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I. Introduction 

Stalatical theories of react Ion dynamics, such as 

RR01 theory and trdnsltlon state theory, have 
played an Important role m the modern understand- 

ing of chemxal dyrlamics [l-3]. A rwccsnry but 1101 

sufficient condition for these thcoras Is that the dy- 

namical system be ergodic. In a compdnron paper [4] 
WC have shown that even m ergodx systems, k.xe arc 

condltlons m wh@ dynamical correlations give rise 

to large deviations from RRKhl theory. In a prcvlous 

pubhcation we showed that even when a system IS 

nonergodic, It IS possible to derive a statIstIca theory 
of reaction rates [5,6] In non-ergodx systems phxc 

space is decomposable into regular and irregular re. 
gions. Motion in the regular region is quasipendodrc, 
wth trajectories confmed to invariant mamfolds of 
lower dimensionahty than the energy hypersurface 

in phase space [7]. hlotlon in the irregular regron is 
chaotic. If it is assumed that the motion rn the Irrcgu- 
lar region randomizes on a time scale short compared 

to reaction, then It IS possible lo show that the kinet- 
IC rate constant for barrier crossing IS gwen by [5,6] 
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&RRKhl 

wlicrc r mdmtcs in pomr m phse q-we, x IS the rc- 
aclion coordmate, s = 0 is the transllion stale, and 
H(r) IS the hamdtonian. and where 

B(T)=0 rEreg, 

=I rE lrrcg , (3) 

IS a charscterrstlc function mdicatrng when TIS III the 

urcgular rcglon of phase space. Eq (I) should be con- 
trasted with the RRKhl rate constant [3] whxh as- 

sumes the space to be ergodlc 

4iU 

= (r(r\*n)- I ld r-w) WON W - m-))~ (2) 
--pFt$iKv(r)) 

In the event that all crossmg trajectories arc chaotic 

so that B cm be taken as umty in the numerator of 
cq. (I), the only chfference between eq. (3) and eq. 
(I) is the denominator. Smce the denommalor of eq. 

(3) counts I-cwer stiltes than that of eq. (2). IL foUow* 

that m this case 

‘ii:RRKhI >71&;h, * (4) 

Tlus mequahty arises from the fact that III the non- 

ergo&c system, the regular region of phase space is 
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occupied by utvariant tom The irregular trqectories 

are excluded from the rgrons occupred by these tori 
and this gives rise to an “excluded volume effect”. 

In our previous study [5,6] of a contmuous hamil- 
toman flow we could not detect any case m which 

-I the actual reaction rate 7R,n was larger than T&~, 
as predicted by eq. (3). The fadure of statistical the- 
ory was attributed to correlations in the irregular 
matron, and particularly to motion on vague tori [S]. 

To better understand tlus problem we here devise 

a very sunple reactive system which consists of two 
stadium billiards [9] connected at an edge. Motion 
through the transition state (TS) requires activation. 
This dynamical model LS sun&x to a model studled in 

a compamon paper 141. In that paper the system is a 
K system, that is, an ergodic system. Here we explore 
a generahzatlon wluch gives non.ergodlc flow. We 
show that under certain conditions, thus model defi- 
mtely gives rise to rate constants larger than RRKM 
rate constants, a result conslstent with eq. (1). We 
also f’iid thnt under certain conditions, correlations 
III the irregular trajectories give rise to deviations 

from eq. (1) which reduce the rate constant 

2. The generalized Siamese stadium 

The model consists of a bilhard [9] of mass III = 1 
mowng freely in the interior of the boundary given in 

ftg. la, and suffering elastic collisions with the wall. 

PI P1 and PJPJ are parallel straight lines and Pz Pj 
and P4 P, are arcs of circles of radius r = 1. Ln the 

hmrt S + Cl the stadium becomes a rectangle which IS 
ZI completely regular system. On the other hand when 
S = I, the system isan ordinary stadrum which is com- 
pletely ergodic. Motion through the hole isactlvated; 
that is, only when 

$/IL? BE, (5) 

can the ptitlcle pass through the hole_ 
As pointed out in a previous publication [4], mo- 

tlon in the Slamesc stadium (fig. la) can begenerated 
by following motion m the single stadium (fig. lb) by 
tagging the trajectory with a = -1 when It hits the 
transition state (TS) a, and can cross [that is, simul- 
taneously satrsfies eq. (S)]. Otherwise, the trajectory 
IS tagged u = +l. With these traJectorres it is possible 
to determine the reactive flux, 

170 

(bl 

l-1~ 1 (a) The Siamese stxiwm. (b) The gcncnhzed starhum. 

bdhxd consists of a umt pomt mass movmg freely uwdc 111~ 

boundary and cktically scatlcring off the walls. The bound- 
ary consists of arcs of a cuclc of ndlus R,JWICd dlscontinu- 

ously at pomls P,, Pz. P,, and P4 to pamllcl walls of length 
I = I 0, separated by a dlslann: ZS The hole m the Slamcse 
stadwm ~sof length0 The panmcicrs used m the text arc K 

=a//.5 = 2S/I, the energy bdrncr Eo, the iolal energy E. 
Systcmsu~th5=20.1.8,1.6,L.O.O05w~th~~cd~=OI. 

E. = 0.95 and E = I .O arc studled m tills paper 

k(f) = (x,x,)-’ 

x ld WWx@)) MN W - W-1) 
Jd I’&? - H(r)) ’ (6) 

where X, =X, is the fraction of time spent by traJec- 
tories in wells A and B. k(t) is a quantity whose initial 
value gives the RRKM rate constant, eq. (3), and whose 

long-time exponential decay, e-l/TR,,, gtves the exact 
rate constant T,&. The reactive flux is computed by 
sampling initial states from the distnbution 

and then computing eq. (6). 
To better understand the dynamics of the Siamese 

stadium it IS useful to employ the global sectron in- 
troduced by Bennettin and Strelcyn [9]. Each colhsion 
of the bilhard with the boundary IS defied by thepa- 
rameters 

o~‘r,=~/lrl<l, -1<.(y=sine<1, @) 

where * is the distance measured clockwise from the 
point PI (cf. fig. 1 b) to the pomt of colhsion, and If’1 
IS the circumference of the stadmm. The collision an- 
gle 0 is the angle made by the velocity Oust pnor Lo 
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collision) with the mward normal to the boundary at 

the point of collision. Thus each collision is defined 
by the coordinate &.I, a) and GUI be represented by B 
point in a bounded two-dimensional cartesian space. 
A trajectory gives a point set in this space. Quasiperi- 
odic trajectories give rise to closed curves (or “ton”) 
whereas irregular trajectories give nse to a random set 
of points that must he in the regron not occupied by 
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tori. Ttas global section is the analogue of the Pornark 
surface of section in contmuous systems. One way of 
studying rezwtion dyn;lmics is to dctcrminc the globe1 

short-time section resulting from sampling mlthl points 
from the distribution given In eq. (7). This IS the meth- 
od used in ref. [I 1, and adopted here to demonstrate 
the dynamic;ll contribution to the reactlon dynamics. 
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Rg. 2. Rows A-C concspond rcspcc~n~ely to sIddl;l wth f = 2 0. 1.8. I 6. I .O and 0 05. Columns I-4 correspond rcsprc~~vcly 
to the rcxtivc flux A(f) (cf. eq. (6)). -In k(t), the shott-ttmc global sectton gcncrated by samplmg tnt~l;ll states from q. (7). and 
the kdl global sectIon as dcliicd in the Ml. The ordlnatcs and abscissrs of the global secuon tn columns 3 ud 4 arc n and r) rc- 
spcctlvcly [cf. eq. (S)]. 
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3. Results 

To better understand reaction dynanucs m non- 
ergodlc systems, we study a series of Siamese stadnnns 
all havmg energy E = I, barrier height E, = 0.95, 
length 1 = 1 0, radius R = I, rehtlve hole size K = a/i 
= 0.1, and mass III = 1, but different widths I= 3s 
ranging from 2.0 to 0.05. When 5 = 2 0 the system 
IS the fully ergodlc stadium studied by Bennettin and 
Strelcyn. When { = 0.05 the system looks very much 

WCC a long thm rectangle and IS highly regular. 

Representatwe results of this study are presented 
in fig. 2. The rows are labeled A-E and the columns 

are labeled l-4. Rows A-E respectively gwe the re- 

sults for increasingly regular systems with c = 2.0, 
l&1,6, I .O and 0.05. Column I gives the normahzed 
flux, k(t), that is, k(r)~~~,,~, where T,&~, IS the 
RRKhl rate constant [cf. eq. (3)] which has the ex- 
phc1t form 

7&,\, q 4[@ - _&)/l] “‘(/K/d)fiJ(E - Eo) , (9) 

where A is the area of the stadum in fig. lb. Column 
2 gives a logarithmic plot of the normalized flux from 
which the rate constant rR\fn IS determined (cf. table 
1). Column 3 gives the global section (short time) and 

column 4 gives the global sectlon (long time) found 

by sampling uutial pomts from eq. (7). 

System A in fig. 2 IS fully stochastic, as can be 
seen from theglobal section ui fig. 2A4. In all systems 
studied here, the barrier height IS very large (&, 

= 0 95) The states nmpled from eq (7) consequently 

IWK it velocity dlstrlbution peaked m the forward (.Y) 
ducction, and these have small trntlal colhslon nnglcs. 

These propagate to the caps, and m the full starhum 
(system A), where the capjoms the straight wall con- 

tinuously, they propagate back with small collision 

angles - hence the dense set of points in the short- 
tune sectlon, fig 2A3. As was pomted out in a prevl- 
ous publication [S], this correlated motion leads to 
recrossing of the transltlon state at f 2: 100 (as seen 
in fig. 2Al) and gives rise to a large deviation (?-~k/ 
T&ELI = 0.5) from RRKM theory even in an ergochc 
system. 

System B m fig. 2B is also fully ergodic as can be 
seen from its global section, fig. 2B4, but now the 

circular caps do not join the straight walls continuous- 
ly. Thus although the traJectorles are stall sampled 
with small collision angles, these propagate to the 
nps and upon fist colhdmg with caps have krge COI- 

hsion angles. The net effect is that the short-time cor- 
relation is largely wiped out, as can be seen in the 
short-time section m fig. 2B3, and in the reactive flux 
in figs. 2Bl and 2B2. The normahzed reactive flux is 
a single exponential decay with T&,, = r&I (cf. 
table 1). 

System C in fig. 2C IIZS a global section, fig. 2C4, 
that exhibits closed curves (tort). Trajcctones gwing 

rise to these closed curves are quasiperiodic. h-regular 
(or stochastic) trajectories also exist and give rise to 
the “random” points in the global section. The short- 
time section in fig. X3 consists only of the random 
pomts, thus indlcatmg that all the crossmg trajecto- 
ries are random. These trajectoricscannot visit regions 
of phase space occupied by tori, hence the open re- 
glans in fii. X3. 

System C looks Ike a system in which the crossmg 
trajectories are ergodic in the irregular region of phase 
space. Gwen the foregomg, B statistical theory [cf. eq. 

(I) and the appendix of ref. [3]] should be applicable 
[wllh the added condition that B can be taken as umty 

Ssslcnl E(’ 2s) &GKhl ‘&#hl (X IO?) J) 
- --__.--~_ ________ 

I\ 20 0 49 0.39 

B 18 0.98 0.62 

c I .6 t 2 081 

D IO 081 1.7 

c 0.05 40 2 
__-- 

J) Wbcrc the dbsolutc umt ol’tlmc IS 21’2 s 
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in the numerator of eq. (1) because all the crossing 
trajectories are irregular] _ This leads us to predrct that 
the reactive flux [cf. eq. (6)] WIII be a single exponen- 
tial decay with decay constant T& grven by eq. (I) 
(with B= 1 in the numerator). Figs. 2Cl and 2C2 give 
excellent agreement with this prediction, and more- 
over, r& &AKh, = 1.2; that is, 7R.Jrr is greater 
than the RRKM rate constant as expected. Unfortu- 
nately we have not yet been able to make an ab mitro 
calculation of eq. (1); however, it is clear that tlus can 

be done based on methods outlined in a recent note 
DOI. 

System D, tn fig. ID, is much more regular than 
system C. ns can be seen by comparing the global sec- 

tions in figs. 2D4 and 2C4. The short-time sectron, 
fig. 2D3, shows that the crossing trajectories appear 
to be random, but not umformly drstributed m the 
trregular regions of phase space. Thus we do not ex- 
pect that the statisttcal theory of eq. (1) will be valid, 
and indeed it is not. The reactive flux given in figs. 
2Dl and 3D2 is highly non-exponential, mdicates 
short-time correlations simdar to those III fig. ?A, and 

gives rise to 7iL/r&Kh, < 1 (cf. table 1). This cor- 
relation cannot be attributed to the same mechanism 
mvoked in fig. 2A because the caps join the walls dis- 
continuously. Is this correlatron, whrch leads to rapid 
recrossing, due to vague tori [2,3]? We simply do not 
know! This requires further study. 

System E in fig. 2E is a highly regular system (< 
= O-OS), as shown by the global section, fig. 2E4, and 
the short-time section, fig. 2E3. The reactrve flux 
conws of a superposition of periodic and quasipert- 
odic crossing tnjectones ~11th different periods, and 

thus exhibits an oscillatory decay due to dephasing. 
Reaction rate constants do not exrst at all. 

4. Summary 

Several pointsare illustrated by the study of the 
Sramese stadrum- 

(a) When the system is ergodic, dynamical correla- 
trons can give rise to deviations from RRKM theory 
leading to TRY” /rikKhl < I (cf. fig. 2A). 

(b) When the system is ergodic, and there are no 
dynamical correlations, RRKhl theory IS vahd (cf. 
fig. 2B). 

(c) When the system is nonergodic, and the uregu- 
far trajectortes umformly fill the irregular region of 
phase space, a statrsttcal theory of reactions [cf. cq. 
(I)] is valid and leads to TR !” IT&;\, > I (cf. fig. X). 

(d) Dynamtcal correlations ur the irregular tryec- 
tories (perhaps due to vague tort) [S] gwa rue to 
strong deviatrons from the strltrstrcai theory [cq. (I)] 
and lead to rR{Jr&n~ht < 1. It can accidently 
happen that r~\ln=~n-&,; but that does not 
stgnlfy the validity of RRKhl t(leory (cf. fig. 2D). 
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