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Hydrodynamic calculation of the frequency dependent friction
on the bond of a diatomic molecule

B. Mishra and B. J. Berne
Department of Chemistry and Center for Biomolecular Simulations, Columbia University, New York,
New York 10027

~Received 17 November 1994; accepted 12 April 1995!

In this paper molecular hydrodynamics is used to calculate the dynamic friction on
intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a sim
liquid. The predicted dynamic friction is then compared to recent computer experiments. Agree
with the experimental dynamic function is obtained when the linearized hydrodynamics is mod
to include Gaussian viscoelasticity and compressibility. The hydrodynamic friction on the b
appears to agree qualitatively very well, although quantitative agreement is not found at
frequencies. Various limits of the hydrodynamic friction are discussed. ©1995 American Institute
of Physics.
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I. INTRODUCTION

The generalized Langevin equation1,2 ~GLE! is fre-
quently used to calculate rate constants and vibrational re
ation times. In this formalism, the solvent degrees of fre
dom are eliminated from the nonequilibrium thermodynam
description with the help of the Mori–Zwanzig projectio
operator technique3 to find a set of stochastic integro
differential equations for dynamical state of the solute. F
example, the GLE for the displacement of of a particle
massm along thex direction is

mẍ52
]F~x!

]x
2E

0

t

dtz~ t2t!ẋ~t!1F~ t !, ~1!

whereF(t) is the random force,z(t) is the dynamic friction,
kB is the Boltzmann’s constant,T is the absolute tempera
ture, andF(x) is the potential surface on which the vibra
tional displacement moves. The random force has the follo
ing properties:

^F~ t !&50, ~2!

^F~0!F~ t !&5kBTz~ t !. ~3!

Equation ~3! is the second fluctuation-dissipation theore
which gives an explicit connection between the dynam
friction and the autocorrelation function of the random forc
The GLE has been rigorously derived only for the case wh
the bath is assumed to be a collection of harmonic oscillat
and the system-bath coupling is linear in the bath coor
nates. Recent work has generalized this harmonic bath m
to space and time dependent friction. In such cases, fur
appropriate generalizations of the GLE are required and
present, this remains an open problem.

In order to use the GLE, one must know the dynam
friction as a function of time. Unfortunately, in most prob
lems of physical interest,z(t) is not known although it is
possible to determine it from molecular dynamics simu
tions as has been done for the friction on a single bond
simple molecules~e.g., the covalent bond of a diatomic mo
ecule and the C–Cl stretch in CH3Cl!. In this paper we cal-
1160 J. Chem. Phys. 103 (3), 15 July 1995 0021-9606/95
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culate the dynamic friction coefficient on such a bond from
the equations of linearized hydrodynamics with appropria
boundary conditions.4

In the hydrodynamic model, the exact many-body dy
namics of the solute-solvent system is replaced by a sing
mole interacting with a continuum fluid described by the
Navier–Stokes equations of fluid mechanics. The interactio
of the single molecule with the rest of the system is con
tained in a set of physically realizable boundary condition
on the surface of the body. The detailed description of th
fluid mechanical system is determined by the context of th
problem.

The earliest application of hydrodynamics to explain
molecular relaxation phenomena is the Stokes–Einste
theory of the translational diffusion coefficient in a fluid.
Einstein showed that the diffusion coefficient of a spherica
body of radiusR in a fluid with viscosityh is given by

D5
kBT

z
, ~4!

wherez is the translational friction coefficient. Stokes calcu
lated the drag force on a sphere moving with constant velo
ity in an incompressible fluid by solving the linearized
Navier–Stokes equation and found, for stick boundary co
ditions,

z56phR ~5!

and for slip boundary conditions,

z54phR. ~6!

The Stokes–Einstein approximation for the diffusion coeffi
cient is a very good approximation if the mass of the sphe
is much larger than those of the molecules comprising th
fluid medium, so that the motion of the sphere is supposed
steady. When the mass of the sphere is comparable to tha
the surrounding molecules, the motion of the sphere is inhe
ently unsteady, and it seems quite natural to generalize t
friction to be time dependent. The first attempt to include th
effect of unsteady motion was done by Boussinesq who ge
eralized the Stokes calculation by deriving the drag force o
a spherical particle executing harmonic oscillation in a vis
/103(3)/1160/15/$6.00 © 1995 American Institute of Physics
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1161B. Mishra and B. J. Berne: Frequency dependent friction
cous incompressible fluid. The velocity correlation functio
~VCF! corresponding to a frequency dependent frictio
coefficient4

^v~0!v~ t !&

^v~0!v~0!&
5
2

p
Re E

0

`

dv
cosvt

2 iv1z~v!/m
, ~7!

based on the Boussinesq frequency dependent friction,
seen not to agree with Rahman’s molecular dynam
experiments.5 It was realized that on the time scale for mo
lecular translational motion, the fluid behaves viscoelas
cally and the effects of compressibility are important. Zwa
zig and Bixon4 modified the hydrodynamic equations i
order to incorporate unsteady motion of the molecular s
tem. They demonstrated that simple hydrodynamic mod
can successfully describe the full time dependence of
velocity correlation function. Zwanzig and Bixon~ZB! cal-
culated the frequency dependent friction by solving the l
earized hydrodynamic equations for a spherical particle
ecuting nonuniform translational motion in a compressib
viscoelastic fluid with general stick-slip boundary condition
While not in quantitative agreement, this model reproduc
the qualitative features of the VCF in a Lennard-Jones flui5

In addition, ZB obtained the asymptotic long time tail in th
VCF of an atom in a simple fluid as a natural consequence
the hydrodynamic theory, in agreement with that observed
Alder and Wainwright.6 Ernst et al.7 have shown that the
longest livedt23/2 term in the VCF of an atom in a simple
fluid is independent of fluid structure and depends only
the hydrodynamic properties of the fluid. It was shown la
by Levesqueet al.8 that the agreement of the Zwanzig
Bixon theory with the computer results is improved if th
frequency dependent shear viscosity determined from m
lecular dynamics simulations by calculating the transve
current fluctuation is used instead of assuming a simple M
wellian model.

It is more difficult to calculate the friction coefficient fo
a molecular bond than for the translational motion of
atom,4 and whole body rotations of rigid molecules wit
simple9,10 and more complex shapes.11 Berne and Harp have
proposed a method of calculating the dynamic friction
single spheres using molecular dynamics method.12 Recently,
more extensive molecular dynamic~MD! calculations for the
friction on the bond have been done.13–15For example, if we
consider a homonuclear diatomic molecule of reduced m
m, the GLE for the intramolecular degree of freedomx can
be written as

m ẍ52
]W~x!

]x
2E

0

t

zx~ t2t!ẋ~t!dt1F~ t !, ~8!

whereW(x) is the potential of mean force andzx(t) is the
dynamic friction on the bond.

zx5
@z112z12#

2
5

@z222z21#

2
. ~9!

Herez11 is the friction on atoma1 when atoma1 is moving
and atoma2 is at rest, andz12 is the friction on atoma1 when
atom a2 is in motion and atoma1 is at rest. In the free
draining model of bond friction, the cross terms are omitte
J. Chem. Phys., Vol. 10
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This approximation should be valid only when the two atom
are well separated. In this free draining limit, the friction on
the bondzx is half the friction on the single atom. The
free-draining limit has been used to model friction on inter
nal bonds.

~i! The linear hydrodynamic theory was applied to th
vibrational relaxation~dephasing and population relaxation!
by Metiu et al.16 They model the diatomic as a spherocylin
der vibrating along the cylinder axis. They do not calculat
the velocity field set up by the oscillating sphero-cylinder bu
instead argue that since there is no fluid in between the tw
hemispherical extremities, the friction experienced by eac
hemispherical cap~and thus, the friction on the bond! is half
that of the friction experienced by an oscillating sphere i
unbounded fluid. This is true only when the bondlength
very large and the cross terms are negligible. This free dra
ing limit ignores the detailed effect of the molecular structur
on the friction. Metiu et al. also considered a breathing
sphere model, but the quantitative conclusions derived fro
this model are the same.

~ii ! Smith and Harris17,18 have used molecular dynamics
simulations to calculate the total force autocorrelation func
tion for a single atom and relate this to the friction coefficien
by using the second fluctuation dissipation theorem. The
then take the friction on the bond to be half the value calcu
lated for that of the single atom; that is, they invoke the fre
draining limit even when the two atoms are close to eac
other ~small bond lengths!. They also use an autoregressive
procedure to model the dynamic friction for single atom.

In this paper we extend the linear hydrodynamic theor
to the calculation of dynamic friction on the intramolecula
vibrational degree of freedom of a diatomic molecule. W
report a calculation of the dynamic friction on the bond of
homonuclear diatomic molecule. We do not invoke the free
draining approximation.

Our calculations are based on the full effect due to th
motion of the total body in the fluid continuum. When the
bond length is small, the molecule is modeled as an almo
spherical axisymmetric quadrupole~deformed sphere
model!. For large bondlengths, the molecule is modeled a
two spheres oscillating along the axis of symmetry~analo-
gous to two dipoles radiating in a dispersive medium!, here-
after called the two sphere model. In the hydrodynam
theory, the local interactions between the atoms are averag
by a set of boundary conditions on the surface of the ato
and, as a consequence, one finds an unphysical cusp in
graph of the VCF at short times, rather than a smooth par
bolic behavior. We observe that the deformed sphere mod
does not show a long-time tail in the VCF, whereas that o
the two sphere model does. In molecular dynamic expe
ments, the forces vary continuously in space and time. T
friction coefficient calculated thus differs from the hydrody
namic friction coefficients since, in these theories, the force
are essentially impulsive.19 Following Madden, we subtract
the contribution due to impulsive collisions at high frequen
cies from the hydrodynamic friction for comparison to MD
results. The simple Maxwellian approximation of the vis
coelastic model used in the earlier hydrodynamic theorie
does not suffice to produce the correct frequency dependen
3, No. 3, 15 July 1995
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1162 B. Mishra and B. J. Berne: Frequency dependent friction
of the friction and the power spectrum when compared to
MD results. We use Gaussian models with single relaxa
times for the bulk viscosity and with two relaxation times f
the shear viscosity. These results are compared to som
the molecular dynamic calculations done recently on
simple liquid system13–15and the agreement is been found
be good.

II. HYDRODYNAMIC MODEL

The motion in an infinite fluid medium is governed b
the basic classical laws of conservation: the continu
equation~the conservation of mass!, the force equation~the
conservation of momentum!, and the heat-exchange equati
~the conservation of energy!. Since it is assumed that th
velocity, density, and pressure changes induced by a mo
atom in the fluid are small, these equations may be linear
with respect to them. The velocity of the particle is an ar
trary functionU(t) of time. This can be Fourier analyze
into frequency componentsUv ,

U~ t !5E
2`

`

dv Uve
2 ivt ~10!

as can be the frictional forceF(t):

F~ t !5E
2`

`

dv Fve
2 ivt. ~11!

Because of the linearity of the equations and the bound
conditions involved, we may solve the differential equatio
with the boundary conditions for each Fourier compon
individually. The compressibility condition~finite speed of
sound propagation! requires that the divergence of the velo
ity vector be nonzero. The viscoelastic behavior of the fl
is accounted for by using complex frequency-dependent
cosity coefficients. For example, one can adopt Maxwe
form for the longitudinal and shear viscosities

h l~v!5
h l0

12 ivt l
~12!

and

hs~v!5
hs0

12 ivts
, ~13!

wherehl0 andhs0 are the corresponding zero-frequency v
cosities andtl and ts are the corresponding viscoelastic r
laxation times.

It should be noted that, at the frequencies of inter
here, the fluid is expected to behave isothermally, so that
temperature gradient is neglected and the gradient of
pressure is

“P5
]P

]r
“r5C2

“]r, ~14!

whereC is the isothermal speed of sound in the fluid a
given temperature and density.

The usual linearized Navier–Stokes equation along w
the continuity equation and the velocity of sound relation
J. Chem. Phys., Vol. 1
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isothermal case can be transformed into a single vecto
Helmholtz equation, the detailed derivation of which can b
found in the paper by Zwanzig and Bixon,4

cl
2
““–v~v!2ct

2
“3“3v~v!1v2v~v!50, ~15!

where

cl
25C22

ivh l~v!

r0
~16!

and

ct
252

ivhs~v!

r0
~17!

are the speeds of the longitudinal and the transverse wav
respectively,r0 is the equilibrium density, andv is the fre-
quency of the Fourier-component of the velocity of the
sphere. Alternatively, by Helmholtz’s theorem20 the solution
can be written as the sum of the longitudinal velocityvi~v!
and the transverse velocityv'~v!, having wave numberskl
~5v/cl! andkt ~5v/ct!, respectively, such that,

“

2vi~v!1kl
2vi~v!50 ~18!

and

“

2v'~v!1kt
2v'~v!50, ~19!

with the conditions

“3vi~v!50 ~20!

and

“–v'~v!50. ~21!

The physical meaning ofvi andv' becomes obvious if one
takes the spatial Fourier transform:vi is along thek vector
andv' is perpendicular to it.20

The stress tensor is written as

s̃~v!5hs~v!S 22
cl
2

ct
2D“–v~v!1hs~v!@“v~v!

1v~v!“#, ~22!

wherehs is the shear viscosity of the fluid. The boundary
conditions on the surface are the kinematic condition,

@v~v!2U~v!#–n̂50, ~23!

the general slip condition,

n̂–s̃~v!• t̂5
bslip

R
@v~v!2Uv#• t̂, ~24!

and the radiation condition,

lim
r→`

v~v!50, ~25!

wherebslip ~0<bslip,`! is the coefficient of slip,n̂ and t̂ are
the normal and the tangential unit vectors, respectively, a
Uv is the velocity on the surface of the sphere. Whe
bslip50, the fluid slips perfectly over the boundary and fo
bslip5`, it sticks perfectly to the boundary. At the molecula
level, the slip boundary condition has been found to be mo
appropriate.
03, No. 3, 15 July 1995
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1163B. Mishra and B. J. Berne: Frequency dependent friction
The hydrodynamic force exerted on the surface of
sphere is obtained by integrating the stress tensor over
surface of the sphere,

Fv5 R
sphere

s̃v•ds52z~v!•Uv . ~26!

Henceforth, in this paper, we shall be working with the Fo
rier components of the unsteady variables and so, the
scriptv will be suppressed.

A. Solution of the vector-Helmholtz equation in
spherical coordinates

The vector-Helmholtz equation with the boundary co
ditions @~1.9!–~1.11!# defined on the surface of a sphere
separable in spherical coordinates in the sense of He
holtz’s theorem for vector fields,20 and the general solution in
terms of the spherical vector wave functions can be writ
as

v5 (
snm

Asnm
L Lsnm1Asnm

M Msnm1Asnm
N Nsnm . ~27!

Lsnm is the longitudinal component

Lsnm5kl
21
“@Ysnmhn~klr !#, ~28!

andMsnm andNsnm are the transverse components

Msnm5“3@rYsnmhn~ktr !#, ~29!

Nsnm5kt
21
“3Msnm . ~30!

These are written in terms of the solutions of the sca
Helmholtz equation in spherical coordinate syste
Ysnmhn(kr), with Ysnm being the spherical harmonic of o
der (n,m) and parity s, and hn(kr) being the spherica
Bessel function of the third kind of ordern, also known as
spherical Hankel function. Since we will consider problem
involving only axisymmetric cases here,m will be zero
throughout, and thus parity will then be redundantly ev
Moreover, there is no contribution from the torsional comp
nentMsnm , as we do not expect anyf component in the
solution. The vectorsLn ~Le,n0! andNn ~Ne,n0! will then be
simplified as

Ln5 r̂
dhn~klr !

d~klr !
Pn~cosu!2 û

hn~klr !

klr
Pn
1~cosu!, ~31!

Nn5 r̂ n~n11!
hn~ktr !

ktr
Pn~cosu!

2 û
1

ktr

dhn~klr !

d~ktr !
Pn
1~cosu!. ~32!

Aforementioned expressions forL andN have singularities
at the origin and thus are the representations of the outg
waves, as required by the radiation boundary condition.
corresponding expressions for the incoming waves invo
Bessel functions,

ln5 r̂
d jn~klr !

d~klr !
Pn~cosu!2 û

j n~klr !

klr
Pn
1~cosu!, ~33!
J. Chem. Phys., Vol. 10
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nn5 r̂ n~n11!
j n~ktr !

ktr
Pn~cosu!

2 û
1

ktr

d jn~klr !

d~ktr !
Pn
1~cosu!. ~34!

Thus, for the axisymmetric case, the velocity field for
the outgoing wave is written as

v5(
n

An
LLn1An

NNn . ~35!

We find the coefficientsAn
L and An

L with the help of the
boundary conditions@Eqs.~23!–~25!#.

B. Flow due to the surface oscillation of a deformed
sphere

When the bondlength of the homonuclear diatomic mol
ecule is small, the surface of the diatom can be thought of a
an axisymmetric perturbation to a sphere~see Fig. 1!. Its
surface is assumed to vibrate axisymmetrically so that th
center of mass is fixed. Let the surface of the perturbe
sphere be

r5a~112e cos2 u!2xe ~36!

in spherical coordinates with its origin at the center of the
undeformed sphere of radiusa, e~<1! is a dimensionless
parameter andx is the bondlength of the diatom. The term
2ae cos2 u perturbs the sphere to a family of approximate

FIG. 1. Deformed sphere as a model to fit the description of a homonucle
diatom when the bondlength is small.r5112e cos2 u2xe as referenced to
r51.
3, No. 3, 15 July 1995
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1164 B. Mishra and B. J. Berne: Frequency dependent friction
spheroids andxe further distorts this to produce the notch in
the diatom. The parametersr and e are chosen to fit the
diatom such that

R1x5a~112e!2xe

and

R5max~r cosu!, ~37!

whereR is the radius of the atoms.
The Fourier component of the velocity of the surface i

Uv51U0ẑ for z>0,

Uv52U0ẑ for z,0 ~38!

which in terms of the Legendre polynomials, can be writte
as

Uv5U0ẑ@
3
2 P1~cosu!2 7

8 P3~cosu!1 11
15 P5~cosu!2•••#.

~39!

We consider the solution for the perfect slip case@bslip50 in
Eq. ~24!#, the perfect slipping boundary condition being
more appropriate at the molecular level. Happel an
Brenner21 have described a method for calculating the velo
ity field for deformed spheres for time-independent flow
They make use of the Taylor series expansion about the
deformed sphere. We extend their method to the time dep
dent problem here in order to avoid divergences at high fr
quencies, since the special functions require care
consideration for their asymptotic behavior. The velocit
field v is assumed to have an expansion of the form

v5 (
n50

`

env~n!, ~40!
h
u

e

J. Chem. Phys., Vol. 103
,

d
-
.
n-
n-
-
l

where eachv(n) satisfies the vector-Helmholtz equation

cl
2¹¹–v~n!2ct

2¹3¹3v~n!1v2v~n!50. ~41!

This can be verified by direct substitution of the expansion in
the vector-Helmholtz equation@Eq. ~15!# and then equating
terms involving like powers ofe. The radiation condition
@Eq. ~25!# gives, for eachv(n),

lim
r→`

v~n!50 for all n50,1,2,3,... . ~42!

Each of thev(n)’s in the axisymmetric case has the form

v~n!~R5r @11e f ~a,u!#!5(
k
Ak

~n!L k~R!1Bk
~n!Nk~R!

~43!

with f (a,u)5~2 cos2 u2x/a!. To satisfy the boundary con-
ditions, we expand thev(n)’s aboutr5a by use of the trans-
lational properties of spherical waves~see the Appendix!.
The expansions forL$R5r [11e f (a,u)] % and N$R5r [1
1e f (a,u)] % in terms ofL (r ) andN(r ) are

Ln~R!5 (
m50

`

Tmn
~L !@klr e f ~a,u!#Lm~r !,

~44!

Nn~R!5 (
m50

`

Tmn
~N!@ktr e f ~a,u!#Nm~r !,

whereTmn
(L)[klr e f (a,u)] andTmn

(N)[ktr e f (a,u)] are functions
of the spherical Bessel functions rather than the spherica
Hankel functions sinceue f (a,u)u,1. Using the product
theorem of Bessel functions,22 we can write
j l@kre f ~a,u!#

@e f ~a,u!# l
5

2

kr (
s50

` ~2s1 l1 3
2!G~s1 l1 3

2!

G~ l1 3
2!s!

2F1~2s,l1s13/2,l13/2;@e f ~a,u!#2! j l12s11~kr !, ~45!
where2F1(2s,l1s13/2,l13/2;[e f (a,u)] 2) is the conflu-
ent hypergeometric function with argument [e f (a,u)] 2.

Calculation to zero-order is easily done by using unpe
turbed vector waves to satisfy the boundary conditions on t
unperturbed sphere. For higher order terms, we substit
these expansions in the kinetic boundary condition@cf. Eq.
~23!# and the general boundary condition@cf. Eq. ~24!# with
bslip50 on the surface of the undeformed sphere and th
equate terms involving like powers ofe to get the perturba-
tion of thev field.

In order to calculate the friction opposing the motion o
the perturbed sphere in theẑ direction, we note that the dif-
ferential force exerted on the surface inz direction on a
differential area elementdV is

d

dV
F–ẑ5 ẑ–s̃–n5s rr cosu on r5a ~46!
r-
e
te

n

f

which implies that the differential dragdz/dV exerted on
the area elementdV having surface velocityU0z is

dz

dV
52

s rr cosu

U0
on r5a. ~47!

The friction on the surface above thexy plane is found by
integrating over the surface~r5a,0<u,p/2,0<f,2p!

z~0<u<p/2!52E
0

p/2E
0

2p s rr

U0
a2 sin u cosud ud f

~48!

522pa2E
0

p/2 s rr

U0
sin u cosu du. ~49!

Similarly, on the surface below thexy plane

z~2p/2<u<0!522pa2E
2p/2

0 s rr

U0
sin u cosu du. ~50!
, No. 3, 15 July 1995
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1165B. Mishra and B. J. Berne: Frequency dependent friction
Sincexy plane is the plane of symmetry with respect to t
boundary conditions, we must have

z~0<u<p/2!5z~2p/2<u<0! . ~51!

We calculate the approximate frictionz~0<u<p/2! only to
first order, since the algebra becomes tremendously invol

z~0<u<p/2!5
pahs

2 F S 42
x2

~12 iy ! D S 11
ae

3
1O~e2! D

2
25b

32 G ~52!

with

x5kta, hnt5hn~x!, y5kla,

hnl5hn~y!, a5S 3g1
25

4

N

d D ,
N5S h2tx ~162x2!22h1tD F 3

5F~y!S 2h0l24
h1l
y

23h2l

112
h3l
y D G2

12

5x
~h1l24h3l !@

3
5F~x!~2h1t23h3t!2h2t#,

d5S 2h1lh3t13h3lh1t2
xh2t
2

~2h1l23h3l ! D ,
g5F~y!~2y222iy12!/~12 iy !,

b5N1 /d,

N1516h1l S 2 h2t
x

2h1tD2xh2tS h2ly ~402x2!24h1l D
12~241x2!h1t

h2l
y
,

F~a!5
1

a S j 1@ae f ~a,u!#

e f ~a,u! D U
e0

~53!

from Eq. ~45!.
To find the relation between the bond frictionzx @c.f. Eq.

~9!# andz~0<u<p/2!, we recognize that

z112z125z~0<u<p/2! ~54!

is the friction on one of the faces due to the combined m
tion of both of the faces, one motion opposing the oth
Thus, the friction on the bond is

zx5
z~0<u<p/2!

2
~55!

for the deformed sphere model.

C. Flow due to oscillations of two spheres along the
line joining them

When the bondlength of a real diatomic molecule is s
ficiently large ~about twice the Lennard-Jones radius!, it is
possible that a solvent atom can enter into the neck. Then
single deformed sphere model does not suffice to desc
the diatom and one can think of the molecule as consistin
two spherical atoms, so that fluid is allowed to penetrate
J. Chem. Phys., Vol. 103
e
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-
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f-
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region between the two atoms. The friction experienced
each sphere is not only due to its own motion but also due
the motion of the other sphere close enough to sufficien
affect the total friction experienced by each of them@cf. Eq.
~9!#. This cross effect has been ignored in earlier models.16,18

We calculate in this section the dynamic friction experienc
by each of the spheres when they are oscillating with a ph
difference ofp.

It is not so difficult to obtain an exact solution for th
friction for either stick or slip boundary condition when tim
dependence is ignored since then the biharmonic equa
satisfied by the stream function is separable in the bispher
coordinate system.23 Whereas, for the case of a time depe
dent problem, the vector-Helmholtz equation is not separa
in the bispherical coordinate system. We exploit the linear
of the differential equation and the boundary conditions a
utilize the method of superposition of fields about two ce
ters to obtain the approximate solution.

Let a sphereSa of radiusRa have its center at originO
and a sphereSb of radiusRb have its center atO8 situated a
distanced away on thez axis~see Fig. 2!. Let a pointP~r ,R!
have coordinates~r ,u,f! and~R,Q,F! with respect to origins
O andO8 in spherical coordinate systems.

The solution for the two-center linear-field problem ca
be written as the linear combination of the fields about d
ferent centers

V~r ,R!5v~r !1v8~R!, ~56!

where the fieldsv~r ! andv~R! can be written as linear com-
binations of the spherical vector-wave functions about ce
tersO andO8. Thus

V~r ,R!5(
n

@An
LLn~r !1An

NNn~r !#

1(
n

@Bn
LLn~R!1Bn

NNn~R!#. ~57!

In order to satisfy the boundary conditions onSa andSb , one
needs to expandLn andNn into multipole fields about dif-
ferent centers. We derive their translational properties in
Appendix. The expansions forL andN aboutO8 in terms of
l andn aboutO are

FIG. 2. Coordinates for two spheres oscillating along their axis of symme
with infinitesimal amplitude.
, No. 3, 15 July 1995
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Ln~R!5 (
m50

`

Tmn8~L !~kld!lm~r !,

~58!

Nn~R!5 (
m50

`

Tmn8~N!~ktd!nm~r !,

and the corresponding expansions forL andN aboutO in
terms ofl andn aboutO8 are

Ln~r !5 (
m50

`

Tmn
~L !~kld!lm~R!,

~59!

Nn~r !5 (
m50

`

Tmn
~N!~ktd!nm~R!.

With these expansions, we can write the field about c
terO as

V~r !5 (
n50

`

An
LLn~r !1An

NNn~r !1 (
n50

`

(
m50

`

Bn
LTmn8~L !~kld!

3 lm~r !1Bn
NTmn8~N!~ktd!nm~r !. ~60!

Similarly, about centerO8, the field is

V~R!5 (
n50

`

(
m50

`

An
LTmn

~L !~kld!lm~R!1An
NTmn

~N!~ktd!

3nm~R!1 (
n50

`

Bn
LLn~R!1Bn

NNn~R!. ~61!

Since dipole–dipole~and induced dipole–dipole! interac-
tions dominate, we shall keep only then51 andm51 term.
Then the representation of fields about two centers are

V~r !5A1
LL1~r !1A1

NN1~r !1B1
LT118

~L !~kld!l1~r !

1B1
NT118

~N!~ktd!n1~r !, ~62!

V~R!5A1
LT11

~L !~kld!l1~R!1A1
NT11

~N!~ktd!n1~R!

1B1
LL1~R!1B1

NN1~R!. ~63!

Let us look at the expression for the force experienc
by the sphereSa in the z direction,

FSa–ẑ52pRa
2E

0

p

sin u~s rr cosu2s ru sin u!du. ~64!

srr andsru depend onu asPn~cosu! andPn
1~cosu!, respec-

tively. Integration over the range~0,p! is nonzero only when
n is equal to one. Furthermore, the expansion ofv8~R! about
the origin O is regular insideSa ~Bessel functions being
regular atr50!, and thus cannot produce a resultant force
Sa .

21 Hence, we only need to know the coefficientsA1
(L) and

A1
(N) for the calculation of the friction on the sphereSa . As

most of the contributions comes from the interaction b
tween the dipolar terms~n51 andm51 terms! of the expan-
sion, we retain only these terms for the calculation of co
ficients. Therefore, the expression for the field aboutO and
O8 becomes
J. Chem. Phys., Vol. 103
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n
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V~r !5A1
~L !L1~r !1A1

~N!N1~r !1B1
~L !T118

~L !~kld!l1~r !

1B1
~N!T118

~N!~ktd!n1~r !,

V~R!5A1
~L !T11

~L !~kld!l1~R!1A1
~N!T11

~N!~ktd!n1~R!

1B1
~L !L1~R!1B1

~N!N1~R!. ~65!

Consider the case when the two spheres have equal rad
Ra5Rb5R and their Fourier components of the velocities
areUz and2Uz. Symmetry of the problem aboutxy plane
requires that

A1
~L !52B1

~L ! ,
~66!

A1
~N!52B1

~N! .

We also note that forn5m51,

T11
~L !~kld!5T118

~L !~kld!,
~67!

T11
~N!~ktd!5T118

~N!~ktd!.

Now, the velocity field about centerO satisfies a much sim-
plified equation which must be solved to calculate the fric-
tion on sphereSa , namely,

V~r !5A1
~L !@L1~r !2T11

~L !~kld!l1~r !#1A1
~N!@N1~r !

2T11
~N!~ktd!n1~r !# ~68!

with the boundary conditions onSa ,

v–n̂5U cosu,

s ru5
bslip

R
~v–t̂1U sin u!,

lim
r→`

v50. ~69!

We calculate the velocityV~r ! from the above equations.
The friction is calculated from the stress tensor in the integra
in Eq. ~64!. The value of friction on sphereSa then is

za54pRhsFA~L !S ktkl D
2

klRh1l12A~N!ktRh1tG ~70!

with

x5ktR,

hnt5hn~x!,

y5klR,
~71!

hnl5hn~y!,

A~L !5
1

D F S h2t2 xh1t
21~bslip/hs!

D2S j 2t2 x j1t
21 ~bslip/hs!

D
3S 3h1~ktd!

ktd
D G ,

A~N!5
1

D
$@h2l2 j 2l~h0~kld!22h2~kld!#%,

and

D5D11D22D32D4 ,
, No. 3, 15 July 1995
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FIG. 3. Real part of friction for the two sphere model as a function of frequency for different distances between the spheres with fixed radii. Sol
d52.1s; dashed lines,d55.0s; dashed small lines,d510.0s.
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D15$2h2lh0t1h0lh2t1@xh1t /~21bslip /hs!#

3~2h2l2h0l !%,

D253@h0~kld!22h2~kld!#S h1~ktd!

ktd
D S 2 j 2l j 0t1 j 0l j 2t

1
x j1t

21~bslip /hs!
~2 j 2l2 j 0l ! D ,

D35@h0~kld!22h2~kld!#S 2 j 2lh0t1 j 0lh2t

1
xh1t

21~bslip /hs!
~2 j 2l2 j 0l ! D ,

D453S h1~ktd!

ktd
D S 2h2l j 0t1h0l j 2t1

x j1t
21~bslip /hs!

3~2h2l2h0l ! D . ~72!

The expression forza~v! can be written as a linear com
bination ofeikld ande iktd and thus one observes oscillation
in the real and the imaginary parts of friction as a function
frequency. As the distance between the spheres increases
amplitude of the oscillation and the period decrease in m
nitude. This behavior is characteristic of the viscoelas
modeling and is absent when the fluid is not viscoelas
Such oscillations are not found in the molecular dynam
simulations. These oscillations are due to the unphysical
ture of the boundary conditions at finite frequencies. Mo
over, the hydrodynamic equations describe collective m
J. Chem. Phys., Vol. 103
f
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tions of long wavelength. Figure 3 shows the real part o
friction as a function of frequency for different sphere sepa
rationd, with fixed r with a Gaussian model of viscoelastic-
ity instead of the Maxwell form~see comparison with MD
results!.

In the limit of bondlength going to infinity, the terms
containing Hankel functions with argumentskld andktd go
to zero. Thus, we get

zsp5 lim
d→`

za5
4pRhs

D`
F S h2t2 xh1t

21~bslip /hs!
D S x2y Dh1l

12h2lxh1tG , ~73!

where

D`5S 2h2lh0t1h0lh2t1
xh1t

21~bslip /hs!
~2h2l2h0l ! D

~74!

which is the result obtained by Zwanzig and Bixon for a
single sphere in an unbounded fluid.16

The dynamic frictionza ~Eq. 70! can be related to the
bond friction in Eq.~9! by recognizing that

z112z125za . ~75!

Thus we find,

zx5
za
2

~76!
, No. 3, 15 July 1995
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FIG. 4. Decay factor for the velocity correlation function@Eq. ~85!# as a function ofR/d, the ratio of atomic radius and bond-length for the two sphere mod
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for the two-sphere model. If the two atoms are well separat
~d→`!, the cross frictions~z125z21! are almost zero. Then,
the friction on the bond is equal to

lim
d→`

zx5zsp/2. ~77!

zsp is the friction experienced by single sphere in absence
the other sphere@see Eq.~73!#.

D. Limiting behavior of friction

1. Low frequency behavior

The relation between the velocity correlation functio
and the frequency dependent friction4 is

^v~0!v~ t !&

^v~0!v~0!&
5
2

p
Re E

0

`

dv
cosvt

2 iv1zx~v!/m
. ~78!

Let us consider the deformed sphere model first. At very lo
frequencies, the friction on the bond,zx~v!, is linearly de-
pendent on frequency,

zx~v!;a1bv1o~v3/2!. ~79!

Consequently, from Eq.~78!,

^v~0!v~ t !&

^v~0!v~0!&
;a8d~ t !1b8

d

dt
d~ t !1••• ~80!

we see that, asymptotically, the VCF appears to have no lo
time tail, in contrast with the behavior reported by Alder an
Wainwright6 on hard spheres. For the two sphere model,
low frequencies, the expression forzx~v! for the perfect slip
case~bslip50! turns out to be
J. Chem. Phys., Vol. 103
d
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zx~v!;2pRhsS ~12a!1
1

3
~a1~R/d!222!

3
11 i

~2hs!
1/2 ~r0v!1/2D , ~81!

where

a52~R/d!22~R/d!21~R/d!32 1
5~R/d!6. ~82!

Thus, in this case, the VCF has at23/2 long-time tail:

^v~0!v~ t !&

^v~0!v~0!&
;

m

4Rr0

@22a2~R/d!2#

3~12a! S hspt

r0
D 23/2

.

~83!

In the limit of bondlength going to infinity, the VCF decays
as

lim
d→`

^v~0!v~ t !&

^v~0!v~0!&
;

m

6Rr0
S hspt

r0
D 23/2

~84!

as noted by Zwanzig and Bixon for a single sphere case.4

As we know, the long time tail in the VCF of an un-
bound particle arises from the convective motion in the fluid
set by an unsteadily moving sphere. The fluid elements
front of the sphere move out and to the back so as to enfor
the motion of the sphere in its own direction of movement
This is also true when we have two spheres, only now th
enforcement gets enhanced by a factor which is depende
on the distance between the spheres. Intuitively, we can thin
of replacing one of the spheres by a wall in front of the othe
sphere which pushes the fluid in front of the sphere to th
back more efficiently,
, No. 3, 15 July 1995



inary

FIG. 5. Real and Imaginary parts of frequency dependent friction for single solvent atom atr̂51.05 compared to analytic fit from the MD experiment of
Straubet al. ~Ref. 15! for the same case. Solid and dashed lines, the real and the imaginary parts from MD; diamonds and crosses, the real and the imag
parts, respectively, from hydrodynamic theory@Eq. ~77!#.

FIG. 6. Frequency spectrum of the velocity correlation function for single solvent atom atr̂51.05 compared to analytic fit from the MD experiment of Straub
et al. ~Ref. 15! for the same case reported in Ref. 13. Broken line, MD; diamonds, hydrodynamic theory.
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FIG. 7. Comparison of zero frequency value of the bond friction as a function of the bondlength,zbond~v50! of a diatom. Hydrodynamic calculation vs the
molecular dynamics result obtained by Straubet al. ~Ref. 14!. Diamonds, Straubet al. ~Ref. 14!, boxes, deformed sphere model; crosses, two sphere mod

FIG. 8. Comparison of real part of the frequency dependent friction on the bond at bondlengthx51.25 LJ units forr̂51.05. Hydrodynamic calculation vs the
molecular dynamics result obtained by Berneet al. ~Ref. 13! Bold line, MD result; thin line, hydrodynamic result.
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^v~0!v~ t !&;
@22a2~R/d!2#

2~12a!
lim
d→`

^v~0!v~ t !&. ~85!

This enhanced factor has been plotted against the ratioR/d
in Fig. 4. The factor is a monotonically increasing functi
of R/d and is maximum whenR/d is maximum~touching
case!. In the case of the deformed sphere model, no fluid
penetrate between the two lobes of the diatom. As a co
quence, one does not see any enforcing convective beha
and there will be no long time tail.

2. High frequency behavior

In real molecular fluids with continuous forces

lim
v→`

Jx~v!50. ~86!

In contrast, in hydrodynamic calculations the high frequen
friction is nonzero. For example, in the case of the t
sphere model, whenv→`, the real part of friction on the
bond approaches a finite value,

lim
v→`

zx~v!52pR2r0
~cl

~`!12ct
~`!!

3
, ~87!

where for the perfect stick case

cl
~`!5cl~v→`!,

~88!
ct

~`!5ct~v→`!.

A similar argument is applicable for the deformed sph
model.

At short times in real fluids the local interactions becom
important and the boundary conditions in the hydrodynam
description do not take these interactions into account.
very short times, if we apply kinetic theory of gases a
calculate the pressure exerted by an ideal gas having
speed of soundcav5(cl

`12ct
`)/3 and densityr0 on a mac-

roscopic sphere of radiusR, it is easy to see that this pressu
is proportional to the limiting value of the friction calculate
in Eq. ~87!. However, kinetic theory based on hard sphe
interactions also has discontinuities.

III. COMPARISON WITH MOLECULAR DYNAMICS
RESULTS

Recently, the dynamic friction on the bond of a diatom
molecule in a heat bath of argon atoms has been calcul
using the molecular dynamic method.13–15The frequency de-
pendent friction and the frequency spectrum of the veloc
correlation function as functions of bondlength have be
reported. In Sec. II, we derived the expression for the
namic friction on the bond using the equations of lineariz
hydrodynamics with the more realistic slip boundary con
tion appropriate at the molecular level for the distorte
sphere@cf. Eq. 52 with Eq.~55!# and two-sphere@cf. Eq.~70!
with Eq. ~76!# models for small and large bondlengths, r
spectively. We now compare our hydrodynamic results
molecular dynamic simulations of a diatomic molecule d
solved in a simple fluid.
J. Chem. Phys., Vol. 10
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In the earlier hydrodynamic models for calculating the
frequency dependent friction coefficient,4,8 the Maxwell’s
form of viscoelasticity@cf. Eqs.~12! and~13!# has been used.
We find that the important structural features at finite fre
quencies in the atomic friction obtained@Eq. ~76!# are absent
~see Ref. 13, Fig. 6! if we use the simple Maxwell form of
viscoelasticity with four adjustable parameters for the she
and the bulk viscositieshs(t) andhl(t). Since it is known
that the Gaussian forms best describe the qualitative natu
of relaxation of the shear and the bulk viscosities in th
simple liquids,8 we anticipated that missing structural fea
tures might be recovered if we use a more realistic Gaussi
model instead. After trying various combinations of Maxwel
and Gaussian forms, we find that the following form with six
adjustable parameters seems to be best:

hs~ t !5hs~0!@exp~2t2/ts1
2 !1~ast !

4 exp~2t2/ts2
2 !#,

h l~ t !5h l~0!exp~2t2/t l
2!. ~89!

The Laplace transform of these Gaussians involv
Fresnel’s integral and we do the transform numerically. I
the MD experiments, the forces considered are smooth fun
tions of space and time and purely impulsive collisions ar
not present. In contrast, in the hydrodynamic theory, th
forces are impulsive.19 Thus, to reduce our expressions for
the frequency dependent friction to those of the MD simula
tions at high frequencies, we subtract the impulsive pa
@which is constant and real in the limit of infinite frequency
c.f. Eq. ~87!# from the total frequency dependence

zbond~v!5zx~v!2zx~`!. ~90!

First we fit our single particle friction~d→` in the expres-
sion for the friction on the bond from the two sphere mode
Eq. 70! to the MD results given by Straubet al.15 Straub’s
analytic fit to the time dependent single particle friction ob
tained from MD is numerically fourier transformed to get the
real and imaginary parts of frequency dependent friction an
the frequency spectrum of the velocity correlation function a
reduced densitiesr̂51.05 and 1.0 and the reduced tempera
tureT̂52.5. We need to adjust the seven parameters~the zero
frequency values of the Laplace-transformed viscosities a
their relaxation parameters,h l0, hs0, t l , ts1, ts2, as and
the velocity of soundC! required to described the continuum
fluid. The radius of the atom is taken to bes/2, wheres is
the LJ diameter of an argon atom~s50.3504 nm!. Since a
large number of parameters are needed to fit the curves, th
is no straightforward way to fit them except by trial and
error. However, to begin with, the reasonable guess is the o
reported by Metiuet al.16 The maxima and minima in these
curves are fit by varying the relaxation parameters. The v
locity of sound affects the fit only in the low frequencies
region. We also keep in mind the fact thathl0 can be no less
than 4hs0/3, an important requirement which follows from
hydrodynamics. Once we have obtained these parameters
best fit for a certain density, they are used to calculate t
friction on the bond at that density for both models~the
distorted sphere model and the two sphere model!. The val-
ues of these parameters at the reduced densityr̂51.05 are
found to be
3, No. 3, 15 July 1995
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h l0510.631023 P,

hs056.9131023 P,

ts151.11310213 s,

ts252.36310213 s, ~91!

t l52.35310213 s,

as52.7131012 s21,

c58.03104 cm/s,

and atr̂51.0,

h l058.6931023 P,

hs055.4531023 P,

ts151.11310213 s,

ts252.36310213 s, ~92!

t l52.36310213 s,

as52.5731012 s21,

c57.03104 cm/s.

We show the comparison plots for the real and imagina
parts of the friction on the bond for the case of the fr
draining limit at r̂51.05 in Fig. 5. Figure 6 shows the cor
responding frequency spectrum of the velocity correlati
function @the integrand in Eq.~78!#. It can be seen that we
recover the missing structural features of the frequency
pendent friction at finite frequencies for the case of fr
draining by using the Gaussian form for viscoelasticity. T
static friction ~v→0 value! for different bondlengths at
r̂51.0 is compared to the results of Straubet al.14 in Fig. 7.
The maximum in the zero frequency friction occurs at
bondlength of about 1.7 LJ units where the deformed sph
model breaks down. The bondlength is sufficiently large
that atoms can move into the neck of the diatom, then
two sphere model becomes more appropriate. The comp
son plot for bondlengthx51.25 LJ units for the real part of
friction as reported in the paper by Berneet al.13 is given in
Fig. 8. At this bondlength, the distorted sphere model sho
be appropriate as can be seen from the static friction p
~Fig. 7!. Qualitative, but not quantitative, agreement is fou
especially at high frequencies. The molecular dynamic fr
tion is found to decay slower than the hydrodynamic frictio
The large disagreement at high frequencies may be attribu
to the absence of high frequency modes in the hydrodyna
model which does not include the molecular level interacti
in the boundary conditions. The same can be concluded fr
the two sphere model. In Fig. 3 we observe oscillations
high frequencies. This is due to reflection of sound wav
between the boundaries of finitely separated spheres.
amplitudes of these trapped waves become smaller as
separation between the spheres grows. Thus, the two sp
model also fails to correctly describe high frequency beha
ior for large bondlengths.
J. Chem. Phys., Vol. 103
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IV. CONCLUSION

Linearized hydrodynamic theory has been used to stu
rotational line shapes, dynamics of polymers and atomic d
fusion with fair degree of success, which motivated us to us
this simple theory to do the calculation of the dynamic fric
tion on the bond of a diatomic molecule. There already exis
an attempt to compute this function using molecular hydro
dynamics based on the free draining limit.16 Berne and
co-workers13–15 have shown from molecular dynamics tha
the free draining limit is not valid for the treatment of di-
atomic molecules. They showed that the friction coefficien
depends on bondlength. The purpose of this paper is to c
culate the dynamic friction on the bond using more accura
boundary conditions. We have treated the hydrodynamic i
teraction between parts of the molecule using two differe
sets of boundary conditions:—a two sphere model and a d
formed sphere model. Both of these models give dynam
friction coefficients that depend on bondlength. The stat
friction on the bond~v→0! can be calculated within reason-
able approximations using these models. However, at hi
frequencies~at short times! the linearized hydrodynamic
theory departs from the computer results because of the u
physical nature of the hydrodynamic boundary condition
The two sphere model shows unphysical oscillations at fini
frequencies, because the viscoelastic continuum penetra
the region between the two spheres. The deformed sph
model, however, does not show such undulations, becau
the continuum fluid cannot penetrate the diatomic molecul
Consequently, the deformed sphere model gives a quali
tively correct picture at all frequencies only after a correctio
@c.f. Eq. ~90!# is made for the unphysical infinite frequency
limit found in any hydrodynamic model. The Gaussian
model for viscoelasticity is needed to correctly reproduce th
friction calculated for a single atom at all frequencies. Whe
this is done, the deformed sphere model predicts a dynam
friction on the bond in reasonable agreement with molecul
dynamics.

The perturbation method for calculating the velocity
vector used in the paper can easily be generalized to mo
complicated geometries to study low frequency, long wav
length molecular phenomena such as rotational dynamics
dynamics in polymers.

APPENDIX: TRANSLATIONAL PROPERTIES OF
SPHERICAL VECTOR-WAVE FUNCTIONS

The translational properties of scalar and vector wav
functions can be derived from the expansion formula fo
plane waves in spherical coordinates.24,25We report here the
results with some details of derivation. The expansion fo
mula for the plane wave in spherical wave about originO
~see Fig. 2! is

eik–r5 (
n50

`

(
m52n

n

4p i nYnm* ~u8,f8!Ynm~u,f! j n~kr !,

~A1!

wherek has coordinates~k,u8,f8! aboutO and those ofr ,
~r ,u,f!. We start with the vector equation@with R: ~R,Q,F!,
d: ~d,h,c!, andd.max[r ,R] #
, No. 3, 15 July 1995



o

ctor
r5R1d, ~A2!

and therefore,

eik–r5eik–Reik–d. ~A3!

Then we have, using Eq.~74!,

(
lm

Ylm* ~u8,f8!Ylm~u,f! j l~kr !5(
Lm

YLM* ~u8,f8!YLM~Q,F! j L~kr !(
lm

Ylm* ~u8,f8!Ylm~h,c! j l~kr !. ~A4!

Multiplying both sides byYlm~u8,f8! and integrating overu8 andf8, we get

Ylm~u,f! j l~kr !5(
l,m

(
Lm

4p i l1L2 lYlm~h,c! j l~kd!YLM~Q,F! j L~kR!E
0

pE
0

2p

sin u8 du8 df8Ylm~u8,f8!Ylm* ~u8,f8!

5(
LM

YLM~Q,F! j L~kR!@ i lSLM ,lm~kd,h,c!# ~A5!

with

SLM ,lm~kd,h,c!5(
l,m

4p i l1L2 lYlm~h,c! j l~kd!~21!m@~2l11!~2L11!~2l11!#1/2S l L l
0 0 0D S l L l

2m M m D
~A6!

where

S l
2m

L
M

l
m D

is the Wigner 3-j symbol. It is noticed here that sincek’s in our case are complex numbers, the translational operators are n
longer unitary.

When one considers the outgoing fieldYlm(h,c)hl(kr) about the centerO, in order to have correct convergence behavior,
the expansion ford.max[r ,R] is

Ylm~u,f!hl~kr !5(
LM

YLM~Q,F! j L~kR!@ i lSLM ,lm~kd,h,c!# ~A7!

with

SLM ,lm~kd,h,c!5(
l,m

4p i l1L2 lYlm~h,c!hl~kd!~21!m@~2l11!~2L11!~2l11!#1/2S l L l
0 0 0D S l

2m
L
M

l
m D .

~A8!

Then, for the longitudinal component of the wave-vectorL lm , we have the expression

Ls lm~r !5kl
21¹@Ys lmhl~klr !#5kl

21(
LM

¹@YLM~Q,F! j L~klR!#@ i lSLM ,lm~kd,h,c!#5(
LM

@ i lSLM ,nm~kld,h,c!#LsLM~R!.

~A9!

This follows from the fact that the gradient operator is invariant under coordinate transformation. For the torsional wave-ve
componentM lm , we have

Ms lm~r !5¹3@rYs lmhl~ktr !#5¹@Ys lmhl~ktr !#3r5(
LM

@ i lSLM ,lm~ktd,h,c!#¹@YLM~Q,F! j L~ktR!#3~R1d!

5(
LM

@ i lSLM ,lm~ktd,h,c!#MLM~R!1(
LM

@ i lSLM ,lm~ktd,h,c!#¹@YLM~Q,F! j L~ktR!#3d. ~A10!
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l
Because of the divergenceless condition, we can write re
tion ~A10! as

Ms lm~r !5(
LM

@aLM ,lm~ktd,h,c!MsLM~R!

1bLM ,lm~ktd,h,c!NLM~R!#. ~A11!
J. Chem. Phys., Vol. 103
a-As N;¹3M andM;¹3N, we also have

Ns lm~r !5(
LM

@aLM ,lm~ktd,h,c!NsLM~R!

1bLM ,lm~ktd,h,c!MLM~R!#, ~A12!
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whereaLM ,lm andbLM ,lm can be evaluated in terms of th
SLM ,lm . For the axisymmetric case, the expansions turn
to be

L l~r !55(
L

TLl
~L !~kld!lL~R!] ~A13!

with

TLl
~L !~kld!5~2L11! (

l5u l2Lu

l1L

~21!L1l2 l~2l11!

3S l L l
0 0 0D 2hl~kld! ~A14!

and

Nl~r !55(
L

TLl
~N!~ktd!nL~R!] ~A15!

with

TLl
~N!~ktd!5~2L11!

1

2 (
l5u l2Lu

l1L

~21!L1l2 l~2l11!

3@ l ~ l11!L~L11!#21/2

3@ l 21 l1L21L2~l21l!#

3S l L l
0 0 0D 2hl~ktd!. ~A16!

For l5L51, we have, for translation fromO8 to O,

T11
~L !~kld!5h0~kld!22h2~kld!,

~A17!
T11

~N!~ktd!5h0~ktd!1h2~ktd!.

For translation fromO toO8, we use the vector relation with
d→2d,

R5r2d. ~A18!

One finds, for the axisymmetric case.
J. Chem. Phys., Vol. 103
ut
TLl8

~L !~kld!5~21! l1LTLl
~L !~kld!,

~A19!
TLl8

~N!~ktd!5~21! l1LTLl
~N!~ktd!.

Thus, for l5L51

T118
~L !~kld!5T11

~L !~kld!,
~A20!

T118
~N!~ktd!5T11

~N!~ktd!.
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