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REACTION DYNAMICS IN AN ERGODIC SYSTEM: THE SIAMESE STADIUM BILLIARD * 
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To study the rolc~ of chaos m energy transfer dnd reactIon dynamics in lsolared molecules, WC devlsc n slmplc chss~d 

dw3md swlrm with m-urc PE.vA~~ ergodie flow. Althougl~ the dynamsti SYSlCm IS completely chaob, it IS found 
that dynarmcal correlations give rise to substdntl,d dcvlahons from RRKhl theory. 

1. Introduction 

To understand how chemical rate laws and rate 
constants emerge from molecular dynamics we have 
studled the classrcal dynamics of simple ham&o&m 
systems consisting of between two and twelve degrees 
of freedom [ 1,2] _ These systems were all cnpoble of 

undergomg geometrical isomerizatlon, and the transi- 
t~on from one isomer to another mvolved passage 
over potential barriers. Barrier crossmg requires energy 
transfer between the reactive coordmate and the 
other molecular Internal degrees of freedom. This 
process becomes random only if there 1s a transitlon 
from quasIperIodIc motion (KM1 regime) to chaotic 
motion involvmg reactive trajectories. Thus the reac- 
lion process must be studied m the l&t of modem 
developments in non-linear dynamics [3,4]. 

In our previous papers [I ,2] we studied nonergodic 
hamiltonian systems. In this paper we focus on reac- 
tion dynamics m an ergodic hamdtonian system; par- 
tlcularly with respect to the conditions required for 
RRKM behavior. First we devise a simple dynamical 
system with measure invariant ergo&c flow that un- 
dergoes geometrical isomerization. Since this system 
IS constructed from the stadium bilhard [3], we call 
It the Siamese stadium bfliard.The system IS a K 
system - meaning that trajectories starting from 

* Supporwd by a grant loom the NatIonal Sc~cncc rounddtlon 
l * I’rcsunr nddrcss. Los Ahmos Not~o~-~l Laboratory, Los 

Alunos. New Me\lco 87545, USA 

neighboring points in phase space, no matter how 
close - separate exponentially m time [4]. This 
spreadmg in phase space occurs with a rate constant 
given by the maximal Lyapunov exponent X or equiv- 

alently the [5,6] Kolmogorov entropy h. By study- 
ing time correlation functions, and particularly the 
reactive flux, it is possible to explore under what con- 
dltions unimolecular rate laws and rate constants 
exist, and moreover when RRKhl theory is Aid [ 1,7, 

71. In this paper we show that the reaction dynamics 
can be correlated with the Kolmogorov entropy (or 

equivalently the Lyapunov exponent). We show that 
deviations from RRKM behavior occur when the 
flow can recross the transltlon state in a time short 
compared to the mixing time ~~1, where T*, IS propor- 
tlonal fo h-l (or equivalently to /r-t). This leads to 

results that at first sight appear to be paradoxical. For 
example, for energies very close to the barrier height, 
It might be expected that the system WIU get trapped 
m a well for times very long compared to the mixing 
tune X-l so that by the tune the particle recrosses 
the barrrer It has equilibrated in the well. This would 
lead one to expect RRKM theory to be valid. Quite 
the contrary is observed, and It is easy to understand 
why this takes place. 

In a subsequent paper [8] we study a generaliza- 
tion of rhe model for which rhe phase space decom- 

poses into regular and irregular regions. 
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2. Reaction dynamics in the Siamese stadium 

The Stamesa sradarm brlliatd (SSB) consists of a 

pomt mass, m = 1, movmg in a plane convex regon 
with differentiable border (except for the hole) 
shown m fig. la. 

The bdhard moves freely inside the region, but 

suffers elastic collisions wrth the boundary. The par- 
t icle can pass through the hole only if r/ti ‘/? > Eo, 
otherww it is elastically scattered from the hole. This 
leads to activated barrier crossmg. For slmphcity we 
studythedynamicsforfiedm=l,E= L,R= 1. 
Since barrier crossing can take place only if E > ED, 

it follows that E. < I. 
The stadium billiard (SB) defined in fig. lb has 

played a promment role in several recent studres [3]. 
Wtie the circular bffllard, 7 = 0, is completely mte- 
grable, the stadium bdhard, 7 > 0, was proved by 
Bunimovlch [9] to be a K flow (cf. fig. I for a defml- 
tlon of 7). Such systems are stochastic and ergodic. It 
1s possible to map each trajectory of the Siamese sta- 
dium bdhard (SSB) onto a particular trajectory of the 
stadium bdliard (SB) by simply replacmg -x by +x 
rvlrencverx < 0 m the Siamese stadium. It follows 
that the Siamese stadium is also a K flow. 

Inaverylucidandexhaustive studyof the stadium 

bllhard (fig. lb), Bennettin and Strelcyn [j] computed 

0 

Fig I. (a) The Sramesc smdlum. (b) The stadwm bllbard con- 

s~sts of a unit point mass movmg freely mslde the boundrry 
and elashcslly sceltermg off Ihe walls The boundary consists 
of Iwo semwrcles of ndlus R Jomcd conlmuourly nt pomls 

Pl, Pz, Pz, PJ and P,J lo parallel walls of length I, scpanted 

by a dwance 21 The hole m the Snmese sradwm IS of lengrh 

a. The parameters rcfered fo III the text are K =a//, 7 = i/ZR, 
the cncrgy bztmcr Eo, and the total energy E. In all studies 

R= l.OandE= 1.0. 

the maximum Lyapunov charrctenstlc number, A, for 
a series of stadium bdliards with 0 < 7 Q IO. These 
results are summarized in fig. 4 of ref. [3j _ A gives the 
rate at which trajectories starting at neighboring points 
III phase space, no matter how close,exponentially sep- 
arate, and can thus be thought of XG a nuring rate 

Bennettin and Strclcyn [Sl could fmd no vrriatton of 
X wth the imtial state. It follows from this that the 
Kolmogorov entropy/r is identical to X. At 7 = 0, A= 
0 (as expected for a regular system). A mcreases rapld- 
ly with 7, reaches a maxunum at 7 = I and then de- 
creases very slowly with y_ Thus by varying the aniso- 
tropy, 7, it is possible to study systems as a functron 

of mking rate, h (or mixing tune 7hl z X-l). It is un- 
portant to recogmze that two stadmms with the same 
7 but different energy E, mass m and area A, have 
different Lyaponov exponents, but these scale as 

A(y,r,z’,A’,E’) = h(y, III, A,E)(E’A~,,/C/I’~,I’)I/~, 

(1) 

where the area of a stadium IS given by 

A=A(f/2,r)=(4ytn)R’_ (2) 

Bertnetttn and Strelcyn’s fig. 4 corresponds to a senes 
of stadiums with A = d( I, I), E = l/2 3nd MI= I _ 

Molecular dynamics m the Siamese stadium can be 
generated from a study of rhe stadium. If one samples 
trajectories from a microcanonical ensemble, then for 
every trajectory crossmg the boundary from, say, left 
to right, there wffl be an equrvalent traJectory passing 
from right to left. Therefore, dynamics m the 
Siamese stadium is equwalent to “tagging” trzgecta- 

ries in the ordinary stadmm each time they hit and 
elastlcrdly reflect off the trans;tlon state (TS) region 
a. If we label the trajectory by u = -1 or 1 dependmg 

on whether It would pass through the TS or not, then 
in ad&tlon to recording r and p we must also record 
o. Needless to say, whether or not the trqectory 
passes through the hole depends on whether or not it 
satrslies$ > 2Eo. Hence we need only consider 
dynamics III the ordinary stadium when determmmg 
averages over the rmcrocanomcal ensemble. It follows 
from the foregoing that the Lysponov exponent X 

for the Siamese stadium is identical to that of the sta- 
chum. 

To study reactton dynamics in the SSB It LS useful 
to determme the reactive flux [ 1,2] 
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k(r; E) = (X,.,Xu)-’ C~(O)S(_~(O)) e(.r(t)))E. (3) 

where X, =X, = l/7 IS the fractron of time spent m 
the wells A and B (cf fig. Ib),x IS the reaction coor- 

dmate,f(0)6(x(O)) IS the mcrdent flux through the 
TS, and 0(x(t)) is the characteristrc functlon that 
measures whether the trajectory IS in the right well at 

ttme I Its tune dependence IS recorded through the 
taggmg process drscussed prevtously. Eq (3) IS evd- 

unted using a mtcrocanomcal ensemble average at 
energy E. The delta function reqmres the system to 
be ItutiaUy at the transition state s = 0 If k(t. E) decays 
e\ponentlally (at long tune), then the decay rate T;:,, IS 

the kinettc rate constant (the sum of the forward and 
backward rate constants). The RRIW rate constant is 

found from the t + Ot limit of k (I. .E) [ I .7]. This 
gives 

$&, = (x,x,)-‘~~s(.r)o(.i)~~ . (4) 

It IS thus convenient to define the normahzed (dimension- 

less) reactrve flux,i(r) =k(r,&nRKXt. Evaluatron 

of tlus for the Siamese stadium bdliard gtves 

&,, = (la/~)[(E-Eo)/7]‘/28(~- Et)). (5) 

Eq (3) IS evaluated ustng the procedure outhned rn 
nppend~~ B of ref. [3_]_ The mmpling procedure is 
used to choose trutral states tn the SB, and tl!e tagged 
trajectories m the SB are used to determine k(r, E). 

3. Results 

Several systems were studred. Each system 1s defm- 
ed by the parameters given III fig. la. The parameter 

K (E a/C) defines the size of the TS, a, relatrve to the 
length.1, of the straight side of the stadium. The 
parameter 7 (’ l/?lR) gwes the length, I, to width, X, 

ratro of the smgle stadrum from which the Sramese 
stadnnn IS composed. As tndrcated in fig. 1 the total 
energy E, the mass of the billiard tn, and the radius r. 
are Tied at E = I, tn = 1, and r = I for aU systems stud- 
ted The only other parameter consldered is the bar- 
ner height,!Yo < I, that determmes whether or not 
the parttcle can pass through the hole. 

In section ? tt wx mentioned that the initial value 

of the reachon flux IS the RKKM rate constant sikMx, . 
The normahed reactive flux k(t) corresponding to 
E. = 0.45,~ = O.O?,,r= 0 5 IS presented in fig. 2A1. 
Fig. ?A2 grves the logarrthmic plot versus time. The 
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lluxk(t) decays exponentially in tune wtth a decay 
constant rR:n whrch is found to be equal to rRkKS,, 
the RRKhl rate constant. Smce rRRKL, gives an ap- 
proximate metwJre Of the Lame Spent by a. traJeCtOIY 

trapped in either the A or B stadium (cf. fig. la), and 
smce X-l gives a measure of the mrxing tune or corre- 
lation hme of the trajectories, the quantrty kanK,\t 

grves a measure of the number of Independent moving 
times spent by d trajectory while it is trapped m a 

well. If kRRMX, is large, we expect that the system 
wdl have a chance to equipartihon in a well before tt 
has a chance to recross the hole. Usmg X determined 
by Bennettin and Strelcyn [3] (E= 2, tfz= I, y= 0.5), 
properly transformed using eq. (I) to our system (E= 
1,~ = l,7= 0 5) correspondtng to fig. ZAI,gives 
kRRKh, = 97. This is cle~ly n case where trajectorres 

get trapped for periods long compared to the time re- 
quued for equtibrattng the system or equivalently 
equipartttioning the system. Because the overall flow 
IS ergodic, the system can be described by a statrstrcal 
theory of reactton dynamrcs such as RRKM theory. 

It IS of interest to see what happens when the sys- 
tem is changed to make hrRRKII much smaller. Thus 
1s easdy accomplished by making the hole consrder- 
ably larger Fig. XI gives the reactive flux k(t) for 
the system (EO = 0.45, ti = 0.5,~ = 0 5).Thls system 

IS dynamuxlly ldentlcnl to the system presented in 

fig. ?A I, except that the relattve wrdth of the transt- 
tion state, li = 0 5, IS 25 tunes larger. The flux, k(f), 
now has fine structure. It exhibits decay over two 

wtdely separated time scales There IS rapid decay m a 
time of order I .4, a ttme correspondmg to the ttme It 
takes a typical actrvated trajectory startmg at the hole 
to cross the width of a stadium and return to the hole. 
If the rqectory IS still activated, that is, still satisfies 

the energy condition off? > X0, It wdl recross the 

TS and cease to contribute to the reactive flux until 
such hrne that tt can cross the hole again. The raped 
decay IS due to those trqectones that rapldly recross 
the TS. The nse around f = IO IS due to those trajec- 
tories that leave the weU and then on the next colh- 
sion with the TS return. The long tune decay, on the 
other hand, IS due to those trajectories that emerge 

from the TS but are not sufficiently activated when 
they collide with the TS. Because it takes a time on 
the order of h-t to regatn the energy to recross, these 
trajectortes give rise to a slower decay. The long tune 
decay seems to be exponential, but the relative fluc- 
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t-e. L! Rows A. B and C correspond rcspcctwcly to Swmese stad,a with (E, = 0.45. K = 0 1, ,. = 0 5). (E,, = 095. u = 0.1, T = 05) 

imd Etj=0.45,w= l.O,y=0.5).Columns 1, - 7 and 3 correspond I~S~~CI~VCI~ 10 the ~CKIIVC flux.k(t) [CT eq. (311. t’le lowlthm. 
-Ink(r), and the short-nmc global scctxon detsrmmcd by wmpbnng the inrtnl states from cq. (6) and follon~~~ tho niotlon for a 

short tlmc. In A3 and 83, the trqectories were folkwcd for 100 umts, whereas m C3 they were followed for = IS umls The ordl- 

nate and abscusa of the global scct~on III column 3 arc LI and q rcspectivcly (see text prccccdmg cq (6)) 
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tuat~ons are so large that they do not pernut an accu- time decay in the reactive flux (not observable m the 
rate determmatlon of the rate constant. An approxi- fig.). The short-time map (fig. X3) corresponding to 

mate value is 7R:J’RLKb, z 0.5. This should be fig. Xl is very similar to fig. 2A3 smce one is dealing 
noted along with the fact that X~RRE\~ z 4. wrth the same stadmm. 

It IS clear that even when a system is completely 
stoclmsstlc, RRKM theory ~5 not always valid. Tlus 

illustrates the requirement that the system must equi- 
partitlon on a time scale fast compared IO the tune on 
which 11 recrosses the transition state. A R flow 

(which IS a very strong property) does not necessarily 
sat&y tlus requrrement. 

It IS worth mentronmg at tlus point that there 

exists a measure preserving mappmg of the stadmm 
bdhard that IS analogous to the PoincarC surface of 
section used to locate regular and irregular motion in 
contmuous systems [3]. A trajectory m the stadium 
can be chancrzrued by rhe positions q at which the 

bdhard collides with the boundary, and the andes 0 

(or better sm0) made by the velocity vector with the 
mward normal through the boundary at the pomt of 

unpact. The colhslon position IS defied uruquely by 
determrmng the distance one must travel clockwise 
from some reference pomt (PI in fig lb) to the colli- 
sion pomt. q is then defied as this distance divided 

by the length of the pertmeter 1l7 of the stadrum. 
Any trajectory can then be mapped onto the carte- 
sm space with a = sm0 as ordinate and 0 <q d 1 as 
the nbsclssa Thus mappmg was mtroduced by 
BennettIn and Strelcyn, who showed that the map IS 
a global sectIon. The stadnm, berg a I\’ flow, gives 
rise to a random map with a uniform distnbution of 
points 

The normalized reactive flux correspondmg to Eg 
= 0.95. h = 0.1, and 7 = 05 is shown in fig. ZBI. Frg. 
2B:! grves the logaritlun versus tune. The long-time 
decay is seen to be exponential wth rate constant 

T&J&~, = 0 49. Interestingly XTRRI;X~ = 65 for 
the system, so that on the face of it we expect RRKM 
theory to be v&d. Why then does RRKM theory fad 
to descnbe reaction dynamics m this system? 

Frg. 3B1 exhlbrts several important features. At 
very short times we observe several small oscillatrons 
m k(f) These occur on tune scale f = 1.4, and are due 
to tralectories of such small 0 that they return to the 
hole m an nctivnted stnte and can immedintely recross 

several times The relative weight of these trajectories 
is given by the amphtude of the oscillations. This 
weight would grow If the hole srze were made larger. 
A longer time decay, I = 100, is observed, and a very 
long time decay over a tune of order 1000 is observed. 
The short-time map generated by following the uu- 
tlally sampled trajectories for a tie f = LOO is shown 

m fig. 2B3.This map exhibits a very strkmg non- 
umformity of points. What IS this tughly correlated 
short-trme motion due to? Remember. over long pe- 
riods of tune the map should be urnform’ 

FIN 2, column 3 gives maps made by following the 
tr3JJeCtOrlCS contnbuting to the renchve flux Eacl~ 

trajectory is followed for the tune required for the 

Iluk to complete its fast decay The initial states are 
sampled from the normahzed distribution 

This behavior CM be attributed to the fact that for 
lugh barners,EO = 0.95, along the-r direction, the im- 
teal set of trajectories hasvelocity vectors pointmg 

largely along the x chrectlon [the mmimum value of 
.f IS (2E,,)1/2]. This “cone” of trajectones widens as 
the barrier E, is decreased. Figs. XII-2B3 corresponds 
to a very high barrier, E, = 0.95, and therefore gives 
nse to J velocity dlstnbution that is highly peaked in 
the fonvard dIrection (small sm 0). It is not difficult 

to show that a large fraction of these trajectones tend 

to get reflected back to the transitron state with small 
sm 0 by the region of the semi-circle meeting with the 
two walls. In this case, because of the narrow velocity 
distribution, a srzeable fraction of the initial trajec- 
tories starting at the transition state continue to have 
small sm 0 for many collisions with the walls and re- 
turn to the transItion state with small sin8, recrossing 

it before spreadmg out over the energy surface in 
phase space. The remahung trajectories that do not 
coherently recross get trapped in the well for long 

(6) 

Fig. ?A3 gives the short-time map of the trajectories 
used to compute fig. 2Al. The map looks perfectly 
uniform, except for trajectories correspondmg to very 

small angles 0. The high density of points at small 
values of an 0 correspond to trajectones that bounce 
back and forth many tunes before reaching the caps 

of the stadium where they get randomized. The effect 
of these trajectones gives rise to a very small short- 
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penods of tune and escape through the hole at random 
times - hence the long-tune exponential decay, 

This mechanism explains the time decay ofk(r) 
and the non-uniform feature of the short tme map. 
The clustering in the map occurs for small values of 
sin0. and reflects the sampling of initial states with 
veloclrles peak,-j in the forward directIon, and the 

fact that small values of sm fl are maintamed by these 
trajectories over a long period of hme. Since RRKM 
theory IS expected to be valid only if equipartltion can 

talie place before recrossmg, the relevant test is whether 

X7c is large where 7c LS the time characterizing the 

fast decay. In the case correspondmg to fig. 2C 1, 

rc = 100 and 1~~ = 5. Thus a large fraction of the 
trajectories recross the TS in a time short compared 
to X-t. Thus leads to the breakdown in RRKAI theory. 

If the TS Size is made small enough, the fracllon that 
gets through is so severely reduced rhat RRKbl is re- 
estabhshed. We note parentherlcally that it should be 
possible to estimate the muring time T~, for m mitial 

sampling from [6] 

(7) 

where tl~is formula gives the ttme requued for a pomt 
set of meX”re /J to coW2r plKIse space uniformly. For 
our purposes p must be chosen as the relative measure 
of mitial trajectones sampled by the drstrlbuhon 
given in eq. (6). As the barner height mcreases,p de- 
creases, and 7hI gets larger. Then the condmon for 
RRKhl behavior 1s that 

hTRR&(- hp) > 1 . (8) 

Fig. 3 summarizes our fidings. The ordinate gives 

the ratlo of ‘iln to $kKhl. Since in an ergodlc sys- 

tern 7ikKh, is an upper bound on ~,i,., the ordinate 
vanes between 0 and 1. The abscissa is XTRRK~~. 
Curve (A) corresponds to a senes with E0 = 0.45,7 = 
0.5 as a function of relative TS size,r. According to 

eq- (5) ‘RRK?l increases as K decreases. Since h is 

fied, increaung XTRRK~~ corresponds to decreasmg 
hole size, and it is seen that R (ETR$~&~~) III- 
creases monotonically with XTRRK*~ reaching unity - 
at which point RRKM theory is vahd. AU this means 

is that for small enough hole size equipartmoning 
takes place rapldly compared to recrossing of the hole. 
Curve (B) corresponds to a series Wh 7 = 0.5, K = 

O.l,and E. varying between 0 and 0.95. From eq.(S) 

‘2r 

IO- 

08- 

: 
_I 06- 

c 
. 
z 

;Li 0 .I - 

t 

FIN. 3, A plol of Ihc I~NIO R or Ihc measured rrl1c comirmi to 
the RRKhl rare constant, wrsus the Lyapunov c~poncn~ 

Llmcs the RRKM hfehmc m a well. ATRRK~I Curve (A) cor- 
responds IO a scrtcs of Slamcse stadla (.I70 = 0 45. y = 0.5) 

WII)I vxrablc K Curve (II) corresponds IO .I SCIISS of Srsmcsc 
stadr;l WI~II (A’ = 0 I, ‘y = 0 5) w11h VJrt.tb!C&, vdrymg from 

0 IO 0 95 Curve (C) corresponds IO a scrtcs of Sumese stadra 
WIIII (u = 0 2.Eo = 0 95) w101 vanable -y (by vrrymg y .I! 
consuu R = 1 0) 

it can be seen the 7KRKal increases as E. mcreascs. 

Since K is constant for the system, It follows thal in- 
creasmg X~RRK~~ implies increasmg Eo. Curve (B) 

shows that R decreases monotorucally w~rh ~~~~~~~ _ 
This IS consistent with the foregomg dlscussion wlucl~ 

shows that asEo mcreases, the traJectories contnbul- 

ing to i(f) are dominated by those with small ~0, 

which can return from one colhsion with the “rando- 
mlzmg” cap of the stndwm wth agz~in = small smf3 

and thereby cross. Tills happens m a time short com- 

pared to the equlpartltion time and leads to a non- 
SlatlStlCal rate constant. If R IS plotted versus AT, or 
km, we expect a monotonic mcrease to R = I. Curve 
(C) corresponds to a series at E. = 0.95, fked hole 
size u = 0.2, but variable 7. Here TRRK~~ IS fiied, but 
7 IS vaned (by varying 7 at constant R = I). From the 

work of Bennettin and Strelcyn [scaled by eq. (I)] 
we are able to determine the value ofX md thereby 

hTRRKh[, For small values of 7 (small I), h IS small. 
As 7 is increased TITRRL~~ mcreascs and we observe 
that R grows, monotorucally. Because E. = 0.95 WC 
never observe pure RRKM behavior. This follows 
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from our prewous dlscuswn. The overall behavior of 
the curve is consistent with the view that over and 
above tk E. = 0.95 behavior, there is a dependence 
of the reaction dynamics and its assocrated rate con- 

stannt on the tvne required for equipartlttoning com- 
pared to the time between recrossmgs, which is con- 
trolled by 7. 

Thus we conclude that even in purely stochastic 
measure preservmg flows It is still possible to find in- 
terestmg dynamical correlatlons that mvahdate the 
assumptions on which RRKM theory is based. It has 
been shown that It IS possible to correlate the dynam- 
IC contnbutlons to the rate constan: with the 

Lyapunov exponent. Tlus correlation gives nse to the 
view that X can be regarded as analogous to the “col- 
hston rate” III colhsion theories of renctlon dynamics. 
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