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Abstract: We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent
developments and a description of its current functionality. With respect to core molecular mechanics technologies we
include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate
how the force fields, when used together with new atom typing and parameter assignment modules, have greatly
expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit
solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born
framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is
possible to use several different advanced conformational sampling algorithms based on combining features of
molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules:
Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These
modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment
of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to
sampling and the energy function.
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Introduction

This article provides an overview of the IMPACT molecular
mechanics program. The emphasis is on recent developments of
the program with respect to both molecular mechanics core tech-
nologies and to specialized technologies developed in response to
the needs of computational scientists working on current drug
discovery projects in the pharmaceutical industry. We begin with
a brief history of the development of IMPACT.

The first molecular dynamics simulation of a protein was
reported in 1977.1 Martin Karplus2 has recently published a brief
history of molecular dynamics simulations of biological macro-
molecules, and of the period in his laboratory, during which time
one of us (R.M.L.) was a postdoctoral student in the group. It was
difficult at the time to carry out molecular dynamics simulations of

proteins using programs then available, and several members of
the Karplus group at Harvard University discussed their ideas
about how the situation might be improved. It is interesting to note
that several of the articles in this special issue of the Journal of
Computational Chemistry are coauthored by scientists who partic-
ipated in the molecular mechanics and dynamics program devel-
opment at Harvard during this period in the late 70s and early 80s,
and that the genesis of the CHARMM, AMBER, GROMOS, and
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IMPACT simulation packages can be traced to this period. The
development of IMPACT began in the Levy group at Rutgers
University, in 1985, starting with a core set of molecular mechan-
ics energy subroutines used to carry out molecular dynamics
simulations of proteins. Early research using IMPACT focused on
the relation between simulations and NMR experimental studies of
protein structure and dynamics,3,4 and on protein solvation.5,6 In
1992, the Center for Theoretical Simulation of Biological Systems
was established by Richard Friesner at Columbia University and
three of the authors of this article (R.A.F., B.J.B., and R.M.L.)
began to collaborate using IMPACT as a platform for methods
development. In 1997, a strategic development partnership involv-
ing Columbia, Rutgers, Yale, and Schrödinger LLC was formed to
provide a path for commercializing some of the new methods
being developed for simulations of protein structural changes and
interactions with ligands. As is apparent from the author list of this
article and from the focus of those sections of our review con-
cerned with specialized molecular mechanics technologies, the
academic–commercial partnership has played an important role in
the evolution of IMPACT. Basic research projects in our labora-
tories have benefited from this partnership, particularly by the
development of tools to automate the preparation of ligand–protein
complexes, by the expanded coverage of the force field, and by the
increased coordination between various modeling packages.

Molecular simulations of protein structural changes and ligand
binding are built upon two foundations: (1) the design of effective
potentials that are matched to the requirements of accuracy and
speed appropriate to particular modeling problems; and (2) the
design of algorithms to sample the effective potentials in highly
efficient ways so as to facilitate the convergence of the simulations
in a thermodynamic sense and/or the coverage over large databases
containing structures for which effective potential energy calcula-
tions are required. Developing algorithms to satisfy the competing
goals of accuracy and speed is at the heart of the problem when
considering computational models for use in structural biology,
and strategies for achieving these twin goals in different molecular
modeling contexts are emphasized throughout this review.

We have divided this article into sections that describe molec-
ular mechanics core technologies, and ones that describe special-
ized technologies. In the former category we include a review of
force field development and implicit solvation models, and also a
description of the parallel and multicanonical molecular dynamics
sampling algorithms available within IMPACT that take advantage
of clusters of Linux processors that are now readily available. With
IMPACT, it is possible to specify the use of a fixed charge force
field OPLS_2003, which builds upon the OPLS_AA force field of
Jorgensen and coworkers,7,8 or the use of a polarizable force field
that has been under development for several years and that we
have previously described in a series of articles.9–14 As discussed
in this review, there has been a particular effort to extend the
coverage of the molecular mechanics force field to include a very
large number of different pharmaceutically relevant organic mol-
ecules and to facilitate atom typing and parameter assignment.

IMPACT includes two specialized molecular mechanics mod-
ules: Glide, a high-throughput docking program;15–17 and
QSite,18,19 a mixed quantum mechanics/molecular mechanics
module. These modules employ the IMPACT infrastructure as a
starting point for the construction of the protein model and assign-

ment of molecular mechanics parameters, but have then been
developed to meet specialized objectives with respect to sampling
and the energy function. Glide has been designed to meet accu-
racy, speed, and coverage requirements for the identification of
lead pharmaceutical compounds in high-throughput virtual screen-
ing tests. At the other end of the molecular mechanics spectrum,
QSite has been designed to handle chemical reactions. The func-
tionality of QSite has been achieved by tightly coupling IMPACT
with the Jaguar (Schrödinger LLC, Portland, OR) suite of ab initio
programs.

The following two sections describe the general organization of
the IMPACT program and the Maestro graphical user interface,
which can be used to control the process of setting up and running
an IMPACT job. We then provide an overview of the molecular
mechanics core and specialized technologies available with IM-
PACT. These sections include descriptions of some applications to
research problems of current interest in our groups.

General Organization of the IMPACT Program

The IMPACT program is composed of a series of modules. The
core module is responsible for loading system definitions from
user files and setting up the structural and energetic data structures.
Other modules provide energy functions and simulation protocols.
Some of the modules are portable libraries that are utilized by
several programs of the Schrödinger software suite (Macromodel,
Jaguar, Prime, Maestro, etc.).

The user controls the behavior of the IMPACT program via a
text input file (an example of which is given in Fig. 1), which
contains instructions organized into tasks. The CREATE task
contains instructions to define the chemical system, such as load-
ing structure files and related system preparation tasks. The SET-
MODEL task sets the parameters of the model, such as the type of
solvation model, nonbonded cutoff definitions and QM/MM set-
tings. The MINIMIZE task performs energy minimizations and the
DYNAMICS task molecular dynamics simulations. Other tasks
not shown in Figure 1 perform a variety of functions, some of
which are described in this article. The syntax of the IMPACT
input files also includes a pseudo programming language, called
DICE (Dynamic IMPACT Control Environment), with which it is
possible to define and manipulate scalar and multidimensional
variables that interact with IMPACT’s internal data structures.
DICE also includes logical control constructs for branching, loop-
ing, and subroutine definition similar to more advanced structured
programming languages. By using DICE it is possible to design
complex computational tasks. DICE versatility is particularly use-
ful in the analysis of trajectory files.

Maestro, described in the following section, is the graphical
user interface for IMPACT developed at Schrödinger. The user
prepares the system using Maestro. Maestro also collects sim-
ulation parameters from the user. This information is assem-
bled, and an IMPACT input file is generated. The input file
together with the relevant structure files are then used to drive
the calculation using the IMPACT backend. At the end of the
calculation information about the resulting molecular system is
transmitted to the Maestro interface and the results of the
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calculation are displayed. This process occurs transparently
from the user’s point of view.

To make the interaction between Maestro and IMPACT
possible a new protocol to load the molecular system into
IMPACT has been developed. Prior to this innovation, the
molecular system could only be defined using topology files for
residues or individual molecules; a common protocol employed
in molecular mechanics program packages. A database of to-
pology files for standard protein and nucleic acid residues as
well as frequently used solvent molecules existed; however,
defining new chemical species involved compiling new topol-
ogy files, a tedious and error-prone process. A new mechanism
has been implemented whereby the molecular system defini-
tions are loaded from one or more Maestro structure files, which
contain only connectivity information, bypassing the system
construction procedure based on topology files. Energy param-
eters are assigned using an automatic scheme described in the
Atom Typing and Parameter Assignment section. This allows
for much greater flexibility in the kinds of molecular systems
that can be handled by IMPACT; any chemical system that can
be defined in Maestro can be simulated in IMPACT.

The new mechanism is invoked by assigning in the input file
the “automatic” type to the molecular species being construct-
ed; the previous mechanism is invoked by assigning the “pro-
tein,” “DNA,” etc., types depending on the kind of molecular
system being studied. Simulation protocols that rely on internal
coordinate definitions, such as internal coordinate Monte Carlo

and Free Energy Perturbation (FEP) currently can only be
performed using the system construction mechanism based on
topology files, and consequently are not available through the
Maestro graphical front end. The process of porting all the
functionalities of IMPACT for access by Maestro is ongoing.

The Maestro Graphical User Interface

Maestro provides the graphical user interface (GUI) for IMPACT and
several other computational chemistry programs. Maestro greatly
simplifies the process of setting up, launching, and organizing IM-
PACT simulations. Maestro automatically generates an IMPACT
input file based on the user input collected through Maestro’s graph-
ical panels. For most applications the user does not need to interact
directly with the IMPACT backend. Maestro also assists the user in
preparing the molecular system. When a structure from the PDB
database20 or other type of structure is used as input for a specific job,
structural inspection and modification is often necessary. Maestro’s
build panel allows for mutating amino acid residues, changing bond
orders, changing atom types, etc. Hydrogen atoms addition is per-
formed automatically through a toolbar. The Maestro toolbar also
allows for access to a number of common operations, such as deletion
of water molecules, residues, and molecules.

IMPACT jobs, such as molecular dynamics, energy optimi-
zation, and hybrid Monte Carlo can be set up from Maestro
panels. Within a panel, choices can be made with respect to
force field, solvation treatment, use of periodic boundary con-
ditions, type of implicit solvent, constraining/freezing parts of
the system, etc. Selection of atoms that are to be kept fixed or
frozen during a simulation is done using the Atom Specification
Dialog (ASD). The ASD is highly versatile, allowing selection
based on atoms (element, atom type, charge, etc.), residues
(type, number, sequence, etc.), molecules, chains, and so on.
Predefined groups of atoms may also be used. Atom selection
can also be accomplished using commands for intersection and
subtraction, as well as by defining spheres around a selected
atom, residue, or molecule. The IMPACT job is usually started
directly from Maestro, and is run in the background or on a
remote computational host, while being constantly monitored
by Maestro’s job control facility.

Maestro includes a project facility that helps organize the
user’s work. Every structure read into Maestro becomes part of
a project, and will be saved (unless the user chooses otherwise)
in its last state when the project is saved or closed, or when the
Maestro session is ended. If the starting structure belongs to a
named project, upon job completion the resulting structures are
incorporated into the project along with its associated job
properties. The structures and properties of a project are stored
in the project table, which behaves like a spreadsheet. Struc-
tures can be sorted, properties can be plotted, and data can be
imported and exported to the spreadsheet table. In addition,
visualization aids that have been applied to a structure or part of
a structure will be saved with the project. The project table also
features a tool (called e-player) used, for instance, to playback
a molecular dynamics trajectory. Different operations can also
be applied to each structure during playback, examples being

Figure 1. A sample IMPACT input file.
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rendering and coloring, displaying of hydrogen bonds and a
variety of user-defined measurements.

The integration of IMPACT with Maestro, by streamlining
system preparation procedures, job execution, and analysis, has
both expanded the range of applicability of the program and
shortened the time required to set up basic research projects using
IMPACT. The ability to obtain visual clues at various stages of the
project provides helpful insights into the behavior of the system. It
is also helpful that IMPACT shares the same graphical user inter-
face with a variety of other modeling programs.

Molecular Mechanics Core Technologies

Force Field Development

IMPACT contains facilities for modeling proteins, nucleic acids,
and general organic molecules, utilizing both fixed-charge and
polarizable molecular-mechanics force fields. We have made a
major investment in force field development, with the goal of
improving accuracy by fitting to high-level quantum-chemical data
and by employing enhanced functional forms, with an emphasis on
improving the treatment of nonbonded interactions. In what fol-
lows, we briefly describe our development methodology and sum-
marize results, demonstrating accuracy via comparison with both
gas-phase and condensed-phase data.

The development of improved fixed-charge and polarizable
models has proceeded in parallel, sharing data sets and develop-
ment tools when possible. In both cases, our philosophy has been
to fit valence terms (particularly, torsions) to high-level quantum-
chemical data for a training set of small molecules; this fitting is
carried out after the nonbonded energy function has been specified.
Although creating a database of valence parameters adequate to
cover a significant fraction of medicinal chemistry space is a
formidable technical challenge, it is straightforward conceptually.
The greatest difficulties arise in generating an adequate set of
torsional parameters; this is discussed below.

Our current fixed-charge force-field model, OPLS_2003, has its
origins in the OPLS-AA force field of Jorgensen and coworkers.7

We have attempted to retain the philosophy of that group, aug-
mented by deploying substantially larger amounts of high-quality
quantum-chemical data and by developing an automated atom-
typing algorithm. We first discuss development of an improved
version of the OPLS-AA force field for proteins, then present our
efforts at expanding coverage of ligand functionalities for both
fixed-charge and polarizable force fields.

In addition to providing a theoretically superior representation
of the molecular charge distribution in an arbitrary environment, a
polarizable force field has a second important advantage compared
to a fixed-charge force field; it allows atom–atom pair interactions
(van der Waals terms) to be optimized straightforwardly via fits to
high-level quantum-chemical dimer interaction energies. This is
not feasible with a fixed-charge force field because the gas-phase
binding energies obtained from quantum-chemical calculations
provide the wrong target; implicit inclusion of “average” polariza-
tion in the charge distributions, necessary to achieve reasonable
results in the condensed phase, implies that it is not possible to
simultaneously achieve quantitative agreement with gas-phase en-

ergetics. Scaled quantum-chemical binding energies and geome-
tries can be used in this case,21,22 but the scaling to be applied is
always somewhat arbitrary.

A central objective has been to develop a nonbonded functional
form, together with automated fitting protocols, that accurately
reproduces a database of high-level binding energies. Results
indicating our current precision and coverage are summarized
below. We also reference results in which parameters developed
via this type of fitting are used to carry out condensed-phase
liquid-state simulations and to compare thermodynamic properties
(heat of vaporization, density) with experiment. Finally, there are
some subtleties in modeling polarization in the condensed phase;
gas-phase polarizabilities appear not to be directly applicable, for
reasons discussed below. To address this difficulty, we use a
heuristic approximation that performs reasonably well in initial
testing. However, considerable further effort will be required to
assess the overall accuracy obtainable using this, and other, ap-
proximations.

Fixed-Charge Protein Force Field

The set of 20 standard amino acids contains a relatively small
number of chemical functional groups; furthermore, condensed-
phase experimental data is available for many of these groups. The
development of nonbonded parameters (charges, van der Waals
parameters) for the OPLS-AA protein force field by Jorgensen and
coworkers7 exploited these observations. For many side-chain
functionalities, as well as the backbone amide group, liquid-state
simulations were performed and the charges and van der Waals
radii were adjusted to reproduce experimental thermodynamic
properties (heats of vaporization, densities) and were further eval-
uated by examining other properties such as solvation free energies
in aqueous solution. We have retained the vast majority of the
original OPLS-AA protein nonbonded parameters. The exception
is the parameters for sulfur used in cysteine and methionine, where
quantum-chemical calculations revealed an overbinding of small
molecule dimers that was too large to be explained by polarization
effects. A new set of charge parameters and van der Waals radii
were developed that fit liquid-state simulation data equally well8

and that yielded hydrogen-bonding energies much closer to the
quantum-chemical results. These parameters also displayed sub-
stantially better performance in side-chain prediction tests (dis-
cussed further below).

For the valence force field, we retained the OPLS-AA stretches
and bends and focused on refitting the torsional parameters to
accurate quantum-chemical data.8 In collaboration with the Jor-
gensen group, a set of rotamer states for model dipeptides were
generated and relative energies of the various rotamer states for
each amino acid were computed at the LMP2/cc-pVTZ (-f) //HF/
6-31G** level, a level we have shown in previous work to be
accurate to better than 0.5 kcal/mol.23 New torsional parameters
for the backbone and side chains were then fit to reproduce these
relative energies. Results are summarized in Tables 1 and 2. The
RMS error in side-chain conformational energies has been reduced
by a factor of approximately two times compared to the original
OPLS-AA parameterization and compared to MMFF94.21,22,24–28

Backbone parameters were further tested by computing relative
energies for a set of 10 conformations of the alanine tetrapeptide,
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for which quantum-chemical data has been computed at the same
level as discussed above; again, a factor of approximately two
times improvement in the RMSD is achieved by torsional refitting.

Condensed-phase performance of the protein force field has
been investigated in the context of a continuum-solvation model,
via conformational prediction of single side chains (keeping the
rest of the protein constant) and loops. These tests have been
carried out using the PLOP program, an offshoot of IMPACT that
has now developed into a separate architecture focused on confor-
mational-search (as opposed to molecular-dynamics) algorithms
for modeling protein structure.29,30 Our studies demonstrate that
improved fitting of quantum-chemical rotamer energies leads to
superior results in side chain prediction, when compared with
structures in the PDB.29 Similarly, the low RMSDs achieved for
loop prediction for loops up to 12 residues in length validate both
the backbone and side chain components of the potential func-
tions.30 These studies are complementary to molecular-dynamics
simulations that examine the stability of the native protein struc-
ture over the trajectory of the simulation. Such simulations explore
whether the native structure is a local minimum but not whether
there are alternative local minima that may have lower free ener-
gies.

Force Field for Pharmaceutically Relevant Organic
Molecules

Our objective in developing OPLS_2003 was to broaden the
coverage of OPLS_2001, the previous standard implementation in
IMPACT of the OPLS-AA force field,7,31–35 and to improve the
quality of the conformational energetics relative to MMFF94 and
MMFF94s21,22,24–28 as well as to earlier versions of OPLS-AA.

OPLS_2001 includes parameters obtained from the parameter files
for Boss4.0 and uses an automated atom-typing scheme that has
been extended and improved for OPLS_2003. New force-field
parameters were developed for OPLS_2003 for organic functional
groups for which the OPLS_2001 force field does not provide
specific parameters. Previously derived parameters for proteins,8

discussed above, were implemented without modification in
OPLS_2003.

Atom Typing and Parameter Assignment

All OPLS_2003 parameters for a given molecule are assigned
automatically in an all-atom representation. The parameter assign-
ment scheme employs atom types that are obtained by matching
molecular fragments that describe the functional groups covered
by the force field. These molecular fragments are stored as strings
of characters using a notation similar to the SMILES/SMARTS
language36 used in cheminformatics. These strings of characters
are called SMARTS patterns. For example, the SMARTS pattern
that represents an alkene moiety is “CAC,” and it is associated
with the OPLS_2003 symbolic atom type “CM” for each of the
carbon atoms; the SMARTS pattern for an amide group is
“C(AO)N,” and it is associated with the OPLS_2003 symbolic
type “C” for the carbonyl carbon atom (the first atom in the
pattern). For the OPLS_2003 force field the SMARTS pattern
notation has been extended to increase the specificity of the pattern
matching by introducing atom property labels. For example, the
SMARTS pattern “[ˆsCM]-[ˆsCM],” where “ˆs” denotes the be-
ginning of the symbolic atom type property label and “CM” is the
atom type label, matches the two central carbon atoms of butadiene
(CACOCAC). Atom type properties can also include numerical
values to, for example, match atomic partial charges. Atom prop-
erty labels are used in pattern matches subsequent to atom typing
in a manner similar to that employed in PATTY (Programmable
ATom TYper).37

The SMARTS pattern-matching algorithm relies on the Lewis
structure of the molecule. The atomic number and the formal
charge of each atom as well as the bond orders of each covalent
bond in the molecule define a Lewis structure. When the Lewis
structure is not available or when an inconsistency of the Lewis
structure is detected (by analyzing the formal charge and valence,
computed as the sum of the bond orders, of every atom), a Lewis
structure is derived from the atomic numbers and the interatomic
connections. This is done in an iterative way. First, the formal

Table 2. RMS Energy Deviations (kcal/mol) from LMP2/cc-pVTZ(-f)//
HF/6-31G** for Charged Dipeptides.

Peptide Original OPLS-AAa PFF OPLS-AA/La

Aspartic acid 4.15 0.41 0.16/1.95
Glutamic acid 2.24 1.41 1.53
Lysine 1.09 0.32 0.88
Protonated His 2.05 0.57 0.97
Arginine 1.50 0.72 1.15
Average 2.20 0.69 0.94/1.29

aFrom ref. 8.

Table 1. RMS Energy Deviations (kcal/mol) from LMP2/cc-pVTZ(-f)//
HF/6-31G** for Peptides.

Peptide Original OPLS-AAa PFF OPLS-AA/La MMFF94a

Tetrapeptide
Alanine 1.47 0.81 0.56

Dipeptides
Alanine 0.43 0.20 0.27
Serine 0.47 0.16 0.44/0.34 0.97
Phenylalanine 0.35 0.05 0.15 0.21
Cysteine 1.91 0.31 0.35 1.21
Asparagine 1.30 0.19 0.16 2.25
Glutamine 0.98 0.69 0.96 1.00
Histidine 0.79 0.90 0.96/0.72 1.60
Leucine 0.37 0.57 0.34/0.38 1.27
Isoleucine 0.88 1.04 0.38 0.66
Valine 0.39 0.14 0.08/0.16 1.01
Methionine 1.00 0.59 0.59 1.05
Proline 2.25 0.76 1.54
Tryptophan 0.56 0.63 0.50 0.83
Threonine 0.77 0.61 0.87 1.15
Tyrosine 0.35 0.25 0.39 0.28

Averageb 0.81 0.55 0.47 1.04

aFrom ref. 8.
bProline not included.
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charges are guessed by considering the number of connected atoms
and their atomic numbers and then by finding an optimal set of
bond orders for each connection. If this does not lead to a valid
Lewis structure, the initial guess is varied and the process is
repeated until a valid Lewis structure is obtained.

Each pattern is associated with a numerical atom type (used to
assign bond charge increments, or BCIs for short),21,24 a van der
Waals type (used to assign Lennard–Jones parameters), and a
symbolic type (used to assign stretching, bending, and torsional
parameters). The valence parameters also depend on an index that,
when set to a value other than the default of zero, allows special
parameters to be assigned24 without requiring that overly fine
distinctions be built into the assignment of the symbolic atom
types. For example, this approach allows the central COC bond in
butadiene to be recognized as being distinct from the terminal
CAC bonds even though the four carbon atoms share the same
symbolic type. This subtype index is assigned for bonds, angles,
and torsions by matching the molecular connectivity and bond
orders to a small list of patterns.

The partial atomic charges are assigned by first distributing any
formal ionic charges over one or more atoms, using defined pat-
terns, and by then adding contributions from the BCI parameters
associated with the chemical bonds. This approach ensures that the
net charge on the molecule is maintained exactly and avoids the
need for redistributing any “excess” molecular charge over the
molecule, as is required in earlier implementations of the OPLS
force field.

When no exact match of the numerical atom types can be found
in the OPLS_2003 BCI database for a given bond, a charge
increment based on the difference of the atomic electronegativities
is assigned. When an exact match cannot be found for stretching,
bending, or torsional interactions, parameters are assigned by
similarity using a series of defined similarities between symbolic
atom types. These similarities proceed from more specific to less
specific symbolic types, which usually represent different atomic
hybrids.

Parameterization

In the original development of the OPLS-AA force field, the partial
charges and van der Waals parameters were adjusted to reproduce
experimental heats of vaporization and densities for a series of
pure liquids.7,31–35 These parameters were further tested by com-
parison to experimental solvation energies, using explicit-solvent
simulations. Additional comparisons were made in some cases to
hydrogen-bond dimer interaction energies obtained from quantum-
chemical calculations. These comparisons were used to detect
large discrepancies that, when present, called for a reinvestigation
of the nonbonded parameters. The OPLS-AA torsional parameters
were fit to reproduce gas-phase conformational energies obtained
from quantum-chemical calculations, and stretching and bending
parameters were adapted from the CHARMM22 or AMBER force
fields.

Our development of OPLS_2003 followed this general pre-
scription. A central objective of this work was to significantly
extend the range of chemical functionality covered by the force
field. With this in mind, a training set of molecular structures was
defined that consisted of the OPLS-AA training set, provided with

the BOSS program, the training set used to develop MMFF94 and
MMFF94s, a larger MMFF set that one of us (TAH) had prepared
at Merck with the intention of extending the parameterization of
MMFF, and additional compounds defined in this work. Authentic
OPLS-AA nonbonded parameters and stretching and bending pa-
rameters were retained for the OPLS-AA core set of 112 com-
pounds for which liquid-phase properties have been studied.7,31–35

Initial estimates for the van der Waals parameters for new organic
functional groups were assigned by analogy to OPLS-AA core
parameters, and BCIs defined via additional combinations of nu-
merical atom types were fit to reproduce molecular electrostatic
potentials derived at the HF/6-31G*//B3LYP/6-31G* level of the-
ory. Where necessary, these parameters were modified to improve
the fit to scaled quantum-chemical geometries and interaction
energies for the series of small-molecule dimers described below.

Stretching and bending interactions for which no parameters
were available were adapted from MMFF94. Equilibrium values
(ideal bond lengths and angles) were then adjusted to reduce the
largest deviations observed in bond length and bond angles with
respect to B3LYP/6-31G*-optimized geometries.

Much as was done for MMFF94s,27 the out-of-plane bending of
tri-coordinated nitrogen atoms that are conjugated to a pi-system
(enamines, aromatic amines, etc.) was examined closely. These
systems typically adopt a strongly pyramidal geometry at the
nitrogen in the B3LYP/6-31G*-optimized gas-phase geometries,
but most are regarded as being roughly planar in solution. To
emulate condensed-phase behavior, the bending parameters of the
nitrogen atom were adjusted to give nearly planar optimized
OPLS_2003 geometries.

Finally, torsional parameters required for the expanded param-
eterization were fit to reproduce conformational energies obtained
at the LMP2/cc-pVTZ(-f)//B3LYP/6-31G* level using a least-
squares fitting protocol based on code originally used to develop
MMFF94.28

Results

The datasets used to parameterize OPLS_2003 are considerably
larger than those used for OPLS_2001, MMFF94, and other force
fields with which we are familiar. For example, OPLS_2001
employs about 650 BCI parameters, while OPLS_2003 uses about
5700, of which 3200 are for 220 additional heterocyclic com-
pounds. The quality of the charge distributions were assessed by
comparing force-field and scaled quantum-chemical geometries
and interaction energies for hydrogen-bond dimers, as has been
done in previous studies.21,22 The MMFF dimer set, which num-
bered 65 for MMFF94 but subsequently was expanded to 195, was
made available to us. We extended this set, most of which involve
water, to a set of 550 structures by adding corresponding dimers
involving methanol or N-methyl-acetamide, although we used
mainly the water-dimer set in this work. Errors in dimer interaction
energies larger than 1 kcal/mol were found for some of these
complexes. For such cases, a conservative change to the non-
bonded charge and van der Waals parameters was made, reducing
the discrepancy between the force field and scaled quantum-
chemical interaction energies to less than 1 kcal/mol in most cases.

A training set of 631 OPLS-AA, MMFF, and Schrödinger
compounds was used for the torsional parameter fitting, and con-
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formational energies and rotation profiles were obtained at the
LMP2/cc-pvtz(-f) level using B3LYP/6-31G*-optimized geome-
tries. We believe this to be the largest and highest quality set of
conformational-energy data used in force-field development to
date. The RMSD obtained for all conformational comparisons
included in the fitting is 0.80 kcal/mol for OPLS_2003 compared
to 2.97 kcal/mol for OPLS_2001 and 2.01 kcal/mol for MMFF94s.
Further comparisons used equilibrium conformers for a set of 108
compounds taken from the published validation set for MMFF94.
For this data set the RMSD is 0.48 kcal/mol for OPLS_2003, 2.43
kcal/mol for OPLS_2001, and 0.68 kcal/mol for MMFF94s.

To complete the development of OPLS_2003, surface-general-
ized Born (SGB) continuum-solvent parameters for the SGB/NP
model were fit to reproduce experimentally derived free energies
of hydration.38 The dataset used in the previous work38 was
increased from 221 to 282 compounds. The RMSD for the differ-
ence in calculated and experimentally derived hydration free en-
ergies for the neutral and charged compounds used in the fitting is
0.38 kcal/mol for OPLS_2003 and 0.85 kcal/mol for OPLS_1999,
representing a substantial improvement in this respect as well.

Polarizable Force Field for Pharmaceutically Relevant
Organic Molecules

Over the past decade, a number of efforts have been made to
explicitly incorporate polarization into molecular-mechanics force
fields.9–12,14,39–47 The present section provides a brief summary
of our own work along these lines, discussing both the underlying
theoretical approach and results that have been obtained to date.
Key features of our approach include fitting to accurate quantum
chemistry, coverage of a wide range of functionalities relevant to
medicinal chemistry, and ability to carry out both explicit solvent
and continuum modeling using a polarizable model.

We have described the basic philosophy, and algorithms, of our
polarizable force-field development efforts in a series of previous
articles.9–14 The permanent electrostatic model consists of atom-
centered point charges and dipoles, supplemented by lone-pair
charges for oxygen atoms; the addition of quadrupoles produces
marginally better agreement with quantum-chemical charge distri-
butions, but not (in our view) at a level that exceeds other errors in
the complete force field. These electrostatic parameters are fit to
high-level quantum-chemical calculations; DFT methods produce
reasonable charge distributions, but we have found that LMP2
calculations23 yield somewhat better results, and we have em-
ployed such calculations in our most recent work.13 At present, our
methodology requires development of a new permanent electro-
static model for each new molecule from quantum-chemical cal-
culations. This is consistent with the idea that the polarizable force
field will be deployed primarily for low-throughput applications
(e.g., lead optimization) as opposed to, for example, screening of
large libraries.

Our current model employs atom-centered dipole polarizabili-
ties; a number of tests have established that the use of atom-
centered fluctuating charges, without dipoles, is inadequate in
some cases to represent the spatial character of the polarization.
We have developed dipole polarizabilities for each of the polariz-
able atom types by fitting the polarization response for a series of
small molecules with that from quantum-chemical calculations;

details of our most recent results are reported in ref. 13. Errors in
three-body energies (determined by applying two point-charge or
dipole probes to the test molecule) are typically less than 0.4
kcal/mol. Substantially, larger three-body energy errors can occur,
but only for cases in which both probes are placed close to the
same atom but on opposite sides of the atom. These latter errors
can be shown to be due to an inherent limitation in the dipole
polarizability model (i.e., atomic quadrupole polarizability terms
would be needed to accurately model polarization energies in this
particular case).

Various computational experiments have led to the conclusion
that the polarizability in the condensed phase is smaller than that
in the gas phase. If, for example, liquid-state simulations are
carried out using the gas-phase polarizability, one observes sub-
stantial overbinding of the liquid state, due to overpolarization. We
have hypothesized11 that this is primarily due to the fact that
diffuse functions contribute significantly to the polarization re-
sponse in quantum-chemical calculations in the gas phase, and that
these functions have substantially higher energy, due to overlap
with the charge clouds of neighboring molecules, in the condensed
phase. As a heuristic approach to this problem, we have investi-
gated the effects of utilizing basis sets lacking diffuse functions in
the computation of polarization parameters. This appears to work
well in yielding agreement with liquid-state properties, as is dis-
cussed further below; a more extensive discussion of this issue is
provided elsewhere11 and similar discussions have also ap-
peared.48–50

Once the electrostatic model is specified, the final task in
completing the nonbonded polarizable energy model is determi-
nation of the nonelectrostatic atom–atom pair terms. This term
represents two very different types of physical interaction. The
long-range part is a true “van der Waals” interaction, modeling
atom–atom dispersion interactions. In contrast, the short-range
component incorporates contributions from exchange, Pauli repul-
sion, and other quantum-chemical forces that are very difficult to
explicitly represent in a molecular-mechanics force field. The
principal goal is to empirically adjust the heavy-atom distance in
hydrogen-bonding (and other) short-range interactions, as well as
the binding energy.

We first obtained long-range dispersion parameters, coeffi-
cients of the 1/r6 term in the pair function, by carrying out
liquid-state simulations.11 We have made an initial assumption that
the dispersive term can be defined as dependent only on the atomic
number of the atom, so that all oxygen atoms, for example, have
the same dispersive coefficient. One could define a different co-
efficient for each atom type, but the present more restrictive
approximation appears to work well in the test cases we have
investigated to date. A few small molecules (e.g., methane, ethane,
methanol, and formamide for C, H, O, and N) were used to
optimize the dispersive parameters.

The remainder of the pair function, which controls the short-
range interactions (all of the remaining terms go rapidly to zero at
long range), was optimized by fitting the structures and binding
energies of small-molecule dimers. We have chosen to use a
combination of the Lennard–Jones and exp-6 functional forms, the
complete pair function being given by:
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Enb � �
i�j

Aij/rij
12 � Bij/rij

6 � Cijexp�rij/�ij�. (1)

Because the coefficient of the 1/r6 term is fixed for each atom,
three parameters remain to be determined (as opposed to the single
parameter that would be available if a Lennard–Jones 6–12 po-
tential were employed). The additional functional flexibility en-
abled us simultaneously to fit both the hydrogen-bond distances
and binding energies of the small-molecule dimer training set, and
this in turn has been found to yield good results for both the heat
of vaporization and density in liquid-state simulations; these sim-
ulations exhibited average errors in heats of vaporization of �0.5
kcal/mol and less than 3% in the density.11 The dimers were
optimized at the LMP2/cc-pvtz(-f) level, followed by single-point
extrapolated LMP2 calculations that are estimated to agree with
the basis-set limit of MP2 to better than �0.3 kcal/mol.51 A wide
range of organic functional groups was covered by fitting to a
training set of 142 dimers (primarily various small molecules with
water); the average deviation of the force field from the quantum-
chemical results was 0.6 kcal/mol.13 A test suite of 40 additional
dimers yielded a similar level of error, suggesting that the param-
eters and combining rules derived in this effort are transferable and
that overfitting has been avoided.

Once the nonbonded terms were defined, the valence compo-
nent of the force field was fit in the same fashion as for the
fixed-charge force field, using the same data sets. Tables 1 and 2
show that the residual errors for the protein force fields are similar
for the fixed-charge and polarizable models; this suggests that
these errors may now be dominated by stretching and bending
terms, which are identical in both cases. Similarly, the average
errors for the small-molecule training set used to obtain torsion
parameters for the generalized polarizable force field are of the
same order (1.0 kcal/mol) as for the fixed-charge force field.

IMPACT contains facilities for carrying out both explicit sol-
vent and continuum-solvent modeling with the polarizable force
field. The explicit-solvent simulation methodology has been de-
rived from the SIM program of Stern et al.52 which has been
integrated with IMPACT’s building, atomtyping, and other facil-
ities. SIM contains technology for imposing Ewald boundary con-
ditions using polarizable dipoles and/or fluctuating charges, as well
as extended Lagrangian methods that render polarizable molecu-
lar-mechanics calculations considerably more efficient than ap-
proaches that rely on adiabatic optimization of the polarization at
every time step; indeed, the computational effort for polarizable
simulations in explicit solvent are only a factor of approximately
two times larger than they are for fixed-charge simulations.53

Continuum-solvation methods, including analytical gradients, are
implemented via a self-consistent reaction field (SCRF) method-
ology using the Poisson–Boltzmann solver PBF (discussed further
in the section on continuum-solvation models).54 The SCRF for-
malism is isomorphic to that used in quantum-chemical con-
tinuum-solvation models. However, treatment of large systems
such as proteins (as opposed to the small molecules typically
modeled via quantum chemistry) is technically demanding, partic-
ularly for the gradient calculations. Successful minimization of 18
protein–ligand complexes using the PFF/PBF energy model have
been performed.13

In principle, the polarizable force field described in this section
should represent a significant improvement in accuracy and reli-
ability compared to a fixed-charge force field. The performance in
practice for problems of interest, such as the prediction of protein
structure or protein–ligand binding, however, can only be deter-
mined by comparison with experimental structural and thermody-
namic data for the relevant systems. Tests of this type are at
present ongoing, but the data are as of yet insufficient to draw any
firm conclusions.

Fast Multipole Method

There are two methods available in IMPACT to treat long-range
electrostatic interactions that avoid the use of nonbonded cutoffs.
In addition to the Ewald sum method, the Fast Multipole Method
(FMM)55,56 has been implemented in IMPACT. FMM allows
simulations effectively without nonbonded cutoffs, which are
known in some cases to introduce artifacts, without incurring the
unfavorable O(N2) scaling of the brute force calculation of the
Coulomb interaction energy between every pair of atoms. The
FMM algorithm can be used for periodic systems (with cubic
periodic boundary conditions) as well as aperiodic systems (such
as simulations in water droplets) for which standard Ewald and
Particle Mesh Ewald (PME) methods cannot be applied. The FMM
method starts with the observation that the electrostatic interaction
energy between an atom and a set of distant atoms can be approx-
imated by a multipolar expansion, up to a certain order, of the
electric field of the distant atoms at the location of the atom. The
multipolar expansion is expressed in terms of multipolar coeffi-
cients that depend only on the charge distribution of the distant
atoms and not on the observation point. Therefore, once the
multipoles of the distant atoms are computed, the cost of comput-
ing the long-range interaction energy of N atoms is proportional to
N. Because in IMPACT’s FMM implementation57 the cost of
calculating the multipolar expansions also grows linearly with
system size, the overall cost of computing the long-range electro-
static energy of the system grows only linearly with system size.
The O(N) scaling of FMM is superior to the O(NLogN) scaling of
PME, the O(N3/2) scaling of the Ewald method and the O(N2)
scaling of the brute force algorithm. Therefore, for a large enough
system, FMM is expected to be the most efficient algorithm to
compute the long-range electrostatic energy. By indirect compar-
isons it was estimated that the FMM algorithm implemented in
IMPACT becomes faster than PME for systems of about 20,000
atoms.57 In the FMM implementation in IMPACT57 the system is
divided recursively into a tree of cubic clusters. Multipolar expan-
sions are evaluated for the smallest clusters, which are then prop-
agated to the parent clusters using efficient transformation rela-
tions. The implementation allows for arbitrary cluster tree depths
and order of multipolar expansions. The FMM algorithm is cou-
pled to a sophisticated MD RESPA scheme57 that allows infre-
quent reevaluation of computationally expensive quantities.

Solvation Models

The accurate modeling of the effects of solvation on protein
structural and thermodynamic properties has been a central con-
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cern in the evolution of modern molecular mechanics models for
protein simulations. In the 1980s and the early 1990s much of the
emphasis was on explicit molecular representations of the solvent.
In principle, this is the most realistic approach to study solvation
effects. Furthermore, the development of potential functions and
advanced molecular dynamics and Monte Carlo algorithms for
simulating biomolecules in solution and molecular liquids, have
advanced in parallel and with considerable synergy. As described
in the following section IMPACT has the ability to carry out
explicit solvent simulations of proteins in solution using a variety
of water models and methods for handling the periodic boundary
conditions that arise in these kinds of simulations. However,
computer simulations using explicit solvent models are computa-
tionally intensive, not just because of the very much larger number
of atomic interactions that need to be calculated at every step, but
also, and perhaps more importantly, because of the need in most
problems of interest to average the fluctuating effects of the
solvent reaction field on the biomolecular solute. For modeling the
binding of ligands to proteins and other problems where the
emphasis is on structure and thermodynamics, effective potential
models that treat the solvent implicitly have much to offer. These
models can be derived, at least conceptually, from the consider-
ation of the solvent potential of mean force.58 We have benefited
from this perspective in our own work on the development of
implicit solvent models. By carrying out “computer experiments”
on solvation thermodynamics in explicit solvent and extracting
potentials of mean force we have obtained useful insights into the
construction of functional forms for implicit solvent models and
their parameterization.38,59–65 The goal is to derive functional
forms for the solvent-averaged potential of mean forces that have
the “flavor” of a molecular mechanics potential functions; that is,
that the solvation potential and its derivatives can be calculated as
analytical functions of the atomic coordinates of the biomolecular
solute. Much of our work in recent years on solvation models for
IMPACT has been focused on this goal.

The starting point for our discussion of implicit solvation
models is the expression for the total “effective energy” of the
biomolecule in solution.

Etot � E0 � �Gsolv (2)

where E0 represents the molecule’s energy in the gas phase (Evac)
if the molecular mechanics model is a polarizable model, or, if
more commonly E0 is calculated using a fixed-charge molecular
mechanics function, it represents the intramolecular effective en-
ergy of the solute including the electronic polarization effects of
the solvent in an average way. �Gsolv is the solvation free energy
change for transferring the molecule from the gas phase to solution
for the polarizable model; but for fixed charge molecular mechan-
ics models �Gsolv does not include the work required to polarize
the solute’s charges that are built into E0.66 (We note that it is
�Etot, the change in the total effective energy of the solvated
system with a change in the solute’s coordinates, that is usually the
quantity of interest. The solvent contribution, ��Gsolv, is the
solvent averaged potential of mean force for the conformational
change of the solute in solution.)

To estimate the total solvation free energy �Gsolv of the mol-
ecule, a standard charge decoupling procedure is followed by

which �Gsolv is decomposed into electrostatic and nonpolar con-
tributions:

�Gsolv � �Gelec � �Gnonpolar (3)

where �Gelec is the free energy change for removing all the
charges from the molecular shaped cavity in the vacuum and
adding them back to the corresponding cavity in solution. The
nonpolar free energy change can be decomposed into contributions
from cavity formation and the favorable van der Waals attraction
between the solute and solvent molecules. With IMPACT a con-
tinuum dielectric estimate of �Gelec can be evaluated as described
below using a Poisson–Boltzmann solver (PBF, see below). How-
ever, it is not in general practical to perform molecular dynamics
simulations, or high-throughput ligand docking simulations using
a Poisson–Boltzmann framework to evaluate �Gelec. Instead. the
modeling community has developed a strong interest in a class of
approximations known as Generalized Born models,67,68 which
can be derived from the Poisson equation. Two implementations of
GB have been coded in IMPACT: the Analytical Generalized Born
(AGB) model, and the Surface Generalized Born (SGB) model.
These models are described below with an emphasis on the AGB
model. Unlike most molecular mechanics packages for which
�Gnonpolar is approximated by a surface area term, after extensive
experimentation based on explicit solvent simulations, we have
chosen to model the favorable van der Waals attraction energy
between the solute and solvent using a different functional form
than the estimator used to model the work of cavity formation; for
this term we retain a standard surface area representation. The
rationale for our choice of the nonpolar function and our initial
parameterization of the model is explained in a following section.

Explicit Solvent

Explicit solvent simulations69 using the SPC,70 TIP3P, and
TIP4P71 water models are supported natively. Other solvents can
be constructed from the topology file of a representative solvent
molecule. A solute–solvent system using explicit water can be set
up either from Maestro or by directly interacting with the IMPACT
backend. The construction of solvated systems in solvents other
than water necessitates the use of topology files and requires direct
interaction with the backend. In Maestro, the procedure for con-
structing an explicit solvent system is called Soak. The starting
point is a solute conformation. The user selects the water model
and the dimensions of the solvent box. The IMPACT backend then
inserts the solute in the solvent box using a prethermalized sample
box, which is replicated and clipped to cover the final box size.
Water molecules that overlap with the solute are removed. The
resulting solvated system is usually energy minimized and ther-
malized using constant pressure molecular dynamics. The Ewald
or the Fast Multipole Method (FMM) can be used to model
long-range electrostatics with periodic boundary conditions. IM-
PACT uses a group-based (residue-based or molecule-based) Ver-
let neighbor list for short-range nonbonded interactions. The non-
bonded interaction energy routine is multithreaded allowing for
increased speed on symmetric multiprocessor computers.
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Poisson–Boltzmann Solver

PBF is a program that uses finite element methods to numerically
solve the linearized Poisson–Boltzmann (PB) equation:

� � ����� � �
4��

kT
� �	2� (4)

where � is the dielectric constant, � is the electrostatic potential, �
is the solute charge density, 	2 � (8��2I)/(�kT) is the inverse
Debye length squared, and I is the ionic strength. Unlike finite
difference methods, the finite element approach enables the use of
a nonuniform grid; in the present case, the grid points are concen-
trated at the dielectric boundary. However, to compute the multi-
dimensional derivatives required to represent eq. (4), the grid must
be assembled into connected volume elements. PBF employs tet-
rahedra as elements, each defined by the four grid points of the
vertices. Tiling the grid with tetrahedra is a complex computational
task; the approach taken in PBF is discussed in detail in ref. 72. It
is also essential that the dielectric surface can be constructed by
putting together the appropriate tetrahedral faces; again, the meth-
odology to accomplish this in PBF is discussed in ref. 72.

Once the tetrahedral tiling of the grid has been completed,
gradients are defined using standard finite element formulas, and
the results implemented as a matrix operation acting on the values
of the electrostatic potential at the grid points. The matrix so
generated is, for a given system and effective resolution, smaller
than that used in a finite difference approach, as the finest resolu-
tion in the finite element grid is not required everywhere in the
system. On the other hand, the matrix operator has more off
diagonal elements in a finite element representation than it does in
a finite difference representation, and the structure of the matrix is
more irregular. These two factors probably roughly cancel each
other in practice, suggesting that neither method has a fundamental
performance advantage for iterative solution of the PB equation.
At present, a significant amount of time is required to build the
tetrahedral finite element mesh; efficiency could be greatly im-
proved for geometry optimization, compared to what is shown
below, by rebuilding the mesh when and where necessary, as
opposed to a complete rebuild for every geometry step (which is
what is currently implemented). Our focus at present is on obtain-
ing increased accuracy, and the current level of performance is
sufficient to carry out the relevant computational experiments.

The dielectric surface in PBF is defined using a sum of atom-
based Gaussians; the parameters have been adjusted to qualita-
tively yield results similar to the classical solvent accessible sur-
face (Connolly surface) that is used in DelPhi73 and other finite
difference PB solvers. However, the Gaussian surface is smooth
and permits a straightforward implementation of analytical gradi-
ents, using methods discussed in ref. 54. Both the Gaussian surface
and the Connolly surface can be designed so as to properly define
areas where water molecules cannot fit as low dielectric; however,
there are still nontrivial differences in the details of the surface.
Because neither model can be rigorously derived from an exact
statistical mechanical treatment (all continuum solvation models in
fact must be parameterized to provide a reasonable representation
of first shell interactions with water in any case), it is unclear
which surface will deliver better performance in practical calcu-

lations. Accuracy in various tasks (e.g., computing relative ener-
gies of different side chain or loop conformations) can only be
ascertained by taking a particular total implementation (surface
definition, numerical grid, partial atomic charges, etc.) and com-
paring with the relevant experimental data. Comparisons of PBF
with DelPhi73 in various benchmarks show good qualitative agree-
ment for relative energies,74 while comparisons with free energy
perturbation calculations for solvation free energies of peptides
and proteins have yielded remarkably good agreement.62 Never-
theless, the quantitative accuracy of any PB methodology for
structural or binding affinity predictions in complex systems has
yet to be assessed in depth.

PBF has been designed to work with both fixed charge and
polarizable force fields, as well as with a quantum chemical
description of the solute. In both force fields cases, we employ the
model discussed in the SGB/NP section to describe the nonpolar
component of the free energy. For the fixed charge force field, we
use the OPLS-AA charge model described in the Fixed-Charge
Protein Force Field section of this article. For the polarizable force
field and quantum chemical descriptions of the solute, a self-
consistent reaction field (SCRF) formalism is employed, as is
discussed in detail in refs. 75 and 76. In this approach, an initial
guess is made for the solute charge distribution, the solvent reac-
tion field is evaluated using PBF, the reaction field (in the form of
surface point charges) is determined, and these are then used to
recalculate the solute charge distribution. This process is iterated
until the solute charge distribution has converged. In this fashion,
the polarization of the solute due to the electrostatic field of the
solvent, and the solvent alignment due to the solute, are self-
consistently adjusted. The technology to treat the polarizable force
field and quantum chemical descriptions of the solute are isomor-
phic; algorithms for calculating the analytical gradient are com-
plicated but straightforward, and are described in ref. 54.

For all three models, dielectric and nonpolar parameters must
be optimized for each atom type if first shell interactions are to be
described with a reasonable degree of accuracy. The principal
means at present for such optimization is fitting the parameters to
experimental solvation free energies of small molecules. Table 3
summarizes the results for the three models, presenting the number
of molecules in the training set, and mean unsigned errors between
the calculated and experimental values. Details of the fitting pro-

Table 3. The Number of Molecules in the Training Set (#Mol) and the
Average Unsigned Errors (AVE in kcal/mol) Between the Predicted and
the Experimental Hydration Free Energies for PBF with the OPLS-AA
(OPLS_2003) Fixed Charge Force Field, the Polarizable Force Field
(PFF) and Quantum Chemical Description (QM) of the Solute.

PBF/OPLS-AA PBF/PFFa PBF/QMb

#Mol AVE #Mol AVE #Mol AVE

Neutral 130 0.24 126 0.26 120 0.36
Ionic 21 0.65 21 0.83
Total 151 0.30 147 0.34 120 0.36

aFrom ref. 13.
bFrom ref. 77.
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tocol, training set, and distribution of errors can be found in refs.
13 and 77.

To demonstrate the capability of our PBF implementation, we
have carried out solution-phase optimization of a number of sys-
tems, including the cocrystallized ligands and native proteins of
various sizes. Initial structures were taken from the PDB data
bank. In carrying out such energy minimizations, we begin by
minimizing the systems using a fixed charge force field and the
SGB/NP implicit solvent model, and then we switch to PBF
sequentially increasing model complexity from the fixed-charge
model to the QM model. Using this staging scheme, whereby more
complex models are used at later stages of the calculation, saves
significant amount of CPU time. In this study, we have imple-
mented some preliminary protocols to increase the speed of the
minimization procedure, such as calling the PBF solver infre-
quently. Work is in progress to further optimize both the PB solver
and the minimization scheme.

The SCRF version of PBF has been designed to work with
QSite, so that QM/MM as well as QM solutes can be investigated.
Although numerous applications of PBF with Jaguar (pure QM
model) have been carried out to date, the PBF/QSite capability is
relatively new and has not been extensively investigated, or opti-
mized, as of yet.

In summary, the PBF module provides the capability within
IMPACT to numerically solve the full PB equation, for both
single-point energy and gradient calculations, as opposed to the
approximations inherent in the GB-based models discussed below.
Such solutions are computationally more expensive, but may pro-
vide improved accuracy (although this is dependent upon the
details of the parameterization, and remains to be demonstrated).
The SCRF capabilities represent the principal approach to devel-
oping continuum solvation models when the solute is to be treated
as polarizable (whether via a polarizable force field or via quantum
mechanics). Some degrees of parameter optimization and testing
have been performed for all of the models, but this is an area that
will require a great deal of work in the future to ensure accuracy
and robustness for a wide range of systems.

Generalized Born Models

Generalized Born (GB) models67,78 estimate the electrostatic com-
ponent �Gelec of the hydration free energy as

�Gelec � �GGB � �
i

�Gself�i� � � 1

�in
�

1

�out
� �

i�j

qiqj

fij
, (5)

fij � �rij
2 � BiBjexp��rij

2 /4BiBj�, (6)

where the summation runs over the atoms i and the atom pairs (ij,
i 
 j) of the solute, �in � 1 and �out � 80 are the interior and
exterior dielectric constants, qi is the partial charge of atom i, and
rij is the distance between atoms i and j. �Gself(i) is the self-energy
of atom i, defined as the electrostatic solvation free energy of the
solute when only the partial charge of atom i is turned on. The
summation over atom pairs in eq. (5) is the sum of the GB pair
energies. The Born radius Bi of atom i is defined as the radius that

reproduces the self-energy,�Gself(i), of atom i according to the
Born formula

�Gself�i� � �
1

2 � 1

�in
�

1

�out
� qi

2

Bi
. (7)

The self-energy is largest in absolute value for the atoms that are
most exposed to the solvent because they are capable of inducing
stronger polarization fields. This effect is captured by the GB
model in that atoms exposed to the solvent have smaller Born radii,
whereas buried atoms tend to have larger Born radii. The pair-
energy term corresponds to the dampening of electrostatic inter-
actions in a high dielectric medium due to the screening of the
solute charges. The GB equation can be shown to be an exact
representation of the electrostatic charging free energy of the
solute in a continuum dielectric in the two limiting cases of infinite
atomic separation and complete atomic overlap.67

In the Coulomb Field approximation the Born radius is given
by the integral over the solvent volume of the fourth power of the
distance between the solute atom and the solvent79

1

Bi
�

1

4� �
solvent

1

�r � ri�
4 d3r. (8)

The accuracy of the Coulomb field approximation has been ana-
lyzed using exact analytical models78 and accurate numerical PB
calculations.80,81 It has been found to be generally acceptable with
the exception of cases with very asymmetric solute geometries,
where it tends to overestimate the values of the Born radii. Em-
pirical corrections to Coulomb field approximation have been
proposed.79,81 It has been pointed out that approximations in the
integration procedure to obtain the Born radii using eq. (8) may
actually be of more significance than the Coulomb field approxi-
mation itself.80

AGBNP

AGBNP (Analytic Generalized Born plus Nonpolar) is a recently
developed implicit solvent model.61 Development versions of AG-
BNP were first incorporated in the 2.6 version of academic IM-
PACT. The AGBNP model will be available in the 2005 release
from Schrödinger. The numerical implementation of AGBNP61

includes several speed optimization features, and it makes use of
multithreading techniques for increased speed on symmetric mul-
tiprocessor computers.

Several key objectives were pursued in the development of the
AGBNP implicit solvent model: the applicability of the model
over a wide range of molecular sizes, from small molecules to
large proteins, and over the wide range of functional groups
present in ligand databases; the ability to correctly model hydra-
tion free energy differences, including large-scale protein motions
and the motion of only a few atoms; the ability to express the
model in analytical form with analytical gradients, and finally,
computational efficiency. These requirements were dictated by the
range of applications, hydration free energy prediction, ligand
affinity prediction, induced fit, loop modeling, protein folding,
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protein binding, and protein allostery that we wished to pursue
with this model. Although several models exist with some of the
above characteristics,38,68,77–79,82–86 none of them, in our view,
has the flexibility and computational efficiency we required.

AGBNP is based on the decomposition of the solvent potential
of mean force into an electrostatic component and a nonpolar
component. The electrostatic component is modeled using the
Generalized Born model. AGBNP introduces two key innovations:
a parameter-free analytical pairwise descreening scheme for the
calculation of Born radii, and a nonpolar hydration free energy
model that includes a solute–solvent van der Waals interaction
energy estimator.

Parameter-Free GB Pairwise Descreening Scheme

The key quantities in Generalized Born models are the Born radii
Bi of each atom. Generalized Born implementations in use in
molecular simulation programs87 differ mainly in the procedure
used to calculate Born radii. In the Coulomb field approximation
the Born radius of atom i is given by eq. (8). A more computa-
tionally convenient expression is obtained by adding and subtract-
ing from eq. (8) the expression for the inverse of the Born radius
of a solute composed only of atom i, yielding

1

Bi
�

1

Ri
�

1

4� �
	i

d3r
1

�r � ri�
4 (9)

where Ri is the van der Waals radius of atom i, ri is the position of
atom i, and 	i represents the solute volume outside atom i. The
first term on the right-hand side of eq. (9) represents the Born
radius of atom i in the absence of all other solute atoms; the
integral expression takes into account the displacement of the
solvent dielectric due to the other solute atoms. The goal is to
evaluate this integral as accurately and efficiently as possible.
AGBNP computes this term using an analytical expression in-
spired by dielectric descreening schemes.84 In the dielectric de-
screening method the integral on the right-hand side of eq. (9) is
replaced by a pairwise sum over the solute atoms,
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�

1

Ri
�

1

4� �
j
i

Qji (10)

where Qji is a quantity that corresponds to the contribution of the
volume associated with atom j to the integral in eq. (9), given by

Qji � �
	ji

d3r
1

�r � ri�
4 (11)

where the integration domain is the region 	ji, corresponding to
the volume of atom j that lies outside atom i. The integral in eq.
(11) can be expressed in analytical form. However, due to the
overcounting of regions that lie inside more than one atomic
sphere, eq. (10) significantly overestimates the values of the Born
radii. To correct for this the contribution from each atom j in eq.
(10) is reduced by a scaling factor, sji, less than 1

1
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�

1
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�

1

4� �
j
i

sjiQji. (12)

The Generalized Born implementation in AGBNP is unique
among pairwise descreening schemes in that the values of the
factors to account for atomic overlaps are not predetermined by
parameterization with respect to Poisson–Boltzmann results or
experimental data,68,84,86,88,89 but are instead computed on the fly
from the geometry of each solute conformation. A detailed de-
scription of the algorithm to compute the scaling factors sji can be
found in ref. 61. Briefly, the scaling factor sji is defined as the
fraction of volume of atom j assigned exclusively to that atom
(called the self-volume)—excluding overlaps with atom i, which
are already taken into account in the definition of Qji . The atomic
self-volumes are defined by partitioning the solute volume into
volumes occupied by one, two, three, etc., atoms. These volumes
are assigned in equal fractions to the component atoms. For ex-
ample, of the volume occupied both by atoms i and j, half is
assigned to the self-volume of atom i and half is assigned to the
self-volume of atom j. Due to their complex geometries, the
volumes of these regions are not amenable to easy evaluation.
Instead, each volume is decomposed into intersection volumes
between pairs, triples, etc., of atoms and the following expression
for the self-volume, V’i, of atom i is obtained:

V�i � Vi �
1

2 �
j

Vij �
1

3 �
j�k

Vijk � · · · (13)

where Vi is the van der Waals volume of atom i, Vij is the
intersection volume of atoms i and j, Vijk is the intersection volume
of atoms i, j, k, and so on. By summing the self-volumes of the
atoms given by eq. (13), the volume of the molecule is obtained (a
result known as the Poincarè formula for the volume of an object
composed by the union of overlapping spheres90), confirming the
interpretation of V’i as the self-volume of atom i, that is, the
volume of atom i that can be regarded to belong only to that atom.
Two simplifications are then applied. The first, justified by the fact
that the analytical expression for the intersection volume of mul-
tiple spheres is extremely complex,91 consists of estimating the
volume of intersection of multiple atoms as the overlap integral of
Gaussian functions centered on each atom with parameters ad-
justed to reproduce the extent and the volume of each atom.61,90

The second simplification is approximating the self-volume V’ji of
atom j in the absence of atom i, needed as mentioned above to
compute the overlap scaling factor sji, as the self-volume of atom
j plus one-half the intersection volume of atoms i and j. This
approximation, valid when intersection volumes of higher order
involving atoms i and j can be neglected, simplifies considerably
the algorithm that would otherwise require the calculation of
multiple self-volumes for each atom. We therefore finally set

sji �
V�j � Vij/ 2

Vj
. (14)

The parameter-free approach employed by AGBNP to calculate
pairwise descreening scaling coefficients is particularly useful
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when treating unusual functional groups often found when screen-
ing large numbers of ligand candidates from a database. Scaling
coefficients derived from a training set68,88,89,92 in which a par-
ticular functional group is not represented may be unsuitable for
such a functional group. On the other hand, it is impractical to
construct a training set in which all possible functional groups and
combinations of functional groups are represented. The parameter-
free analytical scheme used in the AGBNP model ensures that
each atom in any molecule is assigned proper scaling coefficients.
In the context of molecular modeling projects concerned with
ligand binding, the parameter-free feature of AGBNP makes it
possible to use a very diverse database of ligands.

Nonpolar Model

AGBNP includes a novel analytical nonpolar hydration free en-
ergy estimator. It is distinct from commonly used surface area-
based nonpolar estimators in that it is based on the nonpolar
hydration free energy decomposition into a cavity term, propor-
tional to the solute surface area, and an attractive dispersion energy
term, which approximates the solute–solvent van der Waals inter-
action energy assuming uniform solvent density outside the solute.
We have shown that using independent models for the cavity and
the dispersion energy components reproduces the nonelectrostatic
solvation properties of small molecules and macromolecules qual-
itatively better than models that describe both of these effects
through a model exclusively based on the solute surface area. In
particular, it was observed64 that, due to the medium-range nature
of van der Waals interactions, the protein–ligand binding energy
penalty incurred by the loss of ligand–water van der Waals inter-
actions (often larger in magnitude than the corresponding binding
free energy) is poorly correlated with the buried surface area upon
binding, and that a surface area model parameterized on small
molecules, peptides, and proteins consistently overestimated the
loss of ligand–water van der Waals interactions. Similar effects
were shown to be responsible for the inability of surface area
models to describe even in a qualitative sense the potential of mean
force for dimerization of two alanine dipeptide molecules in water,
which was instead reproduced by a model, described below, which
accounts for solute–solvent attractive van der Waals interactions
through an estimator based on the Born radii of the solute atoms.65

We obtained the first insights into this problem studying the
hydration free energies of alkanes in explicit solvent. The well-
known fact that cyclic alkanes are more soluble in water than
linear and branched alkanes with similar surface area, although
reproduced by explicit water simulations, lacked theoretical justi-
fication. It was found60 that for these small alkanes the solute–
solvent van der Waals energy per solute atom was approximately
independent of the solute surface area. Therefore, the increased
relative solubility of cyclic alkanes is due to the fact that cyclic
alkanes interact as strongly with the solvent as linear and branched
alkanes of similar chain length, suffering at the same time a
smaller cavity formation free energy penalty due to their smaller
surface areas. This observation helped us to also understand the
very different values of the effective surface tension obtained
when fitting a surface area model to either the hydration free
energies of a series of alkanes or a series of different conforma-
tions of the same alkane molecule.60,93 It was shown that confor-

mational changes caused variations in the cavity component of the
nonpolar hydration free energy, whereas solute–solvent dispersion
interaction energies of these small molecules were much less
affected by conformational changes. These observations suggested
that an accurate nonpolar hydration free energy estimator applica-
ble to a wide range of chemical functionalities and conformational
variations should be composed of two independent components:
one corresponding to the cavity hydration free energy, and the
other corresponding to the solute–solvent van der Waals interac-
tion energy. Free energy perturbation calculations in explicit sol-
vent showed that for small molecules the cavity component was
correlated with short-range first solvation shell estimators such as
the solute surface area, whereas the solute–solvent dispersion
energy depended also on second shell and longer range interac-
tions less dependent on solute conformation. These ideas were
applied with success to the prediction of experimental hydration
free energies of a large set of small molecules38 using SGB for the
electrostatic component, a surface area model for the cavity com-
ponent and an atom-type–dependent term independent of solute
conformation. Later we showed some of the shortcomings of using
a surface area model to describe solute–solvent van der Waals
interaction energies of peptides, proteins, and protein–protein and
protein–ligand complexes, obtained from explicit solvent simula-
tions.64 Based on this data we then developed a solute–solvent
dispersion energy analytical expression based on the Born radius
of each solute atom61 that was simple enough to be used for
molecular dynamics sampling. The nonpolar hydration free energy
estimator finally used in the AGBNP model has the following
expression:

�Gnp � �
i

��iAi � �iWi� (15)

where the summation runs over solute atoms, �i is the surface
tension parameter assigned to atom i, �i is the dimensionless
solute–solvent van der Waals interaction energy parameter as-
signed to atom i, and Ai and Wi are geometrical estimators that
depend on solute conformation. Ai is the surface area of atom i and
Wi is defined as

Wi �
ai

�Bi � Rw�3 (16)

where ai depends on the Lennard–Jones parameters of atom i,61 Bi

is the Born radius of atom i, and Rw � 1.4 Å is the radius of a water
molecule. The nonpolar model is currently minimally parameter-
ized;61 a single value of the surface tension parameter obtained by
fitting to explicit solvent free energy perturbation calculation re-
sults of the cavity hydration free energies of alkanes is used for all
atom types. The van der Waals parameter �i have been minimally
adjusted from their ideal value of 1 to better reproduce solute–
solvent van der Waals interactions from explicit solvent simula-
tions;61,64 their values range from 1 to 0.75.

SGB/NP

The Surface Generalized Born (SGB)79 plus Nonpolar (NP)38

implicit solvent model (SGB/NP) is based on the Generalized Born
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continuum dielectric model and a nonpolar hydration free energy
estimator similar to the one employed by the AGBNP implicit
solvent model described in the previous section. The SGB/NP
Generalized Born implementation differs from other GB imple-
mentations in two main respects: (1) the computation of the Born
radii is performed by integrating over the solute–solvent boundary
rather than the solute volume, (2) Born radii are calculated in
principle without introducing any approximation beyond the Cou-
lomb field approximation (as opposed to pairwise descreening
schemes, see above), and (3) it contains correction factors aimed at
counterbalancing the effects of the Generalized Born and Coulomb
field approximations relative to the exact solution of the Poisson–
Boltzmann equation. The SGB/NP nonpolar hydration free energy
estimator is based on the same decomposition as the AGBNP
model (see previous section) into a cavity component, proportional
to the solute surface area, and a solute–solvent van der Waals
energy component based on the Born radius of each atom.38

The Born radius of atom i, Bi, is calculated in the Coulomb
Field approximation by transforming, using Green’s theorem, the
integral of the (r � ri)

�4 over the solute volume [see eq. (8)], into
a surface integral

1

Bi
�

1

4� �
S

r � ri

�r � ri�
4 � n�r�d2r (17)

where S is the solute–solvent boundary, ri is the position of atom
i, and n(r) is outward normal to the surface element at r. The
integral is performed over a surface grid constructed by placing a
uniform grid of surface elements over each solute atom and delet-
ing those surface elements that are found in the interior of solute
atoms. When expressed on a surface grid, the integral in eq. (17)
takes the form of a pairwise sum between the centers of atom i and
of each surface element. To reduce the number of pair evaluations,
a higher density of surface elements is used for nearby atoms,
whereas fewer surface elements per atom are used to compute the
contribution to the surface integral from distant atoms. Optionally
a distance cutoff is also applied to omit the contribution of the
surface of atoms beyond a certain distance from atom I.

Empirical corrections to the SGB model have been developed
by examining systematic deviations between the primitive SGB
results and the PB results for a large database of molecules.79 Two
sets of corrections for the Born radii were developed. These
corrections assume the form of scaling factor Rsr,i and Rlr,i that
multiply the original value of the Born radius of atom i given by
eq. (17). The short-range corrections are based on the van der
Waals radius of atom i, the number of neighbors of atom i, and on
their van der Waals radii. The long-range corrections are based on
an estimator function that measures the amount of solute surface
area with outward normal pointing toward the position of each
solute atom. The long-range corrections are designed to offset the
tendency of eq. (17) to generally overestimate the Born radii of
atoms situated in invaginated portions of the surface of biomol-
ecules. Empirical corrections for the GB pair interaction energies
were also developed.79 These take the form of quantities, Rpr,
which depend exponentially on the distance between the two
atoms, which are added to the original expression67 of the pair GB

interaction energy. The parameters of the expression of Rpr depend
also on the number of van der Waals neighbors of each atom.79

The electrostatic portion of the SGB/NP model was shown to
reproduce with good accuracy the charging free energies of vari-
ous conformations of peptides and proteins obtained by solving the
Poisson–Boltzmann equation.79 We have also tested the predic-
tions of the SGB model against explicit solvent free energy per-
turbation calculations of electrostatic solvation component of the
free energy of binding of a peptide to the Major Histocompatibility
Complex receptor (MHC I).62 We found very good agreement
between the SGB model estimates and the free energy perturbation
results.

The expression of the nonpolar hydration free energy estimator
of the SGB/NP model has the same general expression as the
nonpolar model used in AGBNP, except that the van der Waals
term, Wi, has a different but similar dependence on the Born
radius.38 The SGB/NP nonpolar model has been parameterized by
fitting the adjustable parameters �i and �i against the experimental
hydration free energies of a large database of organic molecules.38

The parameterization of the SGB/NP model has been recently
extended to the OPLS_2003 force field (see section Force Field for
Pharmaceutically Relevant Organic Molecules).

Conformational Sampling

The design of accurate and efficient effective potential energy
models needs to be matched with algorithms to sample the effec-
tive potential energy surface over the relevant conformational
space in efficient ways so as to allow for the estimation of ther-
modynamic quantities. In this section we review some of the
sampling algorithms implemented in IMPACT. A description of
the free energy perturbation method implementation is also in-
cluded in this section.

Molecular Dynamics

The Molecular Dynamics (MD) facility in IMPACT employs the
RESPA94 multiple time step integrator. The RESPA implementa-
tion in IMPACT includes a recursive algorithm57 that allows for a
variety of RESPA integration levels to be employed. Normally two
RESPA levels are used. The inner (fast) level is employed for
bonding interactions (bonds, angles, and torsions) and the outer
(slow) level for nonbonded and solvation components. Typically
from four to eight inner integration steps per outer integration step
are performed. This simple setup allows MD simulations without
holonomic bond constraints (SHAKE/RATTLE) without signifi-
cant performance loss. With the Fast Multipole Method (FMM) it
is also possible to insert an extra RESPA level (medium) between
the fast and slow levels for electrostatic and Lennard–Jones inter-
actions of intermediate range. Microcanonical, canonical, and iso-
baric ensemble MD sampling schemes are implemented.

HMC, J-WALK, and S-WALK

A number of advanced sampling techniques based on the Hybrid
Monte Carlo (HMC) sampling algorithm are available in IM-
PACT, including J-WALK and S-WALK. Conventional Monte
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Carlo (MC) methods are not easily applicable to biomolecular
systems because of the difficulty of designing nonlocal collective
moves without incurring prohibitively low acceptance ratios.
HMC95 is a general technique to generate collective sampling
moves that are accepted with optimal probability. In HMC the MD
integrator itself (RESPA in this case) is used to generate global
MC moves. The idea is to use a large MD time step that does not
lead to exact energy conservation. Starting with random velocities,
at the end of a series of MD steps the new total energy Enew is
compared to the starting energy Eold and the new conformation is
accepted or rejected by means of a standard Metropolis MC test
based on exp[�Enew � Eold)/kT]. Because the RESPA integrator
in IMPACT is time reversible and symplectic,94 it can be shown95

that HMC, as implemented in IMPACT, produces an equilibrium
canonical probability distribution. HMC is an attractive canonical
sampling scheme because it has the ability to perform multiparticle
moves without incurring the instabilities and discretization errors
inherent in MD methods. HMC does not require the atomic forces
used in the MD updates to correspond exactly to the gradient of the
potential energy being sampled (although better energy conserva-
tion and thus a higher HMC acceptance ratio is achieved when the
forces correspond as closely as possible to the true gradient of the
potential). Therefore, HMC is also very useful for sampling a
potential energy surface whose exact gradient is either not avail-
able or too expensive to update at every step, such is the case for
the numerical implementations of the SGB implicit solvent model.
In these cases approximate gradients are used in the MD updates
and HMC is used to perform exact canonical sampling.

The Jump-Walking (J-WALK) sampling method96 is an ad-
vanced sampling protocol designed to reduce the sampling bottle-
necks caused by the ruggedness of the potential energy surface of
biomolecules. The idea is to enhance sampling by proposing new
conformations drawn from a canonical ensemble at a higher tem-
perature than the temperature of interest. An HMC run is con-
ducted at a temperature T� greater than the temperature of interest
and conformations are saved at regular intervals. Then an HMC
run is conducted at the temperature of interest T attempting peri-
odically to jump to one of the conformations saved from the high
temperature run. The jump is accepted with probability

min�1, exp��� 1

kT
�

1

kT��(U� � U)	
,

where U is the current potential energy and U� is the potential
energy of the selected high temperature conformation. This form
of the acceptance probability ensures that J-WALK samples the
equilibrium canonical ensemble. The J-WALK method as imple-
mented in IMPACT is related to Replica Exchange sampling with
two walkers (see below) except that J-WALK does not require the
two walkers to be run in parallel.

The Smart-Walking (S-WALK) sampling method97 is the same
as J-WALK except that conformations generated by the high
temperature walker are locally energy minimized before being
saved. The saved conformations are then regarded as one of the
possible trial moves at low temperature, which are visited accord-
ing to the standard Metropolis MC acceptance probability function

min�1, exp��
1

kT
(U� � U)	
,

where U is the current potential energy and U� is the potential
energy of the selected energy minimized conformation. The lower
energies U� of the saved energy minimized conformations relative
to the same conformations thermalized at the temperature of the
high temperature walker make it easier for the low-temperature
walker to jump to one of the saved conformations. Consequently,
the S-WALK method enables the system to explore more confor-
mational space and undergo more efficient barrier crossings due to
the increase in the jump success ratio. However, the minimized
conformations are not exactly canonically distributed, and there-
fore, the distribution of conformations produced by S-WALK is
only approximately canonical.

Replica Exchange Molecular Dynamics

An implementation of the Temperature Replica Exchange Molec-
ular Dynamics sampling method (RXMD)98 is available in the
academic version of IMPACT. The RXMD algorithm is a power-
ful technique to efficiently sample the rough energy landscape of
biomolecules, allowing rapid interconversion between conforma-
tions separated by high free-energy barriers, which are not nor-
mally accessible at room temperature. Several replicas of the
system are run in parallel over a series of temperatures using
constant temperature molecular dynamics. At regular intervals
exchange of conformations are attempted between pairs of repli-
cas, using a scheme designed to preserve canonical sampling at
each temperature. Unlike conformational search techniques,
RXMD can be used to calculate thermodynamic quantities, such as
conformational free energies, at each simulated temperature. The
RXMD method is also suited to take advantage of the large
number of processors in modern computing clusters without re-
quiring expensive low-latency networking hardware.

The RXMD implementation in IMPACT follows the scheme
proposed by Sugita and Okamoto.98 Replica simulations are dis-
tributed over a series of processors, and the communication be-
tween the replicas is implemented using MPI (Message Passing
Interface) instructions. A replica exchange module is called at
regular intervals within the MD loop. The master processor selects
the pair of replicas scheduled for exchange and instructs the
corresponding processors to coordinate the exchange. For maxi-
mum efficiency, instead of exchanging conformations, the replicas
equivalently exchange temperatures. As a result, the temperature
of each replica is not constant during the simulation. Efficient
interconversion between low-energy conformations occurs
whereby a replica assumes a temperature high enough to rapidly
move to a new region of conformational space, and then assumes
progressively lower temperatures allowing the formation of new
stable conformations. The temperature of each replica is recorded
at regular intervals in a trajectory file together with the system
coordinates. Subsequent analysis of the trajectory files collates the
trajectory file frames at a particular temperature and calculates
ensemble averages at that temperature.
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Free Energy Perturbation

The academic version of IMPACT includes an efficient Free
Energy Perturbation (FEP) implementation. FEP is used to com-
pute the free energy difference between two chemical systems by
constructing a nonphysical thermodynamic path between the two
states. A series of MD simulations are performed along the ther-
modynamic path, and averages are collected that then allow the
computation of the free energy difference. The FEP implementa-
tion in IMPACT follows the GASP (Generalized Alteration of
Structure and Parameters) scheme.99 This scheme allows for mu-
tations that involve simultaneous variation of internal coordinates
and force field parameters. Topology files define the initial and
final states. The files are parsed to detect variation of atom types
and internal coordinates. Force field parameters are assigned to the
initial and final states, and intermediate values of the parameters
are obtained along the mutation path by linear interpolation.
Dummy atom types are used to create or destroy atoms. Internal
coordinates are varied in a similar way. In FEP applications aimed
at computing conformational free energy profiles, the internal
coordinates to be varied are often maintained fixed during MD
sampling. The GASP method, however, does not impose this
limitation. It has been shown99 that, when the internal coordinate
mutations are part of a more complex scheme involving simulta-
neous variation of both force field parameters and geometry de-
signed to convert one molecule into another, it is actually benefi-
cial to let the internal coordinates being mutated vary during the
sampling trajectory. The GASP method does not include Jacobian
correction factors for the conversion from internal to Cartesian
coordinates.99

The FEP estimator �exp[�(U� � U)/kT],69 where U is the
current potential energy and U� the perturbed potential energy, is
evaluated by recomputing the total potential energy of the system
in the perturbed state, rather than updating only the energy com-
ponents affected by the perturbation. This strategy has the advan-
tage of being easily applicable to nonpairwise-decomposable po-
tentials (i.e., Ewald) but each evaluation is computationally
expensive. In most cases this does not significantly affect overall
performance because the FEP estimator is sampled infrequently
(frequent sampling does not necessarily improve convergence due
to correlation between samples). FEP can be performed using
constant temperature MD, HMC, or from precomputed trajectory
files. The FEP facility in IMPACT has been used extensively to
gather hydration free energy differences in explicit solvent used to
validate and tune implicit solvent models.62,63,65,100

Applications

Simulation of Peptide Free Energy Surfaces and Folding

The simulation of polypeptide free energy surfaces demonstrates
some of the features of advanced sampling techniques imple-
mented in IMPACT as well as the accuracy achieved by the OPLS
all-atom force field (OPLS-AA)7 combined with the AGBNP
implicit solvent model.61 Because analytical gradients are pro-
vided by the AGBNP routine, the OPLS-AA/AGBNP potential is
suitable for molecular dynamics (MD) simulations, which are

made more efficient with the use of the RESPA algorithm in
IMPACT.57 Our study of polypeptide free energy surfaces is made
possible by the use of the replica exchange molecular dynamics
method (RXMD)98 and the AGBNP implicit solvent model de-
scribed previously.61 In the RXMD calculations described here
typically 20 RXMD replicas are employed at 20 different temper-
atures between 270 and 690 K. RXMD greatly enhances sampling
efficiency compared to standard MD. These features of IMPACT
are brought together in the challenge to obtain the correct thermo-
dynamic populations of the conformers of several peptides.

We have simulated the free energy surface59 of the C-terminal
�-hairpin of the B1 domain of protein G (sequence:
G41EWTYDDATKTFTVTE56),101 referred to as the G-pep-
tide.102 Comparison of the results obtained with the AGBNP
nonpolar estimator to those obtained with a standard surface area-
dependent nonpolar estimator showed that the new nonpolar term
helped to stabilize the association of the hydrophobic core (W43,
Y45, F52, and V54 in the G-peptide sequence). The percentage of
structures generated with RXMD sampling that had a collapsed
hydrophobic core was only 13% when the surface area nonpolar
model was used, while this percentage increased to 38% with the
use of the AGBNP nonpolar model. This increased stabilization of
the hydrophobic core using the new nonpolar term occurred even
in the presence of disruptive salt bridges, in particular, between
K50 and E56.59

From our previous work with protein decoys,82 explicit solvent
simulation results,100 and the above simulations of the G-peptide,
we recognized a problem with the overstabilization of salt bridges
using generalized Born models such as SGB and AGB. To address
this problem we implemented a modified GB pair interaction
energy expression, which makes it possible to selectively apply
additional dielectric screening to particular atomic pairs.59 The
PMF with respect to the radius of gyration (Rg) of the hydrophobic
core residues and the number of �-hairpin hydrogen bonds of the
G-peptide generated by RXMD sampling with the OPLS-AA/
AGBNP potential is consistent with PMFs obtained by replica
exchange MD with explicit solvent.103,104

Further principal component analysis using 42 C� interatomic
distances, showed two thermodynamically stable regions at room
temperature: a �-hairpin region, and a less populated region com-
posed of �-helical structures. The PMF, with respect to the second
and third principal components, is shown in Figure 2. The occur-
rence of �-helical structures was observed in some replica ex-
change explicit solvent studies,103,105 but not in others.104 The
�-hairpin population predicted in our study is approximately 40%,
based on the number of formed �-hairpin hydrogen bonds.59 This
agrees well with the experimental results of Blanco et al.,101 who
reported a 42% �-hairpin population. The degree of hydrophobic
collapse (98%) also agrees reasonably well with the experimental
results reported by Muñoz et al.106 By employing the Temperature
Weighted Histogram Analysis Method (T-WHAM)107 to combine
the data from the replica exchange trajectories at all temperatures,
we were able to resolve the saddle point region of the PMF that
connects the �-helical state to the �-hairpin state (see Fig. 2).107

We then turned our attention to assessing the sampling effi-
ciency of RXMD and the accuracy of the OPLS-AA/AGBNP
model in determining the correct thermodynamic populations of
several other peptides. The peptides we investigated were either
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shown to be mostly helical or adopt no significant secondary
structure when free in solution.108,109 Along with the G-peptide,
we summarize our results with the peptides we have simulated
with RXMD sampling and the OPLS-AA/AGBNP model in Table
4. The agreement of the predicted thermodynamically stable pop-
ulations and the experimental values is very good.

Although RXMD does not provide direct information about
kinetics, we have recently employed the very diverse ensemble of
conformations generated by RXMD sampling to infer the mecha-
nism for folding and unfolding of the G-peptide.110 To do so we
constructed a kinetic network model, each node of the network
representing a conformation generated by RXMD, with transitions
between nodes allowed based on conformational similarity. Start-
ing from an unfolded conformation associated with a high tem-
perature replica, the system moves from one conformation to
another using stochastic rules designed to asymptotically repro-
duce the thermodynamic properties of the system at a chosen
temperature. We have applied this scheme to study the mechanism
of folding of the G-peptide for which, as described above, RXMD
with the OPLS-AA/AGBNP effective potential produces at room
temperature a major �-hairpin population and a minor �-helical
population. We observed that the great majority of the folding
trajectories from unfolded conformations to �-hairpin conforma-
tions go through metastable �-helical conformations. Using graph

theory techniques, we have also identified110 high-probability
pathways connecting the �-helical conformations to �-hairpin
conformations, two of which are shown in Figure 3.

Allostery of the Ribose Binding Protein

The previous section focused on the problem of generating con-
formational free energy landscapes of peptides. The accuracy of
the OPLS-AA/AGBNP effective potential and the conformational
sampling capabilities of IMPACT with respect to the rather dif-
ferent problem of studying conformational changes of larger pro-
teins are illustrated in this section, which presents a computational
study of the allosteric equilibrium of the Ribose Binding protein.
Allosteric transitions are essential for the function of many bio-
logical macromolecules; they mediate a variety of protein func-
tions including transport, signaling and enzymatic activity. Li-
gand-induced allosteric conformational changes quite often
involve domains of the protein moving with respect to one another
as relatively rigid substructures.

The Ribose Binding Protein (RBP) is a 271 residue multido-
main protein (see Fig. 4) member of a large class of bacterial
periplasmic proteins involved in the sensing and transport of small
molecule substrates. The mechanism of sugar binding and trans-
port has been well characterized by crystallographic, spectro-
scopic, and biochemical studies.111,112 RBP exists in an open
conformation when not bound to the substrate (Fig. 4a); when the
protein binds ribose the conversion to a closed, more compact,
conformation occurs (Fig. 4b). This allows the protein to bind a
membrane-bound permease complex that receives the ribose mol-
ecule and transports into the interior of the bacterial cell.

Computations with the IMPACT program have recently been
completed113 to study this allosteric system as a paradigm for more
complex allosteric phenomena. These simulations, which require
extensive computational resources to properly sample the confor-
mational space of the protein, were made possible by the use of a
large Linux cluster to perform MD simulations with many differ-
ent biasing potentials in parallel, and by employing the AGBNP
implicit solvent model.61

The closed and open conformations of RBP differ with respect
to a rotation of the N-terminal domain, which is linked to the
C-terminal domain by a three-stranded hinge domain112 (Fig. 4).

Figure 2. The potential of mean force at 298 K of the capped
C-terminal peptide from protein G with respect to the second (PC2)
and third (PC3) principal components107 (PC3 corresponds approxi-
mately to the end-to-end distance), using the OPLS-AA/AGBNP po-
tential with additional dielectric screening of charged side chains. The
PMF is calculated from T-WHAM analysis107 of the ensemble of
structures generated by all RXMD replicas with temperatures from
270 to 700 K. The energy is in units of kcal/mol. The low free energy
region to the left correspond to �-helical conformations. The wider
free energy basin to the right correspond to �-hairpin conformations.
The black and white paths correspond to the upper and lower �-helical
to �-hairpin conversion mechanisms shown in Figure 3, respectively.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Table 4. Comparison of Experimental and Predicted � and � Secondary
Structure Content of a Series of Peptides.

Name Sequence

Sec. struct. content

Experimental Predicted

G-peptide GEWTYDDATKTFTVTE 42%�a 40%�
C-peptide KETAAAKFERQHM 29%�b 30%�
CheY2 EDGVDALNKLQAGGY 2%�c 2%�
CheY2-mu EDAVEALRKLQAGGY 39%�c 45%�
SH3Lo DYQEKSPREVAMKKG 2%�c 6%�

aRef. 101.
bRef. 146.
cRef. 109.
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The protein conformational space was sampled using umbrella
sampling based on the order parameters  and �, which measure,
respectively, the angle of opening between the two domains and
the rotation of one domain with respect to the other (these order
parameters are described in the caption of Fig. 5). The calculations
were conducted using the OPLS-AA force field with the AGBNP
implicit solvent model. The data from multiple simulations were
analyzed using the Weighted Histogram Analysis Method
(WHAM).107 We obtained the conformational populations of the
protein with respect to the order parameters spanning both closed
and open conformations (Fig. 5). The shifts in conformational

Figure 3. Two possible pathways for the interconversion of an �-helix into a �-hairpin.
Backbone trace is shown in blue, and the hydrophobic core residues (W43, Y45, F52, and V54)
side chains are shown in gold. The upper path corresponds to unraveling of the helix at both
ends and formation of a �-turn from a residual turn of �-helix. The lower path corresponds to
unraveling of one end of the helix, which loops back.110

Figure 4. The open ribose-free crystal structure of RBP (PDB id 1urp,
left) and the closed ribose-bound crystal structure of RBP (PDB id
2dri, right). Ribose (D-ribopyranose form) is shown in ball-and-stick
representation. The N-terminal domain of RBP is shown in blue and
the C-terminal domain is shown in red. Three strands connecting the
N-terminal domain to the C-terminal domain form the hinge region
shown in green. The conformational change from the open (a) to the
closed (b) conformation consists of a rotation of the C-terminal do-
main (red) toward the N-terminal domain (blue) around the axis
perpendicular to the page centered on the hinge region (bending),
followed by a rotation towards the viewer of the C-terminal domain
around the axis longitudinal to the hinge region and parallel to the page
(twisting). This figure has been generated using the program
MOLSCRIPT.147

Figure 5. Calculated population distribution of (a) ribose-free and (b)
ribose-bound RBP as a function of the interdomain bending angle 
and twisting angle � (see Fig. 4). Contours are drawn at 0.08 (green),
0.06 (blue), 0.04 (magenta), 0.03 (sky blue), 0.02 (yellow), 0.01
(brown), 0.001 (red), and 0.0001(gray) relative populations. The
crosses indicate the (,�) coordinates of the crystal structures of, with
increasing angle , the closed ribose-bound (2dri) and open ribose-free
(1urp) conformations of RBP, and open ribose-free conformations of
a single-point mutant of RBP (1ba2). The angle  is defined as the
angle formed between the centers of mass of the C- and N-terminal
domains and the center of mass of the hinge region. The angle � is
defined as the dihedral angle formed by the center of mass of the
N-terminal domain, the center of mass of the residues on the N-
terminal domain side of each of the three hinge strands, the center of
mass of the corresponding residues on the C-terminal domain side of
the three hinge strands, and the center of mass of the C-terminal
domain. Angles are expressed in degrees. Highly populated confor-
mations generally correspond to experimental crystal conformations.
In agreement with experiments, the predicted population of the closed
conformation ( �110°, � �50°) in the presence of ribose (b) is larger
than in the absence of ribose (a). Similarly, the population of open
conformations ( � 115°) is larger in the absence of ribose. The
population peak at ( �122°, � �95°) in the presence of ribose (b)
corresponds to a partially open conformation not yet observed exper-
imentally postulated to play a role in the mechanism of ribose
transport.
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populations in going from the ribose-free to the ribose-bound
forms of the protein are consistent with the available experimental
data. Most of the predicted stable conformational states correspond
to measured X-ray structures of RBP (indicated by crosses in Fig.
5); other conformational states were newly predicted. In particular,
we were able to characterize the closed state of the protein in the
absence of ribose, and a novel partially open ribose-bound con-
formation whose existence was previously postulated based on
biochemical evidence. Further analysis revealed that the shift in
the RBP population is driven by the favorable interactions between
ribose and RBP in the closed conformation, whereas in the absence
of these interactions the open conformation becomes predominant
due to its larger conformational entropy.113 Notably, the calcula-
tions showed that the allosteric transition upon binding of ribose
involves a shift in the equilibrium between a set of conformations
that exist in appreciable concentrations in solution in both the
presence and the absence of the ligand (see Fig. 5).

Molecular Mechanics Specialized Technologies

Overview

In previous sections, we have discussed the features and perfor-
mance of IMPACT in the context of applications which employ
core molecular mechanics effective energy models and sampling
techniques, that is, minimization, molecular dynamics, and Monte
Carlo, as well as more advanced methods like RXMD, which
combines features of MD and MC sampling. Modeling of this type
is applicable to a wide range of important biological problems.
However, there are also a number of situations in which alternative
methods are required to meet accuracy and/or performance objec-
tives, via the development of more specialized sampling algo-
rithms and energy models. We have developed two modules of
IMPACT in this category: Glide, a high-throughput docking pro-
gram,15–17 and QSite,114,115 a mixed quantum mechanics/molec-
ular mechanics methodology.

Current drug discovery projects in the pharmaceutical industry
typically involve screening of hundreds of thousands, or millions,
of ligands against a receptor to discover novel lead compounds
with micromolar or nanomolar binding affinity. Virtual screening,
in which computational methods are employed to predict binding
affinity, can be employed if a high resolution crystal structure of
the receptor is available, or if a suitable homology model can be
constructed. Current molecular mechanics based simulation meth-
ods are unsuitable for large scale virtual screening for two reasons:
(1) the computational effort required for carrying out such simu-
lations to achieve any sort of convergence of sampling is far too
large to enable millions of compounds to be screened with an
acceptable level of computational effort, and (2) even if such
calculations could be carried out, prediction of absolute binding
affinity (the requirement for lead discovery projects) in the absence
of a training set is a highly demanding task, and it is unclear
whether current force fields would provide the accuracy required
to rank compounds accurately.

The Glide program employs the IMPACT infrastructure as a
starting point; construction of the protein model, and assignment of
molecular mechanics parameters to protein and ligand, is carried

out as discussed in the sections The Maestro Graphical User
Interface and Atom Typing and Parameter Assignment. However,
the receptor is then modeled as a rigid object, and the molecular
mechanics potential is mapped onto a grid to enable rapid evalu-
ation of protein–ligand interaction energies and gradients using
standard interpolation methods. Novel sampling methods, and
empirical scoring functions, are then used in combination with the
molecular mechanics energy to predict the binding mode, and
binding affinity, of a ligand with the target receptor. Glide can be
run at several different speeds; the three prepackaged modes are
“Fast Screening” (3–5 CPU s/ligand); “Standard Precision” (�30
CPU s/ligand), and “Extra Precision” (�10 CPU min/ligand), with
all timings referring to a single processor PC. We refer to these
modes as FS, SP, and XP in what follows. Further description of
the sampling methods and scoring function, as well as summaries
of results, are presented below.

At the other end of the spectrum, current molecular mechanics
force fields are not designed to handle chemical reactions. Mixed
QM/MM methods, in which a region of the system is treated at the
QM level (typically 50–200 atoms in our modeling of enzyme
active sites) and the remainder of the system is treated at the MM
level, provide the accuracy for ab initio quantum chemical ap-
proaches, yet enable treatment of large condensed phase systems in
reasonable CPU times without truncation of the model, which can
lead to erroneous neglect of environmental steric, electrostatic, and
conformational effects. The QSite program, which has been de-
veloped via a tight coupling of IMPACT with the Jaguar suite of
ab initio programs, contains an interface between the QM and MM
regions that has been highly optimized for modeling protein active
site chemistry. A description of the QM/MM methodology, as well
as a summary of benchmark results calibrating accuracy and
applications to a diverse set of proteins of biological and pharma-
ceutical interest, is presented in the section Mixed Quantum/
Molecular Mechanics below. Finally, in the section Combining
Glide and QSite to Obtain More Accurate Binding Mode Predic-
tion, we present a recent, and novel, approach in which we used
QSite to calculate polarized charge distributions for use in Glide
docking. This methodology, which will be useful for lead docking
of a relatively small number of compounds where accurate geom-
etries are desired, for example, in a lead optimization context (as
opposed to high-throughput screening), demonstrates significant
improvements in docking accuracy compared to the use of force
field based charge distributions.

Glide: High-Throughput Docking

High-throughput docking has become a standard tool in the phar-
maceutical industry, both in lead discovery (virtual screening) and
lead optimization applications. There are a number of such pro-
grams in current use,116-119 all of which share the same basic
objectives (docking of a flexible ligand in a rigid receptor to
predict the binding mode and binding affinity), but differ consid-
erably in the details of the sampling algorithms and scoring func-
tions. Below, a brief description of the Glide module of IMPACT
is presented, along with a representative set of results obtained
using the current release of the program (v. 3.5).

1770 Banks et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



Methodology

As was mentioned above, the first key assumption made by Glide
is that the receptor conformation is rigid, whereas the ligand has
fully flexible torsional degrees of freedom. This approximation is
not always successful; there are numerous examples of pharma-
ceutically interesting targets in which large changes in the receptor
structure are observed upon binding of a particular ligand, such
that docking the ligand into the original conformation (either the
apo structure, or the parent conformation of a different protein–
ligand complex) is precluded by unfavorable steric interactions.17

If the induced-fit effects are minor, scaling the van der Waals radii
of the protein and ligand atoms can ameliorate this problem. This
strategy is used by default in Glide, although care must be taken as
too much scaling can result in an inability of the receptor to
recognize the ligand. When the conformational changes are large,
alternative methods taking induced-fit effects into account explic-
itly are required, necessitating substantially more computational
effort. This subject, however, is beyond the scope of the current
article.

It is common to find physically untenable steric clashes in
crystallographically determined protein sites. Due to the rigid
receptor approximation in Glide, such clashes can result in unfa-
vorable van der Waals interaction energies for the native ligand
and other known actives. To address this issue a protein prepara-
tion procedure designed to anneal away such steric clashes has
been developed.15 Beginning with a protein and cocrystallized
ligand, the preferred preparation procedure results in a partially
optimized protein–ligand complex to which hydrogen atoms have
been added. Additionally, the protonation states of ionizable res-
idues and the tautomeric form of histidines are adjusted and
reorientable hydrogen atoms, such as in hydroxyl groups, are
repositioned.

We begin with a brief overview of the sampling methodologies
available in Glide.15,16,120 The first step in using Glide to model
protein–ligand binding is to generate Coulomb and van der Waals
potentials on the receptor grid. A multigrid approach is used to
minimize the required memory. In this approach higher resolution
grids are applied at the protein–ligand surface, where high accu-
racy is required in modeling protein–ligand interactions, and lower
resolution grids are used to treat more distant interactions. As
mentioned above, the van der Waals radii of the protein and ligand
atoms can be scaled (defaults are 1.0 for nonpolar protein atoms

and 0.8 for nonpolar ligand atoms). A 2r distance-dependent
dielectric constant is used to generate a screened Coulomb inter-
action. The energy and gradient attributable to a ligand atom in the
field of the protein can then be rapidly computed via standard
interpolation techniques. The grid is preprocessed prior to docking,
and hence, does not contribute materially to the CPU time for a
typical virtual-screening experiment. The general features of the
grid-based docking methodology described here have been used by
others,118 although the multigrid aspect is a novel feature.

Once the grid is constructed, a suite of possible conformations
of the core of the ligand is generated, and the ligand is docked
using a series of hierarchical filters. Initial filters are primarily
shape-based, and narrow the region of the receptor that can plau-
sibly accommodate the ligand. Intermediate filters are based on
fast approximate scoring functions (“rough scoring”) that do not
reject poses due to small van der Waals overlaps and that detect
potential hydrogen bonds and favorable hydrophobic interactions.
Combinatorial search algorithms are used to efficiently position
peripheral groups of the ligand, and promising poses are saved for
further investigation. The algorithm is formally an exhaustive
search, although there are limits to the resolution with regard to
both the ligand conformations and positioning of the ligand in the
receptor.

At the next stage of the calculation, the top-scoring subset of
poses is selected and variable-metric minimization, using the grid-
based molecular-mechanics energy function discussed above, is
performed, starting from the various poses that survive the rough
scoring filters. Various techniques, such as annealing of the van
der Waals radii, are used to enable the minimization to respond
appropriately to large initial steric clashes. Finally, the poses are
ranked by total energy (including an approximate representation of
the ligand internal energy), and some number of top scoring poses
is subjected to extensive torsional sampling as a method of opti-
mizing the positions of ligand peripheral groups. The parameters
used in these stages depend upon whether one is using fast-
screening or standard-precision settings.

The above protocol provides a powerful and general method for
predicting the binding mode of protein–ligand complexes, which
may be examined in self-docking experiments where a ligand is
docked into its parent receptor. A summary of Glide’s performance
in such experiments is given in Table 5. Additionally, data sets
assembled by the developers of the GOLD and FlexX programs
have been used to assess docking accuracy. Results over these
common sets of systems, shown in Tables 6 and 7, enable a direct
comparison of Glide with Gold and FlexX. The average RMSDs
achieved by Glide represent a considerable improvement com-
pared to the published alternatives cited. Note, however, that some
residual errors do remain. Some—perhaps many—of these prob-
lematic cases appear to be primarily due to inaccurate modeling of
the ligand charge distribution. Such errors can be corrected (at
some computational cost) by the introduction of more accurate,
polarized charges (in Section Combining Glide and QSite to Ob-
tain More Accurate Binding Mode Prediction, this is carried out
using QM/MM methods).

The FS and SP modes of Glide do not attempt to apply large
desolvation penalties to the ligand when, for example, a protein or
ligand charge is buried. XP Glide, on the other hand, does contain
terms of this type, as is discussed further below. Although such

Table 5. Average RMS Deviations for Flexible Ligand Docking
on 279 PDB Complexes.

Number of
rot. bonds

Number
of cases

Average RMSD top
ranked pose (Å)

Average CPU
time (min.)

0–3 51 1.23 0.1
4–6 92 1.39 0.4
7–10 48 1.47 0.9
0–8 164 1.34 0.3
0–10 191 1.37 0.4
0–20 263 1.78 1.1

Times are CPU-minutes on a 1.6-GHz AMD Opteron 242 processor.
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terms can be extremely helpful in eliminating false positives, they
also will penalize known active compounds unless the sampling is
at a higher resolution than is obtained from the algorithms dis-
cussed above; small movements of the ligand may be necessary to
evade burial penalties. Presumably, active compounds can execute
these small displacements, whereas false positives may not be able
to do so. A different type of sampling algorithm is therefore
required to make XP Glide a useful approach.

We briefly outline the elements of this algorithm. First, normal
Glide SP docking is performed, as discussed above. Poses that
score well in SP are then decomposed into “anchor” fragments,
typically rings, which are positioned in various locations in the
receptor, as given by the ensemble of SP poses. A growing
algorithm is used to regenerate the entire molecule, starting from
the various attachment points on the anchor. Approximate filters
select promising poses of various ligand “side chains,” and tor-
sional minimization on the Coulomb–van der Waals grids and
rescoring is applied to a selected subset of fully assembled mole-
cules to determine the final pose selection (in which penalized
poses are rejected within a specified energy window). Finally, if a
penalty term is detected, the side chain to which the penalty is
applied is regrown at very high resolution in the ligand torsion
angles, enabling the penalty to be evaded when feasible. The
growing algorithm requires �20� more CPU time than SP dock-
ing but provides the requisite fine grain sampling to eliminate
penalties from properly docked active compounds in the great
majority of test cases that we have examined. The XP sampling
methodology will be discussed in greater detail elsewhere.120 XP
docking performance is comparable to that of SP for self-docking
experiments, although significant differences do appear in cross
docking and in penalty avoidance.

Once a docked pose is selected via the FS, SP, or XP modes,
the binding affinity can be predicted. The molecular-mechanics
potential function alone is insufficient to enable this prediction to
be made with any degree of accuracy. Approximations that would
lead to large errors in such a naı̈ve approach include the neglect of
solvation, entropy of binding, and protein relaxation. However,
specially designed empirical scoring functions can achieve much
better results that are not clearly inferior to the current state of the
art available from simulation methods. We have developed empir-
ical scoring functions for Glide that improve on the performance of
alternative methods described in the literature. Our scoring meth-
odology is briefly described below. A more extended discussion
can be found elsewhere.15,16,120

The Glide scoring function is a modified version of Chem-
Score.121 The ChemScore scoring function is shown in eq. (18):

�Gbind � C0 � Clipo � f�rlr� � Chbond � g��r�h����

� Cmetal � f�rlm� � CrotbHrotb. (18)

The second term is an atom–atom pair term that assesses contacts
between hydrophobic atoms of the ligand and protein. Such con-
tacts involve the displacement of water molecules from positions
adjacent to hydrophobic groups in the protein or ligand into bulk
solution. Such contacts are presumably favorable as displaced
water molecules can now make their full complement of hydrogen
bonds without entropic penalty. A term of this sort is present in
virtually every empirical scoring function.

The third term assigns favorable binding affinity for the for-
mation of hydrogen bonds between the protein and ligand. The
magnitude of the term is modulated by the quality of the hydrogen-
bonding geometry, as evaluated based on distances and angles
involved in the structure. Glide furthermore awards different free
energy increments depending upon whether the hydrogen bond is
neutral–neutral, neutral–charged, or charged–charged. The fourth
term is a metal–ligand term, which in Glide considers only the
strongest interaction with an anionic acceptor atom. The fifth term
assigns a penalty for restricting ligand entropy, based on the
number of rotatable bonds in the ligand.

Several new terms have been developed to improve the perfor-
mance of the scoring function for both absolute binding affinity
prediction and ranking of active compounds compared to those in
a randomly chosen database (i.e., database enrichment studies).
These terms both improve estimation of the attractive forces that
drive binding affinity and enable the imposition of penalties that
reflect the desolvation of polar and charged groups on the protein
or ligand. A summary of these terms is as follows:

1. Desolvation penalties: 2.8-Å spheres representing explicit wa-
ter molecules are added to a subset of high-scoring poses
generated by the SP Glide docking protocol. This is achieved
using a rapid, grid-based algorithm that fills a prescribed vol-
ume of the active site around the ligand. The number of waters
surrounding each charged or polar atom can then be computed,
and penalties are applied based on statistics developed from
extensive studies of known active compounds for a wide variety
of receptors. Our belief is that the use of descriptors based on
a discrete representation of solvent has significant advantages
over continuum based models for this particular type of calcu-
lation.

2. Molecular mechanics terms: the Coulomb and van der Waals
ligand–protein interaction energies are incorporated into the
overall scoring function.

Table 6. Comparison of RMS Deviations (Å) for Flexible Docking by Glide SP and GOLD.


10 rotbonds (72 cases) 
20 rotbonds (86 cases) All ligands (93 cases)

avg. RMSD max. RMSD avg. RMSD max. RMSD avg. RMSD max. RMSD

Glide 1.41 6.1 1.77 11.8 2.13 11.9
GOLD 2.56 14.0 2.92 14.0 3.06 14.0
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3. Specialized hydrophobic and hydrogen bond terms: new non-
linear functional forms have been developed that provide an
improved description of hydrophobic interactions and hydro-
gen-bonding contributions to binding. These terms are dis-
cussed in more detail elsewhere.120

Selected terms of these types are used in both the XP and SP
versions of Glide scoring. The XP scoring function, however,
contains a much higher weighting for the desolvation and special-
ized molecular-recognition terms. As noted previously, obtaining
accurate estimates of these terms is dependent upon the use of
high-resolution sampling.

Results

Tables 5–7 present summaries of SP Glide root-mean-square de-
viations (RMSDs) for self-docking tests of docking accuracy,
where the ligand is removed from its original cocrystallized com-
plex, placed in the lowest energy conformation obtained from a
short conformational search, and then redocked back into the
receptor conformation observed in that complex. RMSDs are de-
termined including only nonhydrogen atoms. A summary of the
docking accuracy for 279 PDB complexes broken down by the
number of rotatable bonds in each ligand is shown in Table 5.
These results suggest the docking performance of Glide is very
reasonable over a wide range of rotatable bonds. Similar results are
found with Glide XP.

A head-to-head comparison of docking accuracy performance
has been generated for Glide, FlexX, and GOLD using test sets of
noncovalently bound ligands defined by the developers of these
methods. The results presented in Tables 6 and 7 indicate that
Glide represents a significant improvement in the accuracy of
binding mode prediction compared to alternatives in the literature.
If one considers only ligands with 10 or fewer rotatable bonds, the
range of greatest interest for many library-screening exercises,
Glide performs nearly twice as well as GOLD and more than twice
as well as FlexX.

Although the Glide docking-accuracy results are generally
quite good, a nontrivial fraction of the test cases (10–20%) result
in incorrect binding modes, and in many cases we have found that
these results arise from scoring rather than from sampling errors.
In the section Combining Glide and QSite to Obtain More Accu-
rate Binding Mode Prediction, we show that a primary source of
the problem appears to be the use of fixed charges generated by the
molecular-mechanics force field; employment of polarized charges
obtained from mixed QM/MM calculations in the protein environ-
ment yields a qualitative reduction in the number of outliers.

Implementation of an automated algorithm to carry out docking
using this model, via a combination of Glide and QSite, is cur-
rently ongoing.

To evaluate the ability of Glide to rank known active ligands,
enrichment has been evaluated by seeding known active com-
pounds, with 10 micromolar or better experimental binding affin-
ities, into a random database of 1000 ligands selected from a large
database of purchasable compounds, using metrics for drug-like
molecules (molecular weight, numbers of charged and neutral
donors and acceptors, numbers of rotatable bonds and rings, per-
centage of phobic carbons, etc.) inferred from a selection of
compounds from the Derwent World Drug Index (Derwent Infor-
mation Limited, Alexandria,VA). The presumption is that such a
database should contain few or no submicromolar inhibitors. The
13 screens in this article cover a wide range of receptor types and
binding-site character.

Table 8 gives the percentage of ranked actives found by SP and
XP Glide in the top 2, 5, and 10% of the 13 database screens.
Because the present screens use only �1000 ligands, 2% of the
database (20 ranked ligands or so) is about the smallest percentage
that can be examined, given that most screens contain about 10
active compounds. This will also lead to a cap on the maximum
percent of active compounds found in the top 2% of the database
in cases where the number of active compounds is greater than
about 20 (1bl7, 1rt1 and 1e66).

It can be seen that the performance of SP Glide is quite
respectable, as Glide is able to extract �50% of the known active
compounds from the top 5% of the database for 4 of the 11
systems. XP Glide is more consistent across all of the receptors in
the test suite, being able to extract at least 29% of known active
compounds from the top 2% of the databases for all included
screens and at least 50% of known active compounds from the top
5% of the databases. Initial calculations show that the recently
developed fast-screening mode gives results that are not quite as
good those for SP Glide but nevertheless are very promising.

Mixed Quantum/Molecular Mechanics

Mixed quantum mechanics/molecular mechanics (QM/MM) pro-
grams have been under development in a number of laboratories
now for the past several decades.19,115,122–130 The basic idea is to
use QM methods to treat reactive chemistry in a localized region
of the system, while incorporating structural, steric, and electro-
static effects of the remainder of the system via molecular me-
chanics. The use of modern ab initio quantum chemical methods,

Table 7. Comparison of RMS Deviations (Å) for Flexible Docking by Glide SP and FlexX.


10 rotbonds (133 cases) 
20 rotbonds (174 cases) All ligands (187 cases)

avg. RMSD max. RMSD avg. RMSD max. RMSD avg. RMSD max. RMSD

Glide 1.31 6.1 1.69 11.8 1.96 11.9
FlexX 2.99 12.6 3.47 13.4 3.73 15.5
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particularly the hybrid density functional theory (DFT),131 pro-
vides reasonable accuracy and robustness in first principles mod-
eling of reactive chemistry for a wide range of systems (including
those containing transition metals), while enabling QM regions of
several hundred atoms to be treated on a routine basis. Although
the QSite program allows the use of Hartree–Fock, local MP2
(LMP2), and DFT methods for the QM component of the calcu-
lations, the focus in what follows will be on the DFT implemen-
tation. We briefly summarize below the methodology employed in
QSite and various biological applications; this work has recently
been reviewed in more depth in ref. 132.

Methodology

The first key component of a robust and accurate mixed QM/MM
methodology is the interface between the QM and MM regions.
The greatest challenge is manifested when the interface occurs at
a covalent bond, that is, an atom on one side of the bond is MM,
and the atom on the other side is QM. A number of techniques
have been developed to address this problem, including link atom
methods,125,126,130 and approaches based on frozen, localized mo-
lecular orbitals.128,129 QSite employs the latter approach, as is
described in detail in refs. 19, 115, and 129.

It is likely that good accuracy, compared to fully QM calcula-
tions, can be achieved using either link atom or frozen orbital
methods.133 However, errors are critically dependent upon details
of the parameterization of the interface. We have developed pa-
rameters for QSite for all 20 amino acids by fitting to QM data for
model dipeptides115 enabling QM/MM partitioning in the back-
bone and between the �- and �-carbons of the various residues.
The fitting database comprised 200 rotamer states of the dipeptide
ensemble (identical, in fact, to the data used to develop torsional
parameters for the OPLS2001 protein force field, discussed in the
section Force-Field Development); parameters were optimized to
reproduce the QM relative energies of these rotamer states. Dep-
rotonation of the dipeptide side chains was also carried out, and the
electrostatic balance of the model was properly adjusted (via a

bond charge at the QM/MM boundary) by fitting the deprotonation
energies to fully QM calculations.

Parameterization is also required at the noncovalent interface
between the QM and MM regions; otherwise, the electrostatic
interactions between these regions cannot be described accurately.
We have developed a set of van der Waals parameters for the QM
region by fitting the binding energy of a large number of hydrogen
bonded small molecule dimers, representing the functionality of
the backbone and various side chain groups, to fully QM results.
We have also developed Pauli repulsion parameters for MM polar
hydrogen atoms, which prevent charge density from leaking out of
the QM region onto these hydrogen atoms. Details of this param-
eterization are provided in ref. 115.

Finally, we have tested the resulting energy model on a number
of larger systems, including larger peptides and a model for di-
oxygen binding in hemerythrin, comparing QM/MM energetics for
various processes (e.g., deprotonation, dioxygen binding) with QM
results. Over the entire test suite, errors average �0.5 kcal/mol,
which is significantly smaller than the intrinsic errors in the QM
methods (principally hybrid DFT) that are suitable for modeling
large QM regions. Based on these results, we would argue that the
QM/MM interface in QSite is not at present the limiting factor in
the accuracy of the methodology.

Once the energy model is defined, an implementation is re-
quired that enables ease of use and performance of large-scale
calculations in reasonable CPU times. An analytical gradient of the
energy model has been developed that allows geometry optimiza-
tions to be efficiently carried out.19,115,129 Optimization of systems
where the MM region is much larger than the QM region, such as
a protein, is facilitated by carrying out adiabatic minimization of
the MM region after each QM step; the MM minimizations take
relatively little computational effort, rendering the required CPU
time comparable to that needed to minimize the QM region alone.
A parallel version of the methodology has also been developed,
which provides respectable acceleration for two to eight proces-
sors, depending upon the details of the system being studied and

Table 8. Fraction of Known Actives Ranked by SP and XP Glide in the Top 2, 5, and 10% of a 1000
Ligand Database Seeded with the Active Compounds.

Screen Site Number actives

% Actives in top
2% of database

% Actives in top
5% of database

% Actives in top
10% of database

SP XP SP XP SP XP

Thymidine kinase 1kim 7 42.9 85.7 71.4 85.7 85.7 85.7
CDK-2 kinase 1aq1 10 20.0 60.0 30.0 60.0 50.0 80.0
p38 MAP kinase 1bl7 50 2.0 30.0 14.0 56.0 30.0 68.0
p38 MAP Kinase 1kv2 10 30.0 100.0 40.0 100.0 60.0 100.0
Estrogen receptor 3ert 10 60.0 70.0 60.0 70.0 70.0 80.0
Thrombin 1ett 16 56.2 100.0 87.5 100.0 100.0 100.0
HIV protease 1hpx 16 53.3 80.0 73.3 86.7 86.7 86.7
Cox-2 1cx2 20 52.6 42.1 63.2 78.9 68.4 84.2
HIV rev. transcriptase 1rt1 33 15.2 36.4 30.3 60.6 54.5 69.7
Acetylcholinesterase 1e66 27 7.4 29.6 11.1 51.9 11.1 70.4
Ferredoxin 1fxa 20 35.0 65.0 60.0 80.0 80.0 80.0
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the speed of the interconnect of the various processors that is
available in the computational hardware.

The QSite energy model and sampling algorithms are con-
trolled by a graphical user interface, which facilitates specification
of the QM and MM regions (as well as other aspects of the
calculation, such as the type of QM methodology to be used, and
basis set). QM regions of between 50 and 200 atoms are typically
used to model reactive chemistry in the protein active site, ordi-
narily including the ligand or cofactor as well as key amino acid
side chains (and backbone atoms when relevant). Examples are
presented in the following section.

QM/MM Applications

QSite has been applied to the study of a wide range of protein
active site chemistry. The most extensive series of studies have
been carried out for the enzyme methane monooxygenase (MMO).
MMO is a nonheme iron-containing protein that catalyzes the
conversion of methane to methanol, activating dioxygen, breaking
the COH bond in methane, and finally adding an OOH group to
the methyl radical formed in the bond breaking step.134 We have
modeled the entire catalytic cycle of MMO using QM cluster
methods with a large model system (�100 atoms), achieving good
agreement with experiment for the activation energies of various
steps in the cycle,114 and have investigated hydroxylation of a
number of small molecules other than methane. QM/MM calcula-
tions have thus far been applied principally to the hydroxylation
step,135 where the mode of binding of the ligand to the protein
cavity is an important issue. QM/MM studies of the remaining
steps in the cycle, in which dioxygen is activated, are currently
ongoing.

Over the past several years, we have investigated a number of
other systems using QM/MM methods, including dioxygen bind-
ing to hemerythrin,76 dioxygen activation and substrate hydroxy-
lation by cytochrome P450,136,137 and the hydrolysis of the anti-
biotic cephalothin by a penicillin binding protein (PBP) and by a
class C �-lactamase.18 In all cases, agreement with experimental
data for binding free energies and/or activation free energies, when
available, has been encouraging (see below for a more extensive
discussion of this point). For P450cam, we have modeled the entire
catalytic cycle of the enzyme, achieving good qualitative agree-
ment with available experimental data. A particularly interesting
result that we have obtained is the substantial (�7–10 kcal/mol)
lowering of the activation barrier for the initial step of the hy-
droxylation reaction in which a hydrogen atom is removed from
the camphor substrate; this result explains the failure of experi-
mental efforts to trap the catalytically competent intermediate,
compound I,138,139 which is presumed to therefore have a very
short lifetime. In our calculations, the lowering of the activation
barrier is achieved by the protein environment electrostatically
tuning a lone pair orbital of the peripheral carboxylate substituents
of the porphyrin to be in near resonance with the cation radical
orbital of the ferryl species constituting compound I; this reso-
nance enables charge to migrate to the carboxylate as the hydrogen
atom is transferred, thus stabilizing a salt bridge between the
carboxylate and an arginine residue of the protein. Similarly, we
provide a detailed explanation as to the difference in cephalothin

hydrolysis barriers for the PBP and �-lactamase; the low barrier of
the latter species is the source of antibiotic resistance to �-lactam–
based antibiotics in bacteria.140 This work demonstrates that
QM/MM methods have reached the point where both qualitative
and quantitative insight into biologically important enzymatic re-
actions can be achieved for a wide range of systems.

A final application of QSite, illustrating deployment of the
methodology in a system where catalysis involves a substantial
conformational change of the protein active site, is the modeling of
the catalytic cycle of the enzyme triose phosphate isomerase
(TIM).141 TIM catalyzes the conversion of dihydroxyacetone
phosphate (DHAP) to D-glyceraldehyde 3-phosphate (GAP); the
rate-limiting step is a slow conformational change of the enzyme–
substrate complex. The largest barrier from the point of view of
chemical reactions (as opposed to conformational change) is re-
moval of a proton from DHAP by a suitably positioned glutamate
group of the protein; the free energy of this step, which is only
slightly smaller than that associated with the conformational
change, can be measured experimentally by looking at isotope
effects and monitoring the reaction in the reverse direction (GAP
to DHAP) where this proton transfer is rate limiting.142,143 QSite
yields good agreement with the experimental activation free en-
ergy for this step, as well as qualitatively matching other aspects of
the experimental data. A crucial aspect of the TIM catalytic mech-
anism is the substantial motion of the catalytic loop region (loop 6,
residues 166–177) of the TIM protein. In the absence of substrate,
the loop in the crystallized version of the enzyme is predominantly
in the “open” state, which enables substrate to enter the active site
cavity and bind. Our methods for ab initio protein loop prediction
(described elsewhere) are able to predict the structure of the open
form, to within 0.43 Å backbone RMSD, starting from the apo
structure of the enzyme. However, once the substrate is bound, the
loop changes conformation to a “closed” form in which the sub-
strate is now enclosed in the cavity, facilitating the catalytic
mechanism. We have used QSite to compute the electronic charge
distribution on the substrate in the active site cavity, and then
repredicted the loop geometry in the presence of substrate, using
the same loop prediction methodology. Agreement is obtained to
better than 1.0 Å RMSD from the cocrystallized structure for the
bound forms of both GAP and DHAP, and the energy gap between
the open and closed forms is in qualitative agreement with esti-
mated based on various experimental measurements of the activa-
tion energy required to open the loop in the presence of substrate.
The more general use of QSite to compute ligand charge distribu-
tions in the protein environment, enabling improved modeling of
the structures of protein–ligand complexes, is discussed further
below in the following section.

An interesting, more general question arising from this work is
the ability of DFT-based QM and QM/MM methods to compute
activation barriers for enzymatic reactions. Assessments based on
small molecule test cases have yielded rather contradictory results:
Truhlar and coworkers have assembled a set of small molecule
radical reactions for which hybrid DFT functionals (e.g., B3LYP)
display quite large errors (�4–5 kcal/mol on average), whereas
Houk and coworkers have obtained relatively small errors for a
series of pericyclic reactions (�1–2 kcal/mol).144 Arguably, most
enzymatic reactions are closer in character to the latter as opposed
to the former data set; however, explicit confrontation of theory
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and experiment is required to evaluate individual cases. Table 9
below presents a summary of results that we have obtained to date
using Jaguar and QSite to compute activation barriers and free
energy differences for enzymatic reactions (many of the systems
were discussed above). The results are encouraging, although a
much larger number of test cases will have to be investigated
before statistically valid conclusions can be drawn.

Combining Glide and QSite to Obtain More Accurate
Binding Mode Prediction

The results shown in the section Glide: High-Throughput Dock-
ing for Glide self-docking experiments on protein–ligand com-
plexes indicate a high degree of success in predicting the
correct binding mode over a wide range of complexes, and an
improvement compared to alternatives in the literature. How-
ever, there are still a nontrivial set of complexes for which
Glide yields poor results, despite the fact that in self-docking,
with proper protein preparation, steric clashes should not be a
major problem. We discuss below our most recent efforts to
address this problem,145 which appear to potentially be a major
step forward in both understanding the underlying difficulties
and improving the results.

One possible source of error in Glide docking is the use of fixed
charge force field charges for the ligands; the use of charges
derived from quantum chemical calculations, in which polarization
by the protein environment is incorporated, could yield a more
accurate assessment of alternative hydrogen bond patterns avail-
able to the ligand. As an initial test of this idea, we selected 40
complexes from the standard Glide test suite, containing a distri-
bution of RMSD errors in normal Glide docking, weighted towards
cases with larger errors, as those are the population we would like
to improve. QSite was then used to compute charges on the ligands
starting from the cocrystallized complexes. The results of this
experiment are summarized in Figure 6. A remarkable improve-
ment in RMSD, across the board, is demonstrated; with the aver-
age error being reduced from 1.77 to 0.43 Å, and the maximum

error being reduced from 6 to 2 Å, with most cases below 0.5 Å,
or close to experimental error.

These calculations, of course, assume advance knowledge of
the structure of the protein–ligand complex. To test the same idea
using an unbiased algorithm with no presumptions concerning the
initial structure, the following iterative protocol (“survival of the
fittest,” or SOF) was followed. First, the ligands were docked using
the normal Glide algorithm. Up to 10 poses were retained,
QM/MM calculations of the ligand charge distributions for all
retained poses were performed, and the ensemble of charge models
was redocked, with the final single pose being selected on the basis
of the Coulomb–van der Waals energy of the complex. The results
of this approach are shown in Figure 7. Although there is some
degradation from the results of Figure 6, the results still represent
a qualitative improvement over the initial use of default force field
charges, and suggest that polarization effects and accuracy of the
ligand charge distribution is the dominant source error in standard
force field-based docking algorithms. Improvements on the results
of Figure 7 can likely be obtained by further refinement of the
energy model.

Conclusions

As is clear from the title of this review, IMPACT is an acronym
that stands for Integrated Modeling Program, Applied Chemical
Theory. We believe the name is more apt now than ever. The first
research with IMPACT in the 1980s focused on molecular dynam-
ics simulations of proteins. As described in our review, IMPACT
now consists of a set of sophisticated molecular modeling tools
strongly grounded in chemical theory, which are being applied to
help solve current problems in structural biology and in drug
design. It has become possible to model biologically important
conformational changes by constructing the corresponding com-
plex free energy surfaces using the kinds of effective potential
functions and advanced sampling techniques described in this
review. The use of the specialized molecular mechanics program

Table 9. Comparison of Calculated and Experimental Activation Free Energies
for Protein Active Site Chemistry.

Protein Substrate Reaction Calculated Experimental

MMO dioxygen Hred–P 22.1 18.2–20.0
MMO dioxygen P–Q 17.9 15.7–16.6
MMO Methane H atom abstraction 18.6 15.4
MMO Acetonitrile H atom abstraction 13.5 13.9
MMO Nitromethane H atom abstraction 18.1 16.2
P450cam Camphor H atom abstraction 8.2 fast
Hr Dioxygen Hrred � Hrox �5.2 �7.3
TIM DHAP H atom abstraction 14.1 13.0
P99-betalactamase Cephalothin Hydrolysis; formation of tetrahedral intermediate 14.3 14.3

All calculated and experimental quantities are activation free energies required to reach the transition state for the
reaction, with the exception of Hr, where the free energy of dioxygen binding is reported. Calculated results include
zero-point energies, but incorporate quantum tunneling corrections only for the hydrogen atom abstraction reaction of
methane catalyzed by MMO.
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module Glide for drug lead identification and optimization that
builds upon IMPACT, takes advantage of a hierarchical modeling
approach using sampling algorithms and effective potentials that
are highly tuned at each stage. As we look to the future, we can

expect continued algorithmic advances in sampling techniques to
fuel the development of qualitatively more accurate effective po-
tentials. This will occur as the interplay between theory and
experiment is repeatedly tested and refined using much larger

Figure 6. RMSD from the native of the docked ligands using FF Dock and QM Dock.

Figure 7. RMSD from the native of the docked ligands using FF Dock and QM Dock with the “SOF” algorithm.
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benchmark datasets than have typically been used in the past. The
collaborations among our research groups, both academic and
industrial, have contributed greatly to the expanded functionality
of the program package. The basic and applied research projects in
our laboratories have, in turn, benefited from this expanded func-
tionality, particularly by the development of tools to automate the
system set up, by the expanded coverage of the force field, and by
the increased coordination between the various modeling modules
described in this review.
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