to the
view tliat A can be regarded as analogous to the *col-
lision rate™ m collision theories of reaction dynamucs.
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