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it is shown that in an ideal gas (molecular beam), at temperature r, consisting of molecules that can isomerize and 

whose molecular dynamics can bc noncrgodic. the obsurved decay rare of the concentration can be geatcr than that. 
BTST, predicted by transition state theory. The “observed” (1) rate constant is then given by (Q/Q, )kTST where Q, (‘I is the 

contribution to the canonical partition function Q arising from only activated and irregular states. It is also shown that in 

the presence of strong collisions the long-time decay rate of the concentration provides no information about the intra- 
molecular rate process, but at low collision ntcs it is sensitive to the non-erpodic dynamics. 

In this short note we consider the reaction dynamics 
of an ideal gas of polyatomic molecules in equilibrium 
at temperature T, where the m.olecules are capable of 
undergoing an isomerization reaction between two 
isomeric states labelled A and B. The reaction can be 
described by the motion of a reaction coordinate 9 
in a double well with barrier height E*. We wish to 
consider the case where the molecules cannot interact 
at all. One method for preparing such a system is to 

let a real gas come to equilibrium at temperature T 
and then use this real gas as a source for the produc- 

tion of a molecular beam **. In the absence of energy 
transfer between molecules, the energy of each mole- 
cule is a constant of the motion. We assume that a 
molecule of energy E has a kinetic rate constant 
k(E) for barrier crossing. If the modes within the 
molecule are strongly coupled so that for energy E 

the motion is strongly chaotic (mixing)and if further- 

* This work was supported by a grant from the National 
Science Foundation. 

** Another case occurs, when a molecule dissolved in a very- 
low-viscosity solvent is excited to an electronic state with 

a double-well potential. If there is rapid intramolecular 
equipartitioning, then the subsequent barrier crossing 
dynamics can be described in a manner similar to the 

above case except that there will be a different energy dis- 
tribution function. 

more the time required for equipartitioning is rapid 
compared to the barrier traversal time. then the ntole- 
cule will have a kinetic rate constant k(E) for barrier 
crossing given by RRKhl theory [ 1 .I?] : 

If equipartitioning is not rapid compared to barrier 
crossing there will be dynamic corrections to the 
RRKhI rate constant such that the true rate constant 

k(E) Gk~~l;>t(~>. 
This rate constant will be an upper bound on the 

real rate constant if the molecular dynamics of rhe 

molecule is fully chaotic. The presence of 6(q) in the 
numerator ensures that only those microscopic states 
contribute to the numerator for which H(r) > E’ 

Thus kRRKbI (E) = 0 for Lf( T) < E-l. hioreover 

k,,,,(E) increases with E. 
If the intramolecular mode coupling is not strong 

the molecular dynamics can be non-ergodic [?I _ Phase 
space can then be decomposed into regular and irregular 

regions of measure fin(E) and ill(E) respectively. 
The set of all trajectories that cross the barrier con- 
sist of a subset of regular (or quasiperiodic) crossing 
trajectories and a subset of irregular (or chaotic) cross- 
ing trajectories. Only the chaotic crossing trajectories 
can give rise to an exponential decay of the popula- 
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tion and thereby to the existence of a reaction rate. ff 
the irregular crossing trajectories are highly unstable. 
and furthermore give rise to rapid energy exchange on 
the time scale of barrier crossing then it is possible to 
derive a RXKM-iike statistical theory for barrier izross- 
tng in such nonergodic systems [2). The ra:e con- 

stant is then 

where NEST stands for non-ergodic statistical theory; 
and where I(r) is a characteristic function which is 
unity on the irregular region of phase space and zero 
on the regular region. As in RRKM theory, if energy 
exchange is slow compared t0 barrier crossing dynam- 
ical corrections will be required. Furthermore if all 

crossing trajectories are chaotic the numerators of 
eqs. (1) and (2) become identical and [2] 

k,,ST(E) = tS1(E)/S2,fE)lkRHKM~~) (3) 

since S2 = 52, + R, > Q,, it follows that kNEsr(E) 
> “RRKM(E). Thus in nonergodic systems, rate con- 
stants can be larger than given by RRKM theory. This 
has recently been observed in model systems [3] _ In 
the foliowing we assume that (a) the rate constant is 
given by EC,,&) and (b) ali crossing trajectories are 
assumed to be chaotic for simplicity. 

Let us first consider an ideal gas (or collisionless 
gas) consisting of these molecules, ail at the same ener- 
gy E > E*. Suppose that this gas is produced with a 
small excess iSis, of molecules in the isomer& state 
B over the number found at equilibrium,&$(E), in 
the (N, V,E) ensemble. The time decay of the initial 
population excess is then 

where St@ and fill52 are the fractions of molecules 
moving on “regular” and irregular trajectories respec- 
tively. Because the regular molecufes cannot cross 
the boxier (by assumption) their initial numbers are 

frozen. The irregular molecules, on the other hand, 

can cross the barrier with kinetic rate constant k(E) 
given by eq. (3) (or with dynamic corrections). We 
note in passingfhat if the regular trajectories could 
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cross the barrier, then 5tR/a would 2e multiplied by 
a quasiperiodic function. Moreover dyr,?mical correc- 
tions might require that the exponential me replaced 
by a non-monotonic function. 

In a constant temperature ensembIe the relaxation 
function becomes 

m 

cg’(t) = J ti P(E) c$)(r ; E) , (5) 
0 

wherep(E) is the canonical energy distribution func- 
tion, p(E) = Q(E) e-@/Q. Q(E) is the density of 
states (given by the denominator of eq_ (I )), and Q is the 
canonical partition function Q = Jc dfZ 52(E) e-BE. 
The quantity C’$$>(r) is identicaI to the normalized auto- 
correlation function of the spontaneous fluctuation of 
of the concentration of molecules in the B state dis- 
cussed in several previous papers [4]. The superscript 
0 indicates that the system is an ideal gas. Because 
k(E) = 0 for E G E*, it follows that 

Cf)(f) = ;’ dE P(E) C~‘(K E) 

0 

Defming 

Qp = j dE RI(E) e-BE 

Ei” 

and 

(74 

CF)(r) = 
IF* d.E RI(.) e-BE e-k(E)r 

ep 

eq. (6) can be expressed as, 

(7 b) 

Q-Q” Q$) c-p(r)= Q + -Q- C,‘“‘(t) - 

Thus we see that in an ideal gas the popuia~ion does 
not decay to equilibrium; that is, q)(r) decays to the 

0 constant (Q - Q, )/Q_ This is because those mole- 

cules with either E < E* or which are moving in the 

regular region of phase space cannot cross the barrier. 
The normalized correlation function CF’(t>, can 

be expresed in terms of the ~umulans expansion 
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C@)(t) = (e-k(E)l)+ = 
# exp 

where (( ))+ denotes an average 

(9) 

q ),, = 
_fF+ dE f2,(E) e-PE( ) 

op (10) 

Truncation after the first cumulant gives an esponen- 

tial decay 

C(O)(t) = e-k+ t 
+ . (11) 

where 

k, = (k(E)), = 
1; dE L?,(E) e-@k(E) 

Qp 
(13 

and k(E) is given by eq. (3): 
This should be compared with the transition state 

theory (TST) rate constant 

k 
10” dE 52(E) e-PEkRRMI(!?) 

TST= Q (13) 

Thus the decay rate of C!$)(t) (ignoring higher cu- 

mulants and assuming all crossing trajectories are ir- 

regular) is 

8 k+=- - 
Q Q+ 

Q (1) ‘TST = - 
+ Q+ e kTsr (14) 

and not kTST. Since Q 2 Q+ 2 Qp it follows that 

k, >‘k,,, , (15) 

so that k.+ and not kTsT is the upper bound on the 
decay rare of @l(t) in an ideal gas. It is not difficult 

to show that when @I* %- 1 7 

(163) 

k,, = (O&T) dE* , (16b) 

k, = (wo,n)( 15; (PEf)“/rz!)-l Q+./Qo (16~) 

for a molecule containing s - 1 harmonic degrees of 

freedom and one reactive degree of freedom involving 
motion in a symmetric piecewise harmonic b&able 

potential, where o. is the harmonic frequency in the 

well. Clearly k, can be much larger than knT, also * 

lim k, =kTST 
S-C- 

(17) 

It is important to note that as the number of degrees 

of freedom, of the ideal gas molecule is increased. Q+ 

--f Q and k+ + kTST. 11 is also worth noting that the 
initial rate of change of CL”(r) is 

lim 
r-+0+ 

-dC$)( )I t dt = rli;+ (QF/Q)(-dCF)(t)ldt) 

= (QO’/Q)k, = kTzT . + (18) 

This follows from eqs. (7) and (10). The important les- 

son learned from this is that the initial value of the reac- 

tive flux [4] gives kTST, but the reacrive flus itself de- 

cays exponentially with decay rate k, _ 
A question that immediately arises is what happens 

if the molecules can exchange energy? In this case regular 

molecules can become irremlar, and molecules initial- 

ly with E < E* can gain sufficient energy by collision 
so that E > E+ and can (hereby cross the barrier. The 

correlation function CB(t) will then decay to zero in- 

stead of to (Q - Qo)/Q. To gain some insight inro 
this process we devise a very simple strong collisional 

model *. A molecule initially with energy E, under- 
goes intramolecular dynamics with rare constanr k(El). 
It suffers a collision at time t!, after which it has ener- 

gy E, and rate constant k(E?). It then suffers a col- 

lision at t-, . after which its energy and rate constant 
become E3 and k(E;). em. The collisions are assumed 

to be independent binary collisions of zero duration oc- 

curring at collision rate (Y. The collisions are assumed 

to thermalize the energy. thaw is. the energies before 
and after my collision are assumed to be uncorrelated 

and distributed according IG p(E). Because this model 

belongs to a class of models (extended diffusion mod- 

els) that has been ireated many times in many differ- 
ent contests [6], it suffices LO give the result. The 

Laplace transform of C,(t) is then given by 

C&) = zlgo)(s + a)i [ 1 - @‘(s + CK)] . i19) 
-co, where s is the Laplace variable. and CB (s) is the 

Laplace transform of eq. (8). [hat is 

qf’(s + a) = 
Q-Q" 1 

Q 
s+[y + (Q,o'/Q), i?t”)(s + Q) . 

CO) 

* It is assumed here that if s + 00 the system MU become com- 
pletely chaotic. If thisjs not the case knT should be multi- 

plied by QF’/Q+ = -5 in cq. (17). 

* This coilisional model is similar in spirit IO a model con- 
sidered in ref. 15 1. 
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where 

?“‘(s + a) = ([s + a + k(E)] --l&2: (s + Q + kg)-- 
+. (21) 

ln the last equality we have used thk approximation ob- 

tained by keeping only the first cumulant (cf. eq. (11)). 

Substitution of eqs. (20) and (21) into eq. (19) gives 
after some manipulation 

s+a+k, -k,,, 

‘B(s) = (s + a)(s + k+) - m(k_+ - km) . 
(22) 

This can be easily Laplace jnverted. It suffices to ex- 
hibit the solution in two limits. When Q 3 k, 

C&) = exp(-kTSTt) (23) 

and when LI e k, 

(24) 

These two limits are very instructive. When Q 9 k,, ac- 

tivation takes place sufficiently rapidly that all mole- 
cules can pass back and forth over the barrier. The 
decay rate is then the TST rate constant k,,. When 

a&k,, there is a rapid decay (with decay constant 
=k,) of the product deviation from 1 to (Q - Qp)/Q 
for those molecules initially having E > E*, but a very 

slow decay (with decay constant -a) forthose mole- 
cules starting in irregular states or with E GE+ be- 
cause these latter molecules must either first be trans- 

ferred to an irreguiar state or be activated. This agrees 
with our intuitive expectations. The long-time expo- 
nential decay is given by rate constant, (Q_$t)/Q)o, a 
quantity proportional to the slow collision rate a, and 
thus the interesting rate constant k, which is related 
to the intramolecular dynamics does not contribute 
to this kinetic rate constant. 

The correlation tune rc (4irn,_o~B(s)) of the cor- 
reiation function C,(t), found directly from eq. (9), is 

1 /rc = c’+& [o + (k+ - knT)I . (25) 

This is similar to what would be obtained from the 

Lindemann mechanism. For 01 + 0,~;’ + 0 and 
rc + a, because part of the population - the unacti- 
vated or regular part - does not decay. Thus at low 
(Y, rc does not give any information about inherent 
rate processes of interest; this is k,. In the opposite 
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limit, (lr --) 00, energy transfer is so rapid that each 
molecule is frequently activated, and rc’ = kTST. In 
this extreme rcl and the kinetic rate constant are 
identical. 

It is important to note that for high activation 
barriers (E# 3 kT) and small collision rates (cr g k,), 

l/r6 increases linearly with 01 as, 

l/r,2 x,+(Q+lQ) I1 - X,Q+/Ql -la 3 (W 
where Xl* (=Qp/Q,) is the fraction of activated 
states that are irregular. Substitution of eq. (16a) into 
eq. (26) gives an estimate for the slope, and shows that 
it increases very rapidly with the number of degrees of 
freedom. For example for f.7E# = 10, and X,* = 1 the 
slopes for s = 2,10 and 50 are 4.5 X lo-2,84.5 and 

2.2 X lo4 respectively. Thus if E* can be determined 
independently it may be possible to determine Xl’ 
from the slope and to see if the dynamical consequence 
of ergodicity is observable. 

All of the foregoing is based on eqs. (l), (2) and 
(11). In real isolated molecules, as in simple model sys- 
tems [2,6], the correlation function C_$‘)(t) will often 

exhibit a damped oscillatory decay. This occurs be- 
cause the intramolecular energy coupling is not strong 
enough to produce rapid equipartitioning among the 

modes. The observed rate constant and the effects of 
collisions on the rate will then be quite different from 
the preceding - a subject presently under considera- 

tion. 

The lessons learned from this study are: 
(a) The statistical theory of isomerization dynamics 

in ideal gases gives the rate constant 

k, = (Q/Q$?kTsr a kTST , (27) 

which can be larger than the usual transition state 
rate constant_ 

(b) When energy transfer is allowed and the rate 
of energy transfer between molecules is much larger 
than k+, the statistical rate constant is k,,. 

(c) As the number of degrees of freedom in the 

polyatomic increases, Qp/Q + 1 and k, + kTs_ 
(d) For small energy transfer rates, the decay of an 

excess of product molecules is characterized by two 
widely different time scales. A fast decay with rate 
approximately given by the dynamically interesting 

k,, and a slow decay with rate proportional to the 
collision rate. The.long-time decay tells us nothing 
about the intramolecular dynamics. One must study 
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the short-time decay to learn something about this 
former constant. 

(e) The correlation time rC and rC -’ is not related 
to the intramolecular dynamics except at high energy 
exchange rate. 

(f) At low energy exchange rates the observed rate 

constant l/rc will increase linearly with (Y, with a 
slope given by the term in brackets in eq. (26). This 
term depends on three parameters. s, the number of 
degrees of freedom, E#, the activation energy, and 
Xf , the fraction of activated states which are irregular. 
In complex molecules (s large) it will be difficult to 
observe any dependence of the rate constant on pres- 
sure. 

Except for (f) all of the comments are valid even 
when the isolated molecular dynamics is completely 

The author is indebted to his colleagues, Professors 

Philip Pechukas and James Skinner, for numerous dis- 
cussions about chemical kinetics. 
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