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The dipole absorption spectrum of an electron in fluid helium is calculated by the maximum entropy 
method (MEM) numerical inversion of quantum Monte Carlo data obtained from a path integral 
Monte Carlo (PIMC) simulation at 309 K at the reduced densities p* =O. 1,0.3,0.5,0.7, and 0.9. Our 
results agree with the RISM-polaron theory results of Nichols and Chandler [A. L. Nichols III and 
D. Chandler, J. Chem. Phys. 87, 6671 (1987)] and the grid wave function calculation of Coker and 
Beme [D. F. Coker and B. J. Berne, J. Chem. Phys. 89, 2128 (1988)]. The method generated the 
expected long high frequency tail and the low density zero-frequency intensity caused by high 
conductivity. The method has also been tested by comparing the MEM absorption spectrum to the 
analytical spectrum of an electron confined in a spherical cavity of fluctuating radius, a model for 
a solvated electron in a localized state. 0 1994 American Institute of Physics. 

I. INTRODUCTION 

The dipole spectral density function, Z(w), of a quantum 
system with Hamiltonian H with dipole operator ,X=,&X), 
interacting with a classic monochromatic radiation of fre- 
quency w, is defined as’ 

I(W) =2%-C 
e ~~ PEn 

ml ' 
~l(~lpl~')l2sIw-(E~~~-~~)/~l, 

(1) 
where the inverse temperature is P=l/k,T (ks is the Boltz- 
mann constant) and the sum is over all the pairs of the energy 
eigenstates In). The energy of state In> is E, and 
Q=Z,, exp(-PE,,) is the canonical partition function. The 
dipole spectral density function is the Fourier transform of 
the dipole-dipole autocorrelation function C(t), namely ,_ _. 

I(0)= dt @w(t), (2) 

where 
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The coordinate representation of C(t), 
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is the starting point for a path integral Monte Carlo calcula- 
tion of the dipole correlation function which is, however, 
impractical even for simple systems because the method hi- 
volves real time propagation with its attendant “wild” phase 
fluctuations.’ 

The imaginary (or Euclidean) time dipole autocorrela- 
tion function G(r) defined as G(T)=C(--in), 0<6j?fi, 
contains the same physical information as the real time cor- 
reIation function, being its analytic continuation on the 
imaginary axis.3 The spectral density function Z(w) and the 
imaginary time dipole autocorrelation function G(r) are a 
two-sided Laplace transform pair, 

G(T)= -!- 2~ 
i 

lmdco I(o)e-oT. (5) m 

The calculation of G(7) can be tackled by standard quan- 
tum Monte Carlo techniques which are nowadays well de- 
veloped and capable of simulating quite complex systems. 
However, the imaginary-time dipole autocorrelation function 
is rather insensitive to changes in the spectral density Z(w). 
Thus, for a reasonable uncertainty in G(r), it is possible that 
two very different spectral densities functions I(w) can 
equally well give G(T) through the relation (5). Mathemati- 
cally speaking the solution I(o) of the integral equation (5) is 
very unstable-small errors in G(T) produce large errors in 
I(4. 

In this paper we use the maximum entropy method 
(MEM): which has proven to be reliable and efficient in 
similar ill-posed inversion problems,5’6 to compute the dipole 
absorption spectrum of the solvated electron in fluid helium 
by numerical inversion of the integral equation (5) using the 
imaginary-time dipole autocorrelation function data obtained 
from a path integral Monte Carlo (PIMC) computer simula- 
tion. 

We have tested the MEM inversion method by applying 
it to PIMC data obtained from the simulation of an electron 
in a spherical cavity of fluctuating radius, a model for a 
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solvated electron in a localized state. The calculated absorp- 
tion spectrum has been compared with the available analyti- 
cal solution and very good agreement has been found. 

In the next section we review the theory and practice of 
the calculation of the imaginary-time dipole autocorrelation 
function function by PIMC techniques. The application of 
MEM to the calculation of dipole spectral functions is pre- 
sented in Sec. III. In Sec. IV we apply this numerical method 
to the calculation of the absorption spectrum of an electron 
in a spherical cavity of fluctuating radius. The absorption 
spectrum of a solvated electron in Huid helium by MEM 
inversion of an imaginary time correlation function, deter- 
mined by a suitable PIMC computer simulation, is finally 
presented in Sec. V. 

II. PIMC CALCULATION OF THE IMAGINARY TIME 
DIPOLE CORRELATION FUNCTION 

The canonical partition function in the coordinate repre- 
sentation 

Q(/3)=Tr(e-pH)= dx(x\e-PH]x) 
I 

of a quantum system with Hamiltonian H, whose coordinates 
are described by the vector x, at the inverse temperature ,O, 
can be written, using the equality 

e -P*=[e -‘wP)*]P 7 
in the form 

Q(P)= 1 dxl.-*dxptk (xile-(P’P)HIxi+l), 

(7) 

(8)’ 

where xp+ t=x, . In the particular case of a single particle at 
position r in a potential V(r) and taking the usual free par- 
ticle high temperature approximation 

(rile- ‘p’p)HI rif 1) 

where 

2- p 
WP-(ph)2’ (10) 

we obtain the discretized path integral approximation to the 
canonical partition function7’8 

Q(P)-Q,(P) 

drpe-~{Zi[(““~‘2)(r~-“+ 1)‘+ v(riJIPl}, (11) 

which is isomorphic to the classical configurational partition 
function of a p-particle cyclic chain polymer in which the ith 
bead at position ri interacts with its neighbors through a 
harmonic bonds and with an external attenuated potential 
V(r)/p .9,10 

The thermal average of some property O(r) can then be 
written as 

1 

(*)= Q(P) 
- Tr( e-fiNO) 

X C *(ri)ewP~‘iE R+$-~--P~+, j”/2+ Vlt$/pJ}, 

(12) 
which is equivalent to finding the average of some polymer 
property over all possible polymer configurations. 

A useful correlation function, which gives information 
about the behavior of the quantum particle, is the mean- 
square displacement between pairs of points of the chain 
separated by the imaginary time increment r (Ref. ll), 

R2(7)=(~r(-i7’)-r[-~(~‘+7)]~2) 03) 
which is independent on the position of the first bead corre- 
sponding to the imaginary time 7’. The fZ2(r) correlation 
function is usually evaluated at the points rj=fipjfp, 
j=O,..., p/2, by the PIMC averages 

R2iQ=(eJ3 (14) 
where 

ej=b kI& fQ-rk+j121 j=l ,...,p/2. (1% 

The imaginary-time dipole autocorrelation function G(r) for 
the dipole operator p=--[elr, where -]e] is the electron 
charge, is related to R2(r) through 

e%‘(r) =2[G(O) - G( r)]. (161 
Using EQ. (5) and the detailed balance relation I(--oj 
=exp(-fiw)l(o), we see that the spectral function (1) is 
related to R2(r) through the integral equation 

R2(r)= - -$ 

--(e-PAW+ l)]. 
The absorption cross section is defined as’ 

(17) 

I 
a(w)= 2 o(l-e-y@), 08) 

and is related to the imaginary-time R2(r) correlation func- 
tion through [see Eqs. (17) and (18)-J, 

R2(r)=- & 
J 

;dw a(o) 
{exp(-Wr)+exp[-c@h.-r)]-exp(-i%o/3)-1) 

o[l-exp(-pfiw)] 
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The values of the Z?(r) correlation function at different 
values of G- are not independent; instead, in the application 
presented, we have found a significant amount of cross cor- 
relation. This is best seen by the normalized cross-correlation 
matrix of the fluctuations Sej= ej- R2( Tj), 

Feiaej) Ej 
%= dm 

=- i20) 

where 

Fij=(SQi&lj)l(L- 1) i21) 
e,Z is defined in Eq. (15) and L is the number of samples. 

The imaginary-time correlation function Z?(T) is deter- 
mined only on the p discretization and its values are affected 
by statistical errors and biased due to approximations in- 
volved in the Monte Carlo simulation. There is, therefore, the 
need to resort to some method to obtain Z(w) by numerical 
inversion of the integral equation (19) in such a way to by- 
pass its intrinsic instability. Many standard methods fail in 
the present case because they amplify the errors on the 
Monte Carlo data and converge to solutions completely dif- 
ferent from the exact one. The method we adopted, the maxi- 
mum entropy inversion method, gives reasonable spectra in 
all test cases examined. The foundations of the method, pre- 
sented briefly in the next section, are also well established 
increasing our confidence in applying it to nontrivial cases. 

III. THE MAXIMUM ENTROPY INVERSION METHOD 

The maximum entropy inversion method12 is applicable 
to the general problem of evaluating a set of unknowns from 
a data set knowing only the rule that generates the data from 
the unknowns, the inverse operation is never invoked and it 
can be assumed unavailable. We will focus on the numerical 
solution of the integral equation 

0(7-j= I do Z(w)K(o,T-), (22) 

where D(T) represents the calculated or measured data [in 
our case the imaginary-time dipole autocorrelation function 
G(+)], Z(o) is a positive unknown function and K(w,r) a 
regular kernel function. In practice D(T) is known only on a 
discrete set of points Dj=D(‘ri),j= l,...,M. To every Dj is 
also assigned an uncertainty Uj. Analogously, we look for 
the values of Z(o) on the set of points wi, i = 1,. . . ,N, setting 
Zi=Z(w,)>O and we carry out the integration in the finite 
interval wmin6’l’~~~,, , implicitly assuming Z(w) =0 outside 
this interval. We also assume that the data are uncorrelated, 
i.e., that the Dj’s can be considered independent variables. 
(See below for an illustration on how to apply MEM to cor- 
related data once the correlation is known.) 

The N unknowns I={Zr ,...,ZN}, called hereafter the 
map, define a Cartesian N-dimensional space and the maxi- 
mum entropy method assigns a probability distribution to I, 
which is dependent on the data available, and defines the 
solution Z(o) of E@. (22) as the most probable map. Let 
9IID) be the probability of I given the data 
D={D, ,,.,,DM}. By Bayes theorem, 

3~IlD)aW~I)flD[I); (23) 

where %I) is the so calIed prior probability for I, i.e., the 
probability distribution we assign to I before acquiring the 
data, and FfDlI) is the likelihood probability, i.e., the prob- 
ability of obtaining the data D by the transformation (22) 
with the given map I. 

The prior distribution for the map is taken to be 
L-d .qI)w? ( (24) 

where c~ is an arbitrary positive parameter and S is the en- 
tropy function, 

N 

S=C Ii-S,-Ii In 5 
i= 1 ( 1 Si ’ 

cm 

whose unconstrained maximum occurs at ZF = si for which 
S*=O. The positive parameters si are chosen consistent with 
any prior information about the map that is available. If no 
prior information is available all the Ii have to be considered 
equivalent and, as we did in this work, the choice 
si=s =constant for every i has to be made. The form Eq. 
(25) for the entropy has been shown to be the only form 
consistent with the axioms of the MEM formalism.13 

Now we turn to the problem of defining the likelihood 
probability distribution flD[I). In view of the necessary dis- 
cretization described above, the integral transform Eq. (22) 
becomes a linear transformation 5%’ from the N-dimensional 
map space to the ii/l-dimensional data space. From a map I 
we can, therefore, predict what the data (%I),j should be and 
get the residuals from the actual data given. Jf the residuals 
are not zero, and we exclude the possibility of systematic 
errors, it is because of statistical errors on the data. If we 
suppose the errors have Gaussian distributions described by 
standard deviations ~j, we have 

c,DIIjcc + zxp 
j=l i 

- [D.fmJ*~)jlz 
4 i 

= exp( - x2/2). 

(26) 

Combining Eqs. (25) and (26) we see that the posterior prob- 
ability whose maximum is the maximum entropy solution to 
the integral equation (22) is 

:fiI]D)~exp(,aS--x2/2) (27) 

so that we are left with the problem of maximizing the func- 
tion of N variables 

Q(I)=aS(I)-,y”(I)/2. (28) 

The arbitrary parameter cy is interpreted as the inverse 
Lagrange multiplier in the constrained maximization of S 
with a fixed value of ,$. If (Y is large the maximum of Q(1) is 
mostly determined by the entropy function, i.e., by the prior 
information available. Thus, the MEM solution Z(w) of the 
integral equation (22) [represented by the points (wi ,Zl)] 
would be a smooth and flat function. If, instead, a is small, 
Z(w) is determined only by the 2 function, and it would then 
represent very well, in a 2 deviation sense, the data. It 
would also, however, represent any random error present in 
the data. Thus I(o) would be too sensitive to errors in the 
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data, would suffer high oscillations, and it would have little 
resemblance to the true solution of the integral equation. A 
common practice is to set (Y so that, at the maximum of Q(I), 
g=number of observations=M (which gives 99% confi- 
dence!. More general criteria have been reported.14 

In the present application, instead, we will regard a as a 
regularization parameter that controls the degree of smooth- 
ness of the map I. Regularization parameters are usually en- 
countered in the theory of approximate solution of matrix 
equations Ax= h where the matrix of coefficients is ill- 
conditioned and many solutions x well represent the known 
vector 6. In these cases the solution is usually chosen to be 
the best compromise between a good representation of the 
data b and some other criterion of regularization of the so- 
lution. Some of these regularization schemes are imple- 
mented in popular software packages for the numerical solu- 
tion of ill-posed problems’* where minimization of the norm 
of the solution and/or maximization of the degree of smooth- 
ness of the solution are used. Common to all these tech- 
niques is the problem of determining the best degree of regu- 
larization which in most cases depends, as in our case, on a 
single parameter. This is conveniently done using a graphical 
tool, the so-called L-cun~e.‘~~‘~ In our case the regularization 
function is the entropy and the L-curve is a log-Iog plot, for 
all valid regularization parameters a: of -S(Z*) vs the cor- 
respondent residual norm g(Z*) at the maximum ‘of Q(I) in 
Eq. (28). For discrete ill-posed problems the L-curve has a 
characteristic L shape with a distinct comer separating the 
horizontal and vertical parts of the curve. The best value of (Y 
corresponds to the comer, where the curvature of the L-curve 
is a maximum. At this point the best compromise between a 
minimum value for ,$ and a maximum (i.e., less negative) 
value for the entropy is ensured. 

The numerical problem of the constrained maximization 
of the entropy S has been solved even for very large N (a 
million or more points on the map) by very efficient 
algorithms’8 that have been applied successfully to the MEM 
reconstruction of 2D and 3D images with a large number of 
pixels. The present application is far less demanding in terms 
of dimensionality of the map space because a good represen- 
tation of the spectral function is described, at most, by a few 
hundreds points. We are able, therefore, to use a safe but 
memory intensive Newton-Raphson based maximization 
procedure.19 Moreover, the fact that 5G in our case is linear 
ensures uniqueness of the maximum entropy solution. 

ln the maximum entropy inversion of the integral equa- 
tion (19) from PlMC data we have Dj=R2(7i) and 

.sKij= - ,& (oj+*-wjj 

x IYe’-jTife 
w;(pgr7i)-i,-bwjP+ 1)J 

Oj[ 1 -exp( -pfiClJj)] 
(29) 

derived from the discretization of the integral equation (19). 
As explained in Sec. II, the data Z?( ri) cannot be considered 
independent. The 2 measure needed by the maximum en- 
tropy inversion algorithm in the case of correlated data is”c 

,$=C [Di-(Z%l)i]( ~r’)~~[Dj-(Xr)~], (30) 
ij 

where ‘V is the correlation matrix defined in Eq. (21). We 
also note that, if the positive definite, correlation matrix X?? is 
properly diagonalized by an orthogonal matrix ,&, the maxi- 
mum entropy inversion of Eq. (19) can be carried out starting 
from the uncorrelated transformed data set D’ =24’D and the 
transformed linear relation from map space to data space 
.H’ =,&.JK. The cj’s in Eq. (26) are, then, interpreted as the 
eigenvalues of the correlation matrix ‘5 

Our maximization algorithm maximizes the function 
Q(Ij (28) with fixed LY using the Newton-Raphson method 
starting with the initial guess Zi=si=s, i- 1,. ..,N, at the 
maximum of the entropy function (25) with a large value of 
a. The intensity of the initial guess Zi=s is determined from 
the sum rule 

R2(/?fi/2)= -Y ,,“f,i dw 

x[2 exp(@0/2)-exp(-/3Bw)- l] 
0[1--exp(-/?ILWj] ’ 

(31) 
The inverse Lagrange multiplier (Y is then progressively de- 
creased until the maximum of curvature of the L-curve is 
reached. At every iteration convergence is checked by mea- 
suring the angle between the gradient of the entropy and the 
gradient of the ,$ function. For the maximum entropy recon 
strutted spectra presented in this paper, the angle between 
the two~gradients is less than 1 X lop6 rad. 

IV. TEST CASE: ELECTRON CONFINED IN A 
BREATHING SPHERICAL CAVITY 

There are theoretical reasonsi to believe that maximum 
entropy is the best and most flexible method to refine statis- 
tical data. In this section we test the performance of the 
maximum entropy method in reproducing the known exact 
absorption spectrum of an electron confined in a spherical 
cavity with variable radius by processing data obtained from 
an actual PlMC simulation. We have chosen this test case 
because the electron in a spherical cavity is a reasonable 
simplified model for a localized electron in a solvent. It con- 
stitutes, therefore, an appropriate benchmark problem to as- 
sess the reliability of MEM for the subsequent treatment the 
full ‘microscopic model of the solvated electron. 

The energy eigenfunctions in spherical polar coordinates 
for a particle of mass me in a spherical cavity of radius a are 

* nlm=NnJr(xnrrlaj Yd e9~j3 (32) 

where [Y,,(B,qj] is a surface spherical harmonic, j,(x) is the 
spherical Bessel function of order I, xfil its nth zero, and N,, 
the appropriate normalization factor. The energy eigenvalues 
are given by 

n XI, 
Ed=; Zi-T e -a (33) 
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and are (21-t 1) fold degenerate. There are no restrictions on 
the values of I for a given n. The angular momentum states 
are labeled s,p,d ,..., accordingly to common conventions (I 
= 1,2,3 ,... ). 

The dipole line-spectrum at low enough temperature (or 
small enough radius) is determined by transitions originating 
from the ground state 1 s. The 1 s-+ lp line is the predomi- 
nant feature of the spectrum, the transitions to higher p states 
being much less intense (the ls+2p transition is already 
183 times less intense than the Is-+ lp transition and the 
transitions to states with angular momentum quantum num- 
ber different from 1= 1 are forbidden). 

An inhomogeneously broadened spectrum can be ob- 
tained for an isobaric ensemble of spherical cavities contain- 
ing one particle. In such a model only the radius of the 
sphere is allowed to fluctuate and the isobaric partition func- 
tion A at the external pressure P is given by 

AUW’)= IomdV e-PPvQ(N% (34) 

where Q(p, Vj is the canonical partition function at the fixed 
radius a=(3/4rr)“3V*‘3, 

Q(p,Vj=x (2Z+ 1)exp 
111 

(-P&f-$) (35) 

In the following computations the pressure was adjusted to 
obtain an average sphere radius of 3-7 A at room tempera- 
ture corresponding to typical electron cavity sizes in various 
solvents. Under these conditions, the state of the electron is 
strongly ground state dominated (,GAE>29, AE=energy of 
tirst excited state with respect to the ground state).’ It is, 
therefore, an excellent approximation to write 

QUAv)=exp[ -P & (T)” &I- (36) 

Inserting Eq. (36) into Eq. (34) we see that the volume dis- 
tribution function is 

&:V)=A-‘exp{ -p[PV+&(~)2’3&]] 

and, consequently, the radius distribution function is 
* 

fla)=A-‘4& exp P ya3+:.$ . 
e- 

(37) 

(38) 

Considering only the ls-+np transitions, the dipole 
spectral function at the tixed radius a is given by 

Z(w;a)=e”a”C ~~L+((w-co~), 
II 

(39) 

where 

Un= 

&Adz zhZ~~l,Od]*&& d&&d]* 
(40) 

and 
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(41) 

We have taken the dipole operator to be -(e Ir and [Jl(x)] is 
the Bessel function of order 1. 

The inhomogeneously broadened spectrum is obtained 
by averaging the fixed radius spectrum over the radius dis- 
tribution (38), 

I 

m 

Z(w)= da *a)Z( w;a). (42) 
0 

The expressions (39) and (42) define the analytical spec- 
tral density function, exact in the limit of complete ground 
state dominance, of an electron confined in the fuctuating- 
radius spherical cavity to which we compare the calculated 
spectrum. 

We now address the problem of numerically obtaining 
the absorption cross section a(w), defined in Eq. (18), by a 
suitable Monte Carlo simulation, as described in Sec. II. The 
simulation yields the R*(T) correlation function, defined in 
Eq. (14), which is then processed according to the maximum 
entropy recipe of Sec. III to solve the integral equation (19) 
for the desired absorption spectrum. 

The R*(T) correlation function of Eq. (14) for this system 
is given by PIMC averages over the volume of the spherical 
cavity and.electron polymer configurations, R2(rjj=PP s omdV e- WV drl***drp 

I 

X bktl Irk-rk+j12 fi Wri,ri+,;PlP.u), 
i 1 i=l 

where 
(43) 

G(ri,ri+ 1 ;pip,a)=( &)3’2 eXp[ (ri~~~1)2] 

X I-exp - $ (ri-U)(ri+t-U) 
i [ P I) 

(44) 

is the spherical cavity image propagator’t for the spherical 
radius a = ( 3 14 7~) ‘I3 V113, and 

(45) 

The R*(T) correlation function is symmetric around @i/2. 
Thus, if p equally spaced discretization points are used, then 
there are at most p/2 independent values of the correlation 
function R*(T) available. Thus, .in order to obtain numerous 
calculated points of the R2(7) correlation function, we have 
found convenient to use the computationally inexpensive im- 
age propagator eventhough other proposed forms of the 
small p propagator are equally accurate for a smaller P.“~ 

The MC sampling scheme consists in generating at every 
step a new free particle polymer configuration by the staging 
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0.0 0.02 0.04 0.06 0.08 0.10 

z’ 

FIG. 1. Calculated R’(r) correlation function of an electron in a breathing 
spherical cavity, ,~3=1000. p=lOOO, and P=SXlO-s. All values in atomic 
units, 7* = T/@L 

algorithmZ3 followed by changing the volume of the cavity 
by a small step. The move is rejected or accepted, as in the 
usual Metropolis scheme, according to the ratio 

(46) 
where the prime denotes a proposed new volume or new 
polymer configuration and the nonprimed variables denote 
the actual volume or configuration. The staging scheme and 
the volume step size are adjusted to obtain an average accep- 
tance ratio of approximately 0.5. 

The calculated R*(T) correlation functions for p= 1000 
a.u. (316 Kj, m,=l a.u., and p=lOOO at the two pressures 
P=2X10m6 a.u. (581 atm) and P=5X10m5 a.u. (14 521 atmj 
after 80 000 Monte Carlo passes, are shown in Figs. 1 and 2. 

We find that the cavity radius distribution functions gen- 
erated by the MC sampling scheme deviate only slightly 
from the analytical ones [Eq. (38)]. The calculated average 
cavity radius is 3.675 8, (analytical 3.665 A) with a standard 
deviation of 0.113 A (analytical 0.112 A) for the high pres- 
sure case and 7.082 A (analytical 7.027 8j with a standard 
deviation of 0.415 A (analytical 0.406 A) for the low pres- 
sure case. 

The first and last rows of the cross correlation matrix 
[Eq. (20)] corresponding to the correlation of the first (last) 
point on the R2(7) function with respect to all the other 
points are shown in Fig. 3 for the low pressure case. Similar 
results for the cross correlation are obtained for the high 
pressure case. 

The maximum entropy reconstructions of the dipole ab- 
sorption spectra, using the method developed in the previous 
sections, are shown in Figs. 4 and 5, compared with the 

0.0 0.05 0.10 0.15 0.20 

+* 

FIG. 2. Calculated R*(r) correlation function of an electron in a breathing 
spherical cavity, p= 1000, p = 1000, and P=2X lOme. All values in atomic 
units, ir=T/@L. 

analytical ones from Eqs. (42) and (18). The analytical cal- 
culation used the radius distribution obtained from the simu- 
lations to focus on errors in the spectrum due only to the 
maximum entropy inversion. It can be observed that, in the 
range of frequencies examined, only two peaks are observed; 
the larger one is the 1 s-+ lp transition, and the smaller one, 
barely discernible from the base line, corresponds to the 

9 

% 

P 
ij% 
B 2, g-0 

2 

x 
0.0 0.05 0.10 0.15 0.20 

+* 

FIG. 3. Two rows of the normalized cross correlation matrix EF’ [see Eq. 
(20)], as a function of j for i=l (full line) and i=200 (broken line), for an 
electron in a breathing spherical cavity. The relation between the discrete 
indexes and the imaginary time is ~,=@j/p, p= 1000, p = 1000, and 
P=~x IO-‘. All values in atomic units, ?=r/fi. 
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1~42~ transition. The fact that the simulated correlation 
functions R*(T) are extremely insensitive to the detailed 
structure in the spectral function and that there is a large 
intensity difference between the two peaks suggest that a 
good reconstruction of the spectrum will be difficult to ob- 
tain. Nevertheless, we notice that the MEM reconstructions 
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FIG. 5. Dipole absorption spectrum of an electron in a breathing spherical 
cavity from maximum entropy inversion of PIMC data, fi= 1000, p = 1000, 
P=PX10W6, w*=/~s%(H~,, and s(o)=?~c(~(o)/8~~e~. The analytical spec- 
trum and enlargements of the peaks are also shown. All values in atomic 
units. 

well reproduce the main features of the spectra. Only the 
reconstruction of the I s -+ 2p peak in the high pressure spec- 
trum is somewhat red shifted with respect to the exact one 
but the peak shape is well preserved. In an attempt to im- 
prove the agreement, reasoning that at this pressure the av- 
erage radius of the cavity is roughly half of the low pressure 
case and the stronger interaction of the polymer with the 
cavity walls would require a finer path integral discretization, 
we ran a simulation with a number of polymer beads twice as 
large (p=ZOOO) but the resulting 1~42~ peak (not shownj 
showed a blue shift of similar amount with respect to the 
exact peak position. 

A spurious structure (very small in the scale of Fig. 5) is 
present at the right end limit of the frequency range of both 
spectra that indicates a residual intensity at larger frequencies 
not contained in the frequency range examined. As expected, 
the intensity of the structure increases when considering a 
smaller frequency range. If the frequency window is set to 
leave out the 1 s-2p peak but wide enough to contain the 
tail of the Is-+ Ip peak, the intensity at the right edge be- 
comes quite large but the accuracy of the reconstruction of 
the 1 s-+ lp peak is unaffected or even improves. It seems, 
therefore, that a single strong peak is easier to reconstruct 
than a spectrum composed of two peaks of very different 
intensity. This is an important characteristic of the maximum 
entropy reconstructed spectra because in the localized sol- 
vated electron case only one, wider, peak is expected and, in 
view of these observations, it should be easy to obtain 
through MEM inversion of PIMC data. 

V. THE OPTICAL ABSORPTION OF A SOLVATED 
ELECTRON IN FLUID HELIUM 

The PIMC formulation of a single quantum particle in- 
teracting with a fixed external potential is described in Sec. 
II. In the case of an electron interacting with a classical sol- 
vent, PIMC iamples solvent configurations ~weighted by the 
appropriate Boltzmann factor. The canonical average of a 
property O(r,R”) of the mixed quantum-classical system is 

(o)=-& ( $)3p’2/ d&fem@(RM)f dr,---dr, b 

Xc O(ri ,R”)e- P{Hi[(mwilZ)(ri- ri+ I)‘+ V(ri ,R”)lPl}, 

i 

(47) 
where ri are the coordinates of the electron beads and RM 
describes the M-degrees of freedom configuration of the sol- 
vent. The canonical partition function is 

x 
I drl . . .drpe-p{zi[(mur~i*)(ri-ri,1)2+V(r~,R~)IpI}, 

(4% 
where @(R”) is the interaction potential between solvent 
molecules and V(r,R”) is the interaction potential between 
solvent molecules and the electron.24 
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The classical helium fluid was modeled via Lennard- 
Jones 12-6 pair potential where a=2556 A and ~=10.22 K. 
The electron-solvent interaction was modeled through a pair 
pseudopotential between electron beads and solvent atoms. 
The form of the electron-atom pseudopotential is 

VW=; ,&6-l 7 i 1 (49) 

where, for helium, A = 16 220 A4 K, B= 1956.5 A6, and 
c =276.86 A6.25 

The Monte Carlo sampling of the electron-helium sys- 
tem was performed by sequentially selecting solvent atoms 
and moving each by a random displacement, calculating the 
solvent-solvent and electron-solvent energy change associ- 
ated with the move and accepting or rejecting according to 
the standard Metropolis scheme. After having cycled through 
all the solvent atoms, a new electron polymer configuration 
is generated by the staging method,“j taking into account the 
external potential due to the solvent atoms, until each elec- 
tron bead is displaced. The solvent atom step size and the 
staging scheme are adjusted to obtain an average acceptance 
ratio of approximately 0.5. After every Monte Carlo cycle 
the quantity Qj, j = 1,. . . , p/2 delined in Eq. (l>), whose av- 
erage is R’(T]), is accumulated and stored. The normalized 
cross-correlation matrix [Eq. (20)] is calculated at the end of 
the simulation by block-averaging.‘7 

The electron-helium system has been studied at the tem- 
perature T=309 K at the reduced fluid densities 
p”=pr?=O.l, 0.3, 0.5, 0.7, and 0.9 using a periodic cubic 
simulation box with 864 helium atoms and 1000 electron 
beads. The calculated R2(~) correlation functions after 
20 000 MC passes, found to be in agreement with previous 
simulations,25 are shown in Fig. 6. In order to minimize com- 
puter time spent to accumulate the values of the correlation 
functions, the number of calculated points of the R2(~) cor- 
relation functions has been reduced by ignoring the less in- 
formative plateau portion. When a plateau could not be iden- 
tified, not all points allowed by the number of beads on the 
electron polymer have been considered in the calculation. 
The number of calculated points on the R’(T) correlation 
functions ranges from 200 to 250. The calculated cross cor- 
relation matrices ‘&ij showed, especially at low fluid densi- 
ties, less correlation between different points of the R2(7) 
correlation functions than the ones found in Sec. IV for the 
electron in a breathing spherical cavity. 

The absorption cross sections d(w) defined in Eq. (18) at 
the fluid densities considered have been evaluated by the 
maximum entropy procedure described in the previous sec- 
tion and are shown in Fig. 7. Figure 7 shows only the lower 
frequency portion of the full frequency range used; in the 
computations the upper limit of the frequency interval was 
increased until the spurious intensity at the upper limit (also 
observed in the absorption spectra calculations of the elec- 
tron in a breathing sphere) became negligible small. The 
number of MC passes in the PIMC calculation of the R*(T) 
correlation functions was also increased until the maximum 
entropy generated spectra did not show important changes. 

All the spectra, except for the lowest density spectrum, 
are composed of a single peak and of a long high frequency 
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FIG. 6. Calculated R’(T) correlation functions in atomic units of a single 
electron in fluid helium at 309 K (/3= 1021 a.u.) at several reduced densities. 
Error bars are shown every 10 calculated points; ir=~Y/3i. 

tail. The position of the peaks is in agreement with the find- 
ings of Coker and Beme’* who calculated the transition di- 
pole moments from the electron’s ground state to the lirst 
excited states and averaged over a limited number of fluid 
configurations generated by a PlMC simulation. The spectra 
presented in this paper differ substantially from the ones of 
Coker and Beme in which the high frequency tail is absent. 
They found that their spectra missed nearly 40% of the total 

P 

w 

0 

- p’=O.l 
..- -..- p’=o.3 

--- p’ = 0.9 

I I T 
0 SO 100 150 

o* 

FIG. 7. Dipole absorption spectrum in atomic units of a single electron in 
Huid helium at 309 K (p=IO21 a.u.) at several reduced densities from 
maximum entropy inversion of PIMC data; 
=ficofo)lSde’. 

CO*=pfiCO, St@) 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
Downloaded 01 May 2007 to 128.59.74.3. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



E. Gallicchio and B. J. Berne: Solvated electron in fluid helium 9917 

% 

0 
8 

TX 

F3 

w 

D 

I------ - ------l 
- 

- PIMC+ MEM 
_ -..... t-o& & Beme 

----- REM-polaron 

i i 
\ : ,A 

/ $‘ ‘.,. 

\., 
-... . . . . . ..________ 

7-=---r--- _I_I 
0 10 20 30 40 SO 

m* 

FIG. 8. Dipole absorption spectrum in atomic units of a single electron in 
fluid helium at 309 K @= 1021 a.u.) at the reduced density p*=OS. “PJMC 
-tMEM” is this work The wave function calculation data (“Coker and 
Beme”) and the RISM-polaron data are both taken from Ref. 28. w*=pr”lo, 
slo)=fico(o)/82s~. 

oscillator strength because the technique they used only con- 
sider a small range of energy states in the continuum. Be- 
cause we are using a correlation function method to evaluate 
the spectra, we are treating both the continuum and the lo- 
calized states equally well. We believe, therefore, that the 
observed tail is due to transitions from the ground state to 
excited states in the continuum while the peak itself is as- 
cribed to transitions from the ground state of type s to the 
localized first excited states of type p. At the lowest tluid 
density considered no peak is observed but only a tail that 
shows that, at this density, the spectrum is dominated by 
extended states. A similar behavior for the absorption spectra 
has been predicted by the RISM-polaron theory of Chandler 
et ~21.~~~~’ In particular, the observed nonzero intensity at 
rti=O for the spectra at the two lowest densities is an indica- 
tion of large conductivity of the fluid due to the high electron 
mobility found at these densities. 

The MEM reconstructed absorption cross section of the 
solvated electron in fluid helium at p*=OS is compared in 
Fig. 8 with the simulation results of Coker and Berne” and 
the RISM-polaron theory results for the associated hard 
sphere model of Nichols and Chandlec3’ We see that the 
computations performed here are in good agreement with the 
analytical predictions of the RISM-polar-on theory. 

Apart from the comparisons presented with previous ap- 
proximate calculations, we cannot directly test the accuracy 
of the spectra presented since experimental measurements 
are not available and an exact analytical treatment of this 
system is not known. There are two possible source of errors: 
[i) systematic and statistical errors on the PIMC data due to 
the finiteness of the path-integral imaginary time discretiza- 
tion and the finiteness of the simulation run and (ii) errors 

introduced on the spectra by the maximum entropy inversion 
procedure. 

The statistical errors are fully treated by the MEM 
method as explained in Sec. III and in the limit of zero sta- 
tistical error the MEM reconstruction reproduces the exact 
spectra compatible with the f?(r) correlation function. Our 
data are, of course, affected by statistical errors but we have 
been careful to run sufficiently long simulations so that the 
spectra reached convergence. We can therefore rule out such 
a source of errors as an important one, especially for the high 
density cases where statistical errors are minute. 

Systematic errors due to the finite number 0, = 1000) of 
electron beads are more important at high densities where the 
solvent cage is smaller and the electron-solvent interactions 
more intense. We have found in the previous section for the 
electron confined in a spherical breathing cavity that, only in 
the high pressure case, such errors caused a red shift of the 
very weak ls+2p peak. (see Figs. 4 and 5) but the main 
peak position and shape were well reproduced. We are con- 
fident, therefore, that the value of p we used in the electron- 
helium simulations is sufficient even at the highest density. 
At this density, the solvent cage is roughly twice as large as 
in the high pressure case of the of the spherical breathing 
cavity. 

We believe that errors introduced by the MEM numeri- 
cal inversion on the absorption spectra presented here can be 
considered negligible in view of the fact that, for an electron 
in the breathing spherical cavity, this procedure is able to 
resolve spectral bands of quite different intensities and nar- 
row spectral widths-a rather strenuous test case. In this pa- 
per we have used the MEM method with an ad hoc proce- 
dure to select the parameter (Y [cf. Eq. (28)]; by using 
selection methods which are self-consistently generated by 
the maximum entroy formalism,r4 it should be possible to 
determine the absorption spectra with greater accuracy and 
by implementing other extensions of the MEM method’ it 
should also be possible to estimate the errors introduced by 
the MEM inversion. 

In conclusion, we are confident that the absorption spec- 
tra of the solvated electron in fluid helium presented here are 
a good representation of the exact ones. 

ACKNOWLEDGMENTS 

We are grateful to Dr. Joel Bader, Dr. Steve Rick, and 
Dr. Tom Pollard for their helpful comments on several as- 
pects of this work. This work was supported by a grant from 
the NSF (NSF CHE-91-22-506). 

‘B. J. Berne, in Physical Chemistry, an Advanced Treatise, edited by H. 
Eyring (Academic, New York, 1967-75). Vol. VIIIB, Chap. 9. 

‘D. Thirumalai and B. J. Berne, Comput. Phys. Commun. 63, 415 (1991). 
“G. Baym and D. Mermin, J. Math. Phys. 2, 232 (1960). 
“Maximum Entropy in Action, edited by .I. Skilling (Kluwer Academic, 

New York, 1989). 
“R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev. B 41, 2380 

(1990); J. E. Gubematis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. 
Rev. B 44, 6011 (1991). 

bK. Livesey, P Licinio, and M. Delaye, J. Chem. Phys. 84, 5102 (1986). 
7R. P. Feynman and A. R Hibbs, Quantcrm Mechanics and Path Integrals 

(McGraw-Hill, New York, 1965). 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
Downloaded 01 May 2007 to 128.59.74.3. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



9918 E Gallicchio and B. J. Berne: Solvated electron in fluid helium 

8R. P Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 
1972). 

“D. Chandler and P G. Wolynes, J. Chem. Phys. 74, 4078 (1981). 
“B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401 (1986). 
“D. Chandler, in Liquids, Freezing and Glass Transition, edited by D. 

Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, i990). 
t2J. Skilling, in Maximum Entropy in Action, edited by J. Skilling (Kluwer, 

Academic, Dordrecht, 1989). 
13J. Skilling, in Maximum Entropy and Bayesian Methods, edited by J. 

Skilling (Kluwer Academic, Dordrecht, 1989). 
14S. F. Gull, in Maximum Entropy and Bayesian Methods. edited by J. 

Skilling (Kluwer Academic, Dordrecht, 1989). 
“P. C. Hansen, Regularization Tools. A Matlab Package for Analysis and 

Solution o,f Discrete Ill-Posed Problems (Danish Computing Center for 
Research and Education, 1992), revised 1993. This report and the software 
therein described is available via Netlib (netlib.att.com) from the directory 
NUMERALGO. 

16C L Lawson and R. J. Hanson, Solving Least Square Problems (Prentice- 
Hall; Englewood Cliffs, NJ, 1974). 

“K. Miller, SLAM J. Math. Anal. 1, 52 (1970). 
‘*J. Skilling and R. K.. Bryan, Mon. Not. R. A&on. Sot. 211, 111 (1984). 

“D. A. Pierre, Optimization Theory with Applications (Dover, New York, 
1986). 

2oR. N. Silver, J. E. Gubernatis, and D. S. Sivia, Phys. Rev. Lett. 65, 496 
(1990). 

“‘J. A. Barker, J. Chem. Phys. 70, 2914 (1979). 
**J. Cao and B. J. Beme, J. Chem. Phys. 97, 2382 (1992). 
23M. Sprick, M. L. Klein, and D. Chandlen Phys. Rev. B 31, 4234 (1985). 
24D. F. Coker and B. J. Berne, in Excess Electrons in Dielectric Media, 

edited by Jean-Paul Jay-Gerlin and C. Ferradini (Chemical Rubber, Boca 
Raton, 1991). 

=D. F. Coker, B. J. Berne, and D. Thimmalai, J. Chem. Phys. 86, 5689 
(1987). 

26M E Tucker-man, B. J. Beme, G. J. Martyna, and M. L. Klein, J. Chem. 
Phys: 99, 2796 (1993). 

*‘M P Allen and D. J. Tildesley, Computer Simulations of Liquids (Claren- . . 
don, Oxford, 1987). 

28D. F. Coker and B. J. Beme, J. Chem. Phys. 89, 2128 (1988). 
s9D Chandler, Y. Singh, and D. M. Richardson, I. Chem. Phys. 81, 1975 

(1.984). 
30A. L. Nichols JIJ and D. Chandler, J. Chem. Phys. 87, 6671 (1987). 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 

Downloaded 01 May 2007 to 128.59.74.3. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


