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ABSTRACT: Designing tight-binding ligands is a primary objective
of small-molecule drug discovery. Over the past few decades, free-
energy calculations have benefited from improved force fields and
sampling algorithms, as well as the advent of low-cost parallel
computing. However, it has proven to be challenging to reliably
achieve the level of accuracy that would be needed to guide lead
optimization (∼5× in binding affinity) for a wide range of ligands
and protein targets. Not surprisingly, widespread commercial
application of free-energy simulations has been limited due to the
lack of large-scale validation coupled with the technical challenges
traditionally associated with running these types of calculations.
Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands,
with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve
significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects
and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent.
Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds
synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with
those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach,
which can be used to drive decisions in lead optimization.

■ INTRODUCTION

Protein−ligand binding is central to both biological function
and pharmaceutical activity. Some ligands simply inhibit protein
function, while others induce protein conformational changes
and hence can modulate key cell-signaling pathways. In either
case, achieving a desired therapeutic effect is dependent upon
the magnitude of the binding affinity of ligand to target
receptor. Designing tight-binding ligands while maintaining the
other ligand properties required for safety and biological
efficacy is a primary objective of small-molecule drug discovery
projects.
A principal goal of computational chemistry and computer-

aided drug design (CADD) is therefore the accurate prediction
of protein−ligand free energies of binding (i.e., binding

affinities).1,2 The most rigorous approach to this problem is
free-energy simulation. A variety of free-energy simulation
methods, such as free-energy perturbation (FEP), thermody-
namic integration (TI), and λ dynamics, employ an analysis of
atomistic molecular dynamics or Monte Carlo simulations to
determine the free-energy difference between two related
ligands via either a chemical or alchemical path.3−9 In drug
discovery lead optimization applications, the calculation of
relative binding affinities (i.e., the relative difference in binding
energy between two compounds) is generally the quantity of
interest and is thought to afford significant reduction in
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computational effort as compared to absolute binding free-
energy calculations.
Nearly three decades have passed since the initial

applications of free-energy methods to the calculation of
protein−ligand binding affinities were first reported by the
Jorgensen, McCammon, and Kollman groups.10−15 Subsequent
efforts since that seminal work have reported anecdotal results
for a small number of protein−ligand complexes, but these have
suffered from a lack of computing power and inadequacies in
both sampling algorithms and molecular mechanics force
fields.1,5,8 As a result, use of free-energy calculations was limited
in an industrial drug discovery setting, where high throughput,
predictive accuracy, and robustness are required to make a
significant impact.
In recent years, FEP calculations have benefitted from

improved force fields, new sampling algorithms, and the
emergence of low-cost parallel computing, which have resulted
in the level of accuracy and turnaround time needed to impact
lead optimization efforts, as demonstrated in several academic
projects.1,5,8,16−20 However, it has not been demonstrated that
highly accurate results can be achieved reliably across a wide
range of ligands and protein targets, as would be needed for the
method to be useful in industrial pharmaceutical research
programs.
Here, we report an FEP protocol that enables highly accurate

affinity predictions across a broad range of ligands and target
classes (over 200 ligands and 10 targets). The ligand
perturbations include a wide range of chemical modifications
that are typically seen in medicinal chemistry efforts, with
modifications of up to 10 heavy atoms routinely included.
Critically, we have applied the method in eight prospective
discovery projects to date, with the results from two of those
projects disclosed in this work. The high level of accuracy
obtained in the prospective studies demonstrates the ability of
this approach to drive decisions in lead optimization.

■ FREE-ENERGY PERTURBATION TECHNOLOGY
AND METHODOLOGY

The achievement of the results mentioned above is the consequence of
an improved force field (OPLS2.1), enhanced sampling, and an
automated workflow to ensure that all results are reproducible and
realizable with minimal user interaction. Over the past decades, force
fields for proteins, nucleic acids, lipids, and other biological molecules
have improved substantially via fitting parameters to quantum
chemical and experimental data;21−25 however, adequate parametrical
coverage for druglike molecules has lagged behind. For example,
MMFF,26 a widely used force field, is trained against just 140
fragment-sized compounds representing typical organic moieties found
in druglike molecules. Our analysis of 1 million purchasable druglike
compounds indicates that on the order of tens of thousands of such
compounds are required to represent the diversity of even this limited
chemical space. Using the OPLS force field23−25 as a starting point, we
have developed a new force field, OPLS2.1,27 that incorporates a
robust model for nonbonded interactions (van der Waals parameters
and partial charges) in conjunction with extensive training of torsional
and covalent parameters against more than 10,000 representative
organic compounds. In addition, missing parameters for any molecule
can be generated via an automated algorithm that performs the
appropriate quantum mechanics calculations and torsion fitting. The
torsional parameters are obtained by constructing model compounds
containing the relevant torsional structures and fitting the parameters
to quantum chemical data computed at the LMP2/cc-pVTZ(-f) level
of theory, which has been shown to yield accurate relative
conformational energies for the systems being modeled.28,29 Ligand
atomic partial charges are computed via CM1A-BCC method-

ology,30,31 where a substantial number of bond charge corrections
for challenging chemistries have been developed. A comparison of the
performance of OPLS2.1 relative to MMFF in reproducing quantum
chemical torsional profiles and conformational energies is presented in
Figure 1. Performance of the nonbonded interaction model has been

initially evaluated in the prediction of aqueous solvation free energies,
the results of which were reported in a prior publication32 and are
summarized in Table 1, along with a comparison to other widely used
force fields. These calibration results suggest that OPLS2.1 provides
robust force field coverage in the space of druglike ligands and
represents a significant advance in this regard as compared to previous
general organic ligand force fields.

In addition to the development of accurate potential energy
functions, a significant challenge in FEP calculations is ensuring that

Figure 1. Histograms of root-mean-square error in force field relative
energies, evaluated (A) over one-dimensional torsional angle scans and
(B) between conformational minima, on a set of 8365 compounds.
Errors are established with respect to quantum mechanical LMP2/cc-
pVTZ(-f) energies evaluated on B3LYP/6-31G* optimized structures.
The compound set is generated from a 6 million compound repository
of druglike compounds where selected molecules are subsequently
fragmented about rotatable torsion bonds retaining key proximate
substituents. Selected fragment molecules are chosen such that their
constituent rotatable bonds retain sufficient similarity to the OPLS2.1
training set. A rotatable bond is deemed sufficiently similar if the set of
atom typed quartets across the bond match a member of the OPLS2.1
training set.

Table 1. Error Statistics for Solvation Free-Energy Resultsa

force field
MUE

(kcal/mol)
RMSE

(kcal/mol)
% > 2 kcal/mol

error

ChelpG/CharmM 1.93 2.28 44.7
AM1-BCC/
GAFF

1.17 1.39 15.0

OPLS 2005 1.10 1.33 8.5
OPLS2.1 0.73 0.88 2.1

aReported by Shivakumar et al.32 using OPLS2.1, OPLS2005, AM1-
BCC/GAFF, and ChelpG/CHARMM-MSI for the test set of 239
small molecules. MUE, mean unsigned error; RMSE, root-mean-
square error.
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the molecular dynamics simulations provide a sufficiently complete
sampling of the phase space of the system, while at the same time
retaining computational tractability using currently available hardware.
A wide range of approaches have been investigated in the literature
with the objective of improving the ability to surmount energy barriers
and/or reducing computation time in large-scale biomolecular
simulations.16,33 The methodology we have developed retains a full
treatment of all degrees of freedom in the system, using a number of
methods to substantially enhance the efficiency of phase space
exploration, and is readily automated and applicable to a significant
fraction of practical drug discovery projects. The key elements of our
solution to this problem are outlined below.
First, we employ the Desmond program to run FEP simulations.

Desmond provides good single-node and parallel performance,
yielding superior performance/cost ratios as compared to alter-
natives.34

Second, we have augmented the molecular dynamics/replica
exchange capabilities in Desmond with the newly developed FEP/
REST (free energy perturbation/replica exchange with solute
tempering) algorithm.35−37 FEP/REST enables simulations of a
selected subsystem with replicas in a higher effective temperature
regime than the remainder of the system, and thus precisely focuses
sampling efforts where needed to properly traverse the relevant phase
space.
Prior results of FEP/REST computations demonstrated a notable

improvement in predicting relative ligand binding affinities for two
ligands that bind to thrombin. This improvement was accomplished by
effectively locally heating the binding region yet retaining rigorous
Boltzmann sampling.37 Additional work demonstrated similarly
improved binding predictions for CDK2 ligands38 and HIV-1 reverse
transcriptase inhibitors.39 The REST methodology thus enables

problematic torsional barriers, which can limit ergodicity, to be
surmounted in a routine fashion.

A crucial aspect of the use of FEP/REST in practical calculations is
the selection of the REST region. Heuristic rules must be developed to
determine which atoms in the ligand and the protein environment
should be included in the enhanced sampling region. We have
developed an automated algorithm to select the REST region, and this
algorithm was employed in a uniform fashion in all the studies
reported here. Details about the REST region selection algorithm are
described in the Methods section in Supporting Information.

Third, Desmond with FEP/REST has been implemented to run on
graphics processing units (GPUs). The GPU implementation provides
50−100× speedup over a single central processing unit (CPU) and
approximately 5−10× performance/cost improvement as compared to
a commodity PC cluster.40 For a typical FEP calculation (∼6000
atoms in the protein) with the protocol described in this work, four
perturbations per day can be completed by use of eight commodity
Nvidia GTX-780 GPUs, making it feasible to evaluate thousands of
molecules per year in the context of a drug discovery program with
compute resources that are well within the reach of both academic
institutions and commercial enterprises. We also note here, consistent
with the experiences reported in ref 40, that GeForce cards do require
a significant information technology (IT) commitment for effective
use in a production setting.

Another critical aspect of the FEP protocol described here is ease of
use, which is essential in order to have a broad impact on drug
discovery projects. When considering the modification of a lead
molecule, one generally explores a space of possible perturbations at
different positions, using a variety of substituents. Prior implementa-
tions of FEP methods have generally required large amounts of human
time to set up the calculations, and this manual setup is error-prone. In

Figure 2. (a) Whole FEP workflow for protein−ligand binding-affinity calculations. Key steps in the workflow, including mutation graph generation,
REST region assignment, cycle closure convergence, and error estimates, are explicitly shown in the figure. Note that the FEP/REST enhanced
sampling method and cycle closure error estimate were reported in prior publications,37,38 and important related work about perturbation graph
generation was also reported in a prior publication;41 the remaining components of the workflow are novel. (b) Example of mapping of a
perturbation space onto a set of pathways for thrombin ligands generated from the workflow. Each line represents two full FEP calculations, one
conducted in the receptor and one in solution, each perturbing between two connected ligands. (c) Correlation plot of FEP-predicted and
experimental binding affinities for thrombin ligands, as generated from the automated workflow.

Journal of the American Chemical Society Article

DOI: 10.1021/ja512751q
J. Am. Chem. Soc. 2015, 137, 2695−2703

2697

http://dx.doi.org/10.1021/ja512751q
http://pubs.acs.org/action/showImage?doi=10.1021/ja512751q&iName=master.img-002.jpg&w=344&h=289


the protocol described here, the user inputs the molecules of interest
(in any supported standard format) into a graphical interface, and the
perturbation pathways are automatically generated by a variant of the
LOMAP mapping algorithm.41 In the LOMAP algorithm, the
maximum common substructure (MCS) between any pair of
compounds is generated and their similarity is measured. Then ligand
pairs with high similarity scores are connected by edges, where each
edge represents one FEP calculation that will be performed between
the two ligands. The perturbation graph topology is also optimized
such that (1) each edge will, if possible, be nested within at least one
closed cycle; and (2) there will be at least one path containing fewer
than five edges between any pair of compounds.
Figure 2a shows the automated FEP workflow for protein−ligand

binding free-energy calculations, and an example mapping of a ligand
series onto a set of pathways is shown in Figure 2b. The 16 separate
calculations shown in Figure 2b can be prepared in approximately 30
min, whereas manual setup without a graphical user interface and
automated mapping protocols would take significantly longer.
Finally, our approach includes an assessment of the reliability of the

calculations, previously a notorious weak point of free-energy methods.
The use of multiple pathways, via a cycle closure analysis, enables
more reasonable sampling error estimates for the calculations.38 The
estimated error provides an approximation of calculation precision,
which is particularly important for the prospective use of the method.
Note that force field errors cannot be addressed by any such approach;
cycle closure analysis error estimates analyze sampling problems only,
that is, they estimate the minimal error in the free-energy results based
on the conformational space sampled in all simulations.

■ RESULTS AND DISCUSSION

Validation on Eight Retrospective Data Sets. We have
tested the FEP/REST methodology described above on a
diverse set of pharmaceutically relevant targets and ligands (see
Table 2). We note that, of the eight data sets reported in the
table, one of them (CDK2) was also used in a previous study

with the OPLS 2005 force field and a manual setup,38 and the
remaining seven data sets were first studied here. Structures of
the individual ligands and the target perturbations used as
starting points for the FEP calculations in each data set, as well
as other methodological details, are given in Supporting
Information. A summary of the performance for all the pairs
of perturbations is also provided in Table 2. The combination
of high correlations with experimental binding affinity for each
system and a low root-mean-square error (RMSE) for all 330
perturbations implies results of sufficient quality to drive
decisions in the hit-to-lead and lead-optimization phases of
drug discovery projects. Table 3 reports a binned error
distribution for all 330 perturbations, indicating a roughly
Gaussian distribution with a standard deviation of 1.1 kcal/mol.

Table 2. Relative Binding Free-Energy Calculation Resultsa

system

BACE CDK2 JNK1 MCL1 p38 PTP1B thrombin Tyk2

no. of compds 36 16 21 42 34 23 11 16
binding affinity range (kcal/mol) 3.5 4.2 3.4 4.2 3.8 5.1 1.7 4.3
crystal structure 4DJW 1H1Q 2GMX 4HW3 3FLY 2QBS 2ZFF 4GIH
series ref 46 47 48 49 50 51 45 52,53
no. of perturbations 58 25 31 71 56 49 16 24
MUE FEP 0.84 ± 0.08 0.91 ± 0.12 0.78 ± 0.12 1.16 ± 0.10 0.80 ± 0.08 0.89 ± 0.12 0.76 ± 0.13 0.75 ± 0.11
RMSE FEP 1.03 ± 0.08 1.11 ± 0.12 1.00 ± 0.15 1.41 ± 0.12 1.03 ± 0.09 1.22 ± 0.17 0.93 ± 0.15 0.93 ± 0.12
avg σcc 0.65 0.57 0.30 0.91 0.76 0.94 0.93 0.46
obs R-value FEP 0.78 ± 0.07 0.48 ± 0.19 0.85 ± 0.07 0.77 ± 0.05 0.65 ± 0.09 0.80 ± 0.08 0.71 ± 0.24 0.89 ± 0.07
P-value FEP 3.9 × 10−5 1.2 × 10−2 7.0 × 10−8 2.2 × 10−7 1.6 × 10−7 7.8 × 10−6 1.1 × 10−2 2.3 × 10−7

obs R-value, MW 0.14 −0.48 −0.39 −0.55 −0.46 −0.84 −0.48 0.00
obs R-value, MM-GB/SA −0.40 −0.53 0.65 0.42 0.66 0.67 0.93 0.79
obs R-value, Glide SP 0.00 −0.56 0.24 0.59 0.14 0.55 0.53 0.79
anticip FEP R-value 0.64 ± 0.09 0.73 ± 0.11 0.64 ± 0.12 0.71 ± 0.07 0.67 ± 0.08 0.79 ± 0.07 0.37 ± 0.26 0.74 ± 0.10
anticip exptl R-value 0.88 ± 0.03 0.92 ± 0.03 0.88 ± 0.04 0.91 ± 0.02 0.89 ± 0.03 0.94 ± 0.02 0.68 ± 0.15 0.92 ± 0.03
aEight different receptors, covering a broad range of protein types, were studied. The number of ligands, experimental binding affinity range of
ligands, crystal structure used in the simulation, original publication reporting the experimental binding affinity, and number of perturbations for each
system are reported. Details about how the data set was selected, and how the experimental binding free energies were obtained, are included in
Supporting Information. Several different metrics to assess the performance of FEP results including mean unsigned error (MUE) and root mean
square error (RMSE) for all perturbations, correlation coefficient (R) between FEP-predicted binding affinities and experimental results, and average
error for predictions calculated by cycle closure algorithm (avg σcc) are also reported. For comparison, MM-GB/SA and Glide SP scoring results are
also reported. The FEP scoring weighted average R-value obtained is 0.75, for MM-GB/SA it is 0.35, and for Glide SP it is 0.29. Expected correlation
coefficient between FEP-predicted binding affinities and experimental results (anticip FEP R-value) and expected correlation coefficient between two
experimental measurements of binding affinities (anticip exptl R-value), with assumed RMSEs of 1.1 and 0.4 kcal/mol for FEP-predicted binding
affinities and experimental data, respectively, are also shown (see details in Supporting Information). Errors for MUE, RMSE, and R values by use of
the bootstrapping method are also reported. Free energies are in units of kilocalories per mole.

Table 3. Error Distribution for All 330 Perturbationsa

absolute error (kcal/mol) anticip % obs %

<0.5 33.9 35.5
<1.0 62.0 63.3
<1.5 81.2 81.5
<2.0 92.1 92.4
<2.5 97.2 96.7
>2.5 2.8 3.3

aThe distribution is approximately Gaussian with some fattening of the
tail of the distribution beyond 2.5 kcal/mol. Fitting of the error
distribution by a Gaussian function with the same RMSE is given in
Supporting Information, Figure S1. Obs % is the percentage of FEP
perturbations found to be accurate within the specified absolute error.
Anticip % is the percentage of FEP perturbations that would be
expected given an underlying root-mean-square error of 1.1 kcal/mol
and an ideal Gaussian error distribution.
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MM-GB/SA42 and Glide SP43 scoring results are also
reported in Table 2. The FEP scoring weighted average R-
value obtained for the series reported in Table 2 is 0.75, for
MM-GB/SA it is 0.35, and for Glide SP it is 0.29. As expected,
the Glide SP scoring results fail to capture many of the
structure−actibity relationship (SAR) trends, since the Glide
SP scoring function was developed primarily for virtual
screening applications rather than lead optimization. Perhaps
more surprising is the significantly worse MM-GB/SA scoring
results, where the MM-GB/SA scoring results are actually
anticorrelated with experimental data for two of the series.
Several of the series reported here require flips of side chains
lining the active site and the ligand R-groups to fully describe
the SAR, which poses a severe challenge for rigid-receptor MM-
GB/SA and docking calculations.
The scatter plot of predicted versus experimental binding

energies for the entire data set is shown in Figure 3. Some of

the variance can be attributed to experimental noise, which is
typically on the order of 0.3−0.5 kcal/mol for high-quality
binding free-energy measurements.44 If it is assumed that the
experimental measurements for binding free energies of two
compounds are independent, that is, σij

2 = σi
2 + σj

2, then the
experimental error for relative binding free energies between
the two compounds is about 0.4−0.7 kcal/mol. Thus, the
RMSEs for any prediction method compared with experimental
data cannot be less than the experimental noise of 0.4−0.7
kcal/mol. Here, the RMSE of the reported FEP/REST method
is about 1.1 kcal/mol, implying the residual error to be about
0.85−1.0 kcal/mol. Hence, the experimental noise is expected
to be a significant contribution to the dispersion seen in Figure
3, possibly as great as 30% of the total observed error.
Interestingly, predictions that approach this expected practical
accuracy limit are obtained for tyk2 and thrombin,45 likely due
to the rigidity of the systems, the small size of the perturbations,
and the high quality of the experimental data (for thrombin, via
isothermal calorimetry). The scatter plot of predicted versus
experimental binding free energy for the thrombin data set is
depicted in Figure 2c, including the cycle closure convergence

error bars. As can be seen from the plot, the convergence error
for this system is very small, and all predictions are uniformly
within ∼1 kcal/mol of the experimental values. Nevertheless,
the R-value obtained is a relatively modest value of 0.71. This
underscores an important point regarding data analysis in
general: a correlation coefficient R as a measure of computa-
tional model performance performs poorly if the dynamic range
of the data is narrow. In particular, if an RMSE for the
experimental technique of 0.4 kcal/mol is assumed, the
correlation between repeated experimental measurements
would be expected to produce R-values of only 0.68 ± 0.3 at
a 95% confidence interval.44 As an extreme example, in the limit
of all the compounds being equipotent, obtaining a predictive
R-value becomes impossible, no matter what modeling accuracy
is obtained.
As mentioned in the Introduction, FEP is among the most

rigorous methods available to calculate the relative binding free
energies between congeneric ligands, and as such, it should
capture changes in binding free energy driven by variable
physical factors, including hydrophobic interactions, hydrogen-
bonding interactions, solvent effects such as the displacement of
water molecules, motional entropic effects, and so on, up to the
limits of those interactions being well-described by the
employed classical force field and the simulations being
converged. Representative examples of the diversity of
structure−activity relationships successfully captured by FEP
scoring are shown in Figure 4.
A representative example of hydrophobic interactions

contributing to binding can be observed for the pair of
MCL1 ligands depicted in Figure 4A. The naphthalene ring in
the first ligand (left panel) is found to make favorable
hydrophobic interactions with surrounding protein residues,
including Val249, Leu246, Leu235, Leu290, Val274, Ile182, and
Phe270. When the naphthalene ring is mutated into a quinoline
ring in the second ligand (right panel), the loss of favorable
hydrophobic interactions results in a decrease in the
experimental binding free energy by 1.3 kcal/mol. FEP captures
this effect, resulting in a computed free energy difference
between these two ligands of 1.6 kcal/mol.
A representative example of protein−ligand electrostatic

interactions driving more favorable binding potency can be
found for the pair of PTP1B ligands depicted in Figure 4B.
Here the aniline group in the first ligand (left panel) is found to
form a favorable hydrogen-bonding interaction with Gln262.
When the amino group is mutated into a methoxy group in the
second ligand (right panel), the experimental binding free
energy is observed to decrease by 0.5 kcal/mol, presumably due
to the loss of hydrogen-bonding interactions. The FEP
calculation here correctly captures this binding affinity decrease
(ΔΔGFEP = 0.4 kcal/mol).
A representative example of the expulsion of a single water

molecule from the active site contributing to binding is
depicted for thrombin ligands in Figure 4C. In the bound
complex structure of the second ligand (right panel), the water
molecule occupying the S1 pocket is energetically unfavorable
due to steric confinement and the lack of opportunities to make
favorable polar interactions with the surrounding protein
residues or the ligand. With the addition of a chloro group at
the meta position of the phenyl ring in the first ligand (left
panel), the high-energy water molecule in the S1 pocket is
displaced, resulting in a more favorable binding free energy for
the second ligand. FEP calculations appear to correctly capture
the binding affinity increase due to displacement of the high

Figure 3. Correlation between FEP-predicted binding free energies
and experimental data for all eight systems studied. FEP-predicted
binding free energies for most of the ligands are within 1.0 kcal/mol of
their experimental values, and only nine of 199 studied ligands deviate
from their experimental free energies by more than 2 kcal/mol.
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free-energy water in the S1 pocket, in good agreement with
experiment (ΔΔGFEP = 1.5 kcal/mol versus ΔΔGexpt = 0.9
kcal/mol).
A representative example of the addition of a large flexible

solvent-exposed functional group decreasing the binding
potency is depicted for the JNK1 kinase ligands in Figure
4D. The solvent-exposed methoxy group in the second ligand
(right panel) makes no obvious direct favorable interactions
with the protein but can sample less volume when bound to the
protein. As such, we believe the loss of the mobility of this
group upon binding to the receptor may lead to entropic
penalties that weaken the binding of ligand to receptor. FEP
simulations capture both the direction and magnitude of the
effect (ΔΔGexpt = 0.5 kcal/mol and ΔΔGFEP = 0.3 kcal/mol).
A representative example of the inversion of a stereocenter,

changing both the affinity and binding mode of a molecule, is
depicted for p38 ligands in Figure 4E (PDB codes 3FMH and
3FMK). Although the unbound ensembles of the two ligands
are necessarily nearly identical, the S-variant (left panel) is able
to bind such that seemingly favorable interactions are formed
between the ligand tetrazole functional group and nearby
Ala111, Asp112, and Ala157. In contrast, the R-variant (right
panel) is forced to present the tetrazole to a more solvent-
exposed region, diminishing the binding potency of that
species. The basis for the favorability of interactions of the
tetrazole with the backbone amide of Ala111 and Asp112 may
be somewhat counterintuitive, but we suspect the hydrophobic
desolvation of β-sheets is favorable above and below the plane
of the interacting amides, leading to favorable hydrophobic
binding of the tetrazole to the amide in this particular case.
Although the magnitude of the effect is somewhat over-
estimated by the calculation, the tighter binding of the S-variant
is captured by the calculation, where ΔΔGexpt = 1.0 kcal/mol
and ΔΔGFEP = 2.6 kcal/mol.

This final case illustrates another point regarding the value of
FEP scoring in practical applications: the maximum size of the
perturbations that can be reliably treated is of equal significance
to obtaining predictive correlation and small RMS errors. Much
of the FEP literature is devoted to examining the effect of small
perturbations: often only a single atom is changed, such as
hydrogen to halogen, since it is assumed that such a small
change should lead to only very small changes in the relevant
ensemble of states. Such perturbations may in many cases make
sampling much less challenging, but in an active drug discovery
project, much more substantial changes to the ligand will be
desired, and as the preceding case demonstrates, significant
sampling challenges may still exist for perturbations of only one
or a few atoms. Therefore, we have deliberately chosen ligand
series containing chemical modifications across a range of sizes
that are of interest in typical drug design studies. For example,
representative ligand perturbations for p38 MAP kinase are
shown in Supporting Information Table S1, and the input files
for each of the perturbations for each series are available in
Supporting Information. We find that our methodology is
robust up to perturbations of approximately 10 heavy atoms.

Prospective Studies on Two Active Drug Design
Projects. To further substantiate the above findings, we
recently applied this technology prospectively in eight active
drug discovery projects. We present here results from two of
these projects. The first is focused on developing selective,
druglike inhibitors for IRAK4 (project I), and the second is
focused on developing inhibitors for TYK2 (project II). In
project I, FEP was introduced into the project at a stage where
several hundred compounds had already been synthesized and
the target biochemical affinity (Ki ∼10 nM) and a number of
the absorption, distribution, metabolism, and excretion
(ADME) properties had been achieved. What remained was
further optimization of some of the ADME properties while
maintaining affinity at 10 nM or better (pKi >8). At this stage of

Figure 4. Representative examples of different types of interactions captured by FEP (see text for details).
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the project and over a period of several months, 195
compounds were prospectively scored with FEP, and 22 were
synthesized and assayed. The results of these predictions are
shown in Figure 5. In total, 156 of the 195 compounds were
predicted to have pKi ≤ 8, and the other 39 were predicted to
have pKi > 8. Fifteen of the compounds predicted to have pKi

≤ 8 were, despite the predictions, synthesized and assayed to
test various ADME hypotheses. As shown in Figure 5, 14 of
these compounds (93%) turned out to have pKi ≤ 8, as
predicted (only one false negative was found). Given this true
negative rate of 93%, it is expected that ∼145 of the 156
compounds predicted to have pKi ≤8 would have been true
negatives, while only ∼11 (7%) would have been false negatives
(pKi > 8). Of the seven synthesized compounds predicted to
have pKi > 8, five did have an experimental pKi > 8 and two did
not (71% true positive rate). This constitutes a 6-fold
enrichment in the synthesis of tight-binding molecules: only
12% of the compounds that were not prioritized by the FEP
calculations were found to have pKi > 8, while 71% (5 out of 7)
of those compounds that were predicted by FEP were correctly
predicted to fall in this range. Note that a significant fraction of
the 119 compounds synthesized without the benefit of FEP
scoring were expected to be potent on the basis of more
conventional analyses. Thus, the observed 6-fold enrichment in
the synthesis of tight-binding molecules provides suggestive
evidence that FEP scoring provides a substantial reduction in
false positives relative to compound synthesized on the basis of
other approaches.
The accuracy of the results in project II was similar to those

observed in project I. In project I, the average error between
predicted and experimental affinity for the 22 compounds was
1.1 kcal/mol (average pKi error of 0.8). In project II, the
average error for 20 compounds that were prospectively
predicted and experimentally assayed was 0.9 kcal/mol (average
pKi error of 0.7). Thirty-seven compounds with pKi predictions
≤ 8 were not synthesized; the true negative rate in project II
was 75% based on results for four compounds predicted to have
pKi ≤ 8 that were subsequently synthesized.

These accurate affinity predictions in both projects allowed
the teams to reliably deprioritize a large number of proposed
compounds and to focus synthesis and assay resources on
efficiently achieving project potency and ADME goals.

■ CONCLUSIONS

The work described here addresses several major challenges to
using FEP in drug discovery programs. The OPLS2.1 force field
has considerably greater chemical space coverage than other
widely used force fields and provides sufficient energetic
accuracy for meaningful prospective free-energy calculations.
Furthermore, the efficient FEP implementation reported herein
extends the Desmond/GPU molecular dynamics engine to
incorporate REST enhanced sampling, thereby improving
simulation convergence. The combination of improved force
field and superior sampling method has contributed to
improved accuracy of the FEP protocol. Additionally, the
fully automated FEP calculation setup and simulation quality
analysis reduce human error and workload, thus making the
approach accessible to a broad population of researchers in
drug discovery. For a typical-sized drug target, four
perturbations can be completed by use of eight commodity
Nvidia GTX-780 GPUs. The aggregate effect of these advances
now positions free-energy calculations to play a guiding role in
the hit-to-lead and lead-optimization phases, as indicated by
encouraging results in the two active drug discovery projects
presented here.
The preceding notwithstanding, a highly accurate and robust

FEP methodology is not, in any way, a replacement for a
creative and technically strong medicinal chemistry team; it is
necessary to generate the ideas for optimization of the lead
compound that are synthetically tractable and have acceptable
values for a wide range of druglike properties (e.g., solubility,
membrane permeability, metabolism, etc.). Rather, the
computational approach described here can be viewed as a
tool to enable medicinal chemists to pursue modifications and
new synthetic directions that would have been considered too
risky without computational validation or to eliminate
compounds that would be unlikely to meet the desired target

Figure 5. Histograms showing distribution of experimental values for compounds in project I that were predicted by FEP to have pKi > 8 (dark
gray), predicted by FEP to have pKi < 8 (medium gray), and those that were not computationally predicted prior to being assayed (light gray).
Numbers above the bars correspond to the actual number of compounds that were assayed. Approximately 14% of the compounds that were chosen
to be synthesized and assayed without guidance from FEP had pKi > 8, while 71% of the compounds predicted by FEP to have pKi > 8 had an
experimental pKi > 8. Key to labels: TP = true positive, FN = false negative, FP = false positive, TN = true negative.
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affinity. This is particularly significant when considering
whether to make an otherwise highly attractive molecule that
may be synthetically challenging. If such a molecule is predicted
to achieve the project potency targets by reliable FEP
calculations, this substantially reduces the risk of taking on
such synthetic challenges. In addition, the elimination of
compounds unlikely to meet project potency targets frees
resources to focus on more promising compounds. Thus,
extensive deployment of FEP in a drug discovery project not
only will reduce the number of compounds that are made with
inadequate activity but also may facilitate significant leaps in
chemical space that otherwise would not have been taken,
leading to more rapid completion of difficult projects, with
potentially superior molecules as an end result.

■ ASSOCIATED CONTENT
*S Supporting Information
Additional text and equations with details of REST region
selection algorithm, simulations, OPLS2.1 force field, con-
version of calculated ΔΔG values to ΔG values, expected FEP
prediction accuracy in prospective studies, expected correlation
coefficient between FEP-predicted binding affinities and
experimental values and between two independent experimen-
tal measurements, experimental binding affinity data, and input
structures for FEP calculations; three tables listing representa-
tive p38 ligand pairs used in FEP/REST calculations,
comparison of RMSE for FEP-predicted binding affinities for
all 330 pairs of ligands and RMSE assuming all ligands are
equally potent, and number of OPLS2.1 missing torsions
identified for three ligand sets; and two figures showing error
distribution of FEP-predicted relative binding free energies
compared to experimental data and its fitting by a Gaussian
function and histograms of the RMSE in force-field relative
energies (pdf). Experimental and predicted ΔG values and
errors for all eight data sets (xls). This material is available free
of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*robert.abel@schrodinger.com

Notes
The authors declare the following competing financial
interest(s): D.L.M., W.L.J., and B.J.B. are consultants to
Schrodinger, Inc. and are on its Scientific Advisory Board.
R.A.F. has a significant financial stake in, is a consultant for, and
is on the Scientific Advisory Board of Schrodinger, Inc.

■ REFERENCES
(1) Jorgensen, W. L. Acc. Chem. Res. 2009, 42, 724.
(2) Jorgensen, W. L. Science 2004, 303, 1813.
(3) Homeyer, N.; Stoll, F.; Hillisch, A.; Gohlke, H. J. Chem. Theory
Comput. 2014, 10, 3331.
(4) Free Energy Calculations: Theory and Applications in Chemistry and
Biology; Chipot, C., Pohorille, A., Eds.; Springer Series in Chemical
Physics, Vol. 86; Springer: Berlin and Heidelberg, Germany, 2007.
(5) Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.;
Branson, K.; Pande, V. S. Curr. Opin. Struct. Biol. 2011, 21, 150.
(6) Knight, J. L.; Brooks, C. L. J. Comput. Chem. 2009, 30, 1692.
(7) Zheng, L.; Chen, M.; Yang, W. Proc. Natl. Acad. Sci. U.S.A. 2008,
105, 20227.
(8) Gallicchio, E.; Levy, R. M. Curr. Opin. Struct. Biol. 2011, 21, 161.
(9) Hansen, N.; van Gunsteren, W. F. J. Chem. Theory Comput. 2014,
10, 2632.

(10) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977, 267,
585.
(11) Jorgensen, W. L.; Ravimohan, C. J. Chem. Phys. 1985, 83, 3050.
(12) Bash, P.; Singh, U.; Brown, F.; Langridge, R.; Kollman, P. Science
1987, 235, 574.
(13) Kollman, P. Chem. Rev. 1993, 93, 2395.
(14) Wong, C. F.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108,
3830.
(15) Merz, K. M.; Kollman, P. A. J. Am. Chem. Soc. 1989, 111, 5649.
(16) Deng, Y.; Roux, B. J. Phys. Chem. B 2009, 113, 2234.
(17) Gallicchio, E.; Lapelosa, M.; Levy, R. M. J. Chem. Theory
Comput. 2010, 6, 2961.
(18) Durrant, J.; McCammon, J. BMC Biol. 2011, 9, 1.
(19) Riniker, S.; Christ, C.; Hansen, H.; Hünenberger, P.;
Oostenbrink, C.; Steiner, D.; van Gunsteren, W. J. Phys. Chem. B
2011, 115, 13570.
(20) Michel, J.; Essex, J. W. J. Med. Chem. 2008, 51, 6654.
(21) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L.,
Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.;
Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos,
C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.,
III; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.;
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