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We develop an expression for the rate of energy relaxation of a nonlinear oscillator coupled to a
linear, dissipative bath. This particular type of model has wide applicability to studies of relaxation
rates of vibrational modes in chemical systems. The energy relaxation rate is estimated by relating
the anharmonic oscillator to an effective harmonic reference system. The theoretical predictions
compare favorably with simulation results for the energy relaxation of a Morse oscillator~i! coupled
to an Ohmic bath and~ii ! coupled to a bath with exponentially decaying friction. The dependence
of the initial relaxation rate on the excitation energy of a Morse oscillator is qualitatively different
for the two cases. When the oscillator is coupled to an Ohmic bath, the initial relaxation rate
decreases as a function of the excitation energy. When exponentially decaying friction is employed,
however, the initial relaxation rate is an increasing function of the excitation energy. ©1995
American Institute of Physics.@S0021-9606~95!00541-X#

I. INTRODUCTION

A vibrationally excited molecule in the presence of a
thermal bath of other molecules will eventually come to
equilibrium by losing energy to the bath. The rate of energy
loss can serve as a probe of intramolecular couplings and
intermolecular interactions. Consequently, relaxation rates
for particular systems can vary over many orders of magni-
tude. In a real molecular solvent, energy relaxation depends
on the strength of the coupling between a vibrationally ex-
cited molecule and the surrounding solvent. Furthermore, in
order for there to be effective energy transfer, there must be
a frequency match between the solute vibrations and the sol-
vent modes. This resonance condition between the tagged
excited mode and the solvent modes can cause a wide varia-
tion in vibrational relaxation rates in different systems.

Early theoretical models have represented the excited
solute vibrational mode as a harmonic oscillator, and the sol-
vent modes as a collection of harmonic oscillators. The dy-
namics generated by such a model are equivalent to a gen-
eralized Langevin equation~GLE! with time-dependent
friction. The resonance condition between the solute and sol-
vent becomes clear through a perturbation theory estimate
for the vibrational relaxation rate. This rate can be extracted
from the Fourier transform of the friction kernel of the bath,
taken at the frequency of the excited oscillator.1–8 The same
general form for the relaxation rate is obtained for a quantum

mechanical oscillator coupled to a quantum mechanical
bath.9–14 Indeed, if the oscillator and bath modes are har-
monic and the coupling is bilinear, both a classical and a
quantum treatment lead to the same prediction for the relax-
ation rate.15

A noteworthy limitation of the theoretical treatment out-
lined is that the solute mode is assumed to be harmonic. In
reality, molecular vibrations are anharmonic, and the anhar-
monicity becomes increasingly important as higher energies
are probed. Thus the instantaneous frequency of an anhar-
monic oscillator can depend sensitively on the instantaneous
oscillator energy. As an excited oscillator relaxes, the instan-
taneous frequency can slide in and out of resonance with
solvent modes.16,17 The result is that there is no longer a
single rate describing the vibrational relaxation, but rather a
dynamically changing rate which depends on the instanta-
neous energy.

Molecular dynamics simulations have demonstrated this
effect. Early workers, stimulated by experimental results for
the photolysis, geminate recombination, and vibrational re-
laxation of I2 in CCl4 ,

18 noted a stagnation effect in the
relaxation of I2 and Br2 in simple fluids19,20 and in Ar
clusters.17 More recently, Tuckerman and Berne have per-
formed molecular dynamics simulations of a diatomic mol-
ecule with an internal Morse potential in a fluid of Lennard-
Jones particles.8 They found that the relaxation rate was very
dependent on the excitation energy. They were also able to
extract a friction kernel from the full molecular dynamics,
and to use the friction kernel in a stochastic GLE simulation.
The GLE dynamics successfully reproduced the energy re-
laxation from molecular dynamics. This indicates that the
GLE friction kernel accurately represents the full molecular
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solvent. The GLE can be considered an intermediate step
between a molecular dynamics simulation and a theoretical
prediction for the relaxation rate. Although the GLE itself
performed well, Tuckerman and Berne noted that a linear
response estimate of the relaxation rate, based on the GLE
friction kernel and on motion close to the bottom of the
Morse potential, was a poor predictor of the relaxation.

We focus here on extending the theoretical treatment for
a harmonic oscillator to understand the relaxation of an an-
harmonic oscillator coupled to a dissipative bath in the con-
text of GLE dynamics. The frequency of an anharmonic os-
cillator depends on its energy, and consequently it changes
throughout the relaxation. We develop in Sec. II a perturba-
tion theory prediction for the energy relaxation rate. This
prediction is based on a harmonic reference system which
depends on the instantaneous energy of the anharmonic os-
cillator through the oscillator actionJ(E). In Sec. III, the
theoretical predictions are discussed along with results from
trajectories obtained by simulations of the full GLE dynam-
ics.

A striking feature predicted by the theory and evident in
the simulation results is the qualitative difference for relax-
ation of a Morse oscillator due to Ohmic friction and relax-
ation due to memory friction. In the case of Ohmic friction,
we find that the energy relaxation rate is faster the lower the
energy. Conversely, for memory friction the relaxation rate
can be faster the higher the energy. This difference provides
an immediate experimental criterion to judge whether or not
memory friction is important, and is discussed in greater
depth in the conclusion, Sec. IV.

II. THEORY

The system considered here consists of an oscillator
coupled linearly to a dissipative bath. The coupling of the
oscillator to the bath is described by a generalized Langevin
equation, which includes a frictional damping and a stochas-
tic force,

mq̈~ t !52
]

]q
V~q!2E t

dt8z~ t2t8!q̇~ t8!1j~ t !. ~1!

The effective mass of the oscillatorq is m, the bare potential
isV(q), and the stochastic forcej(t) is related to the friction
kernelz(t) by the fluctuation–dissipation theorem,

z~ t !5b^j~ t !j~0!&. ~2!

The thermal energyb21 is kBT. It is convenient to define the
Fourier–Laplace transform ofz(t)/m as

g̃8~v!1 i g̃9~v!5E
0

`

dt eivtz~ t !/m. ~3!

The energy of the oscillator is defined as

E5V~q!1 1
2mq̇

2. ~4!

We suppose that att50 the oscillator is placed in a high
energy state,E@kBT. We also assume that the potential
V(q) is harmonic for energies aroundkBT. The form of the
GLE then requires that̂E(t)&→kBT as t→`, where the

average implies a sampling over random force histories
j(t). In the remainder of this section, we develop a theoreti-
cal prediction for the relaxation ofE(t) back to equilibrium.
We restrict attention to the case of weak frictional damping.
A practical definition for weak damping is that the oscillator
undergoes many periods of motion before losing energy on
the order ofkBT.

We suppose that the potentialV(q) corresponds to
purely harmonic motion,

V~q!5 1
2mv0

2q2. ~5!

The condition of weak damping implies thatv0@g̃8(v0).
8

When this condition is satisfied, perturbation theory predicts
that

^E~ t !2kBT&E~0!

E~0!2kBT
5exp@2t/T1#, ~6!

with T1
215g̃8(v0).

8 The average is over random force his-
tories, and the subscript indicates that the initial energy of
the oscillator isE(0).

This expression can be obtained as follows. First, we
assume that the oscillator initially has energyE with a period
of T(E). The average energy change of the oscillator over a
period is defined asD(E). We also assume that the potential
is harmonic,V(q)5 1

2mv0
2q2. Averaging over random force

histories and dispensing with the angle brackets, it can be
shown that21,22

D~E!52g̃8~v0!@J~E!2Jeq#. ~7!

The action of the oscillator at energyE is J(E),

J~E!5 R pdq, ~8!

and the integral is over the orbit of energyE. The termJeq is
the average action at equilibrium, orJ(kBT).

At this point we generalize the perturbation theory to an
anharmonic oscillator. For an anharmonic oscillator at energy
E, it is possible to define an effective instantaneous fre-
quency from the relationship

T~E!5
2p

v~E!
5
dJ~E!

dE
. ~9!

We use the effective frequencyv(E) and the actionJ(E) to
define a harmonic reference system. The frequency of the
harmonic reference system isv05v(E) and the action of
the harmonic reference is chosen to reproduce the value of
the action of the anharmonic system. This implies that the
energy of the harmonic system, equal tov(E)J(E)/2p, can
be different fromE, the energy of the anharmonic system.

We assume that the harmonic reference system, defined
by J(E) andv(E), can be used to estimate the energy loss
of the anharmonic oscillator. The change in the average en-
ergy is then
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dE

dt
5D~E!/T~E! ~10a!

52g̃8~v~E!!@J~E!2Jeq#/@dJ~E!/dE# ~10b!

52g̃8~v~E!!dE/d ln@J~E!2Jeq#. ~10c!

A derivation of Eq.~10a! may be found in the Appendix.
Thus we find for the relaxation of the action the equation

~d/dt!ln@J~E!2Jeq#52g̃8~v~E!!. ~10d!

The frequencyv(E) can also be written in terms of the
action asv(J)52pdE(J)/dJ, allowing the energy loss
equation to be expressed entirely in terms of the actionJ(t)
andJeq:

~d/dt!ln@J2Jeq#52g̃8@v~J!#. ~10e!

In these equations, the actionJ(E) has taken on the meaning
of J(^E(t)&). The initial relaxation rate immediately follow-
ing an excitation to energyE is defined as

initial rate[
D~E!

~E2kBT!T~E!
. ~11!

If the friction is Ohmic,g̃8(v)5g0 , and the time decay
of the action is particularly simple:J(t)2Jeq5@J(0)
2Jeq]e

2g0t, whereJ(0) is J(E(0)) andJ(t) is J(^E(t)&).
We have the interesting result that, for an anharmonic oscil-
lator, the decay of the action is purely exponential. The en-
ergy relaxation, however, is no longer exponential, unless
E(J) is linear inJ, i.e., unless the oscillator is harmonic. To
obtain the energy relaxation in the general case, one must
insertJ(t) into the appropriate expression forE(J) to obtain
^E(t)&.

For example, let us consider a Morse oscillator with dis-
sociation energyD0 ,

V~q!5D0~12e2aq!2. ~12a!

The frequency for small oscillations aboutq50 is
v05aA2D0 /m. The periodT(E)5(2p/v0)/A12E/D0 for
E smaller than the dissociation energy. One finds that

E5~v0/2p!J~12xJ!, ~12b!

with the anharmonicity parameterx5v0 /(8pD0). The
classical anharmonicity parameterx can be related to the
quantum mechanical anharmonicity parameterxe , which de-
termines the quantized energy levels$En% for the Morse os-
cillator,

En5~n11/2!\v02xe~n11/2!2\v. ~12c!

Using the correspondence (n11/2)→J/2p\, one finds that
x5xe/2p\.

Returning to Eq.~12b!, and definingDJ5J(0)2Jeq, we
find for Ohmic friction that

E~ t !5~v0/2p!@Jeq1DJe2gt#@12x~Jeq1DJe2gt!#.
~12d!

For exponential friction with decay timet, one obtains
g̃8(v)5g /(11v2t2). The frequencyv(J) is found using
Eqs.~9! and~12b! to bev0(122xJ). In this case the action
can be computed by integrating the equation

~d/dt!ln@J~ t !2Jeq#52g /@11t2v0
2~122xJ!2# ~12e!

to obtainJ(t). Then^E(t)&5(v0/2p)J(t)(12xJ(t)).
In practice, it is a simple matter to integrate Eq.~10a!

directly. Furthermore, it is not necessary to have an analytic
functional form to representz(t) and g̃8(v). This is of par-
ticular relevance to molecular dynamics studies, which pro-
duce numerical results forz(t). All that is necessary for
integrating Eq.~10a! is a table of values forg̃8(v).

III. RESULTS AND DISCUSSION

To test the theory presented in the previous section, we
have performed computer simulations for the energy relax-
ation of a Morse oscillator coupled to a frictional bath. The
parameters of the Morse oscillator were selected to match
those used in an earlier study.8 In the earlier study reduced
units were used to characterize the dynamical friction and the
Morse oscillator. The dynamical friction on the vibrational
displacement was calculated in a Lennard-Jones fluid with
potential parameterse ands. Thus one defines the reduced
temperatureT*5kBT/e, the reduced bond lengthr *5r /s,
the reduced timet*5(e/ms2)1/2t, and the reduced fre-
quencyv*5(ms2/e)1/2v. In these units the dissociation en-
ergy wasD05207.36 withT*52.5. The Morse oscillator
consisted of two Lennard-Jones balls with reduced mass
m*51 coupled by a Morse potential, giving the oscillator
the reduced massm*51/2. The length scale parametera for
the Morse potential was chosen to be 4.167. This yields a
value of 120 for the harmonic frequencyv0 . The anharmo-
nicity paramter then equalsx50.023. A plot of the potential
is shown in the top panel of Fig. 1. In the bottom panel of the

FIG. 1. The Morse potentialV(q)5D0(12e2aq)2 is shown for parameters
D05207.36,a54.167, andkBT52.5. The local frequency of the oscillator,
v(E)5v0A12E/D0, is shown in the bottom panel.
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figure, the frequency of the oscillator is shown as a function
of the energy. The frequency and action are

v~E!5v0A12E/D0 and ~13!

J~E!5~4pD0 /v0!@12A12~E/D0!# ~14!

as functions of the energyE.
We now relate the reduced units of the simulation to the

physical parameters corresponding to liquid argon. The
Lennard-Jones parameters for liquid argon aree/kB'120 K
ands'3.4 Å.23 Thus the reduced temperatureT*51/2 cor-
responds toT5300 K and the length scale parameter
a54.167 corresponds to a distance of 14.2 Å. The reduced
unit of time t* is then equivalent to 2.15 ps, andv* corre-
sponds to a frequency of 0.465/ps or 2.47 cm21. Therefore,
the reduced frequency of 120 corresponds to 296 cm21. The
anharmonicity parameterx corresponds to 6.4631030/Js,
giving xe50.0043.

A. Ohmic friction

Results of simulations using Ohmic friction are shown in
Fig. 2. A single choice was made for the Ohmic friction
parameter, g51.65. Three initial energies were used,
E510, 40, and 80kBT. For each choice of initial energy,
1000 trajectories were run. Each trajectory was initiated at
q50 with a positive velocityq̇5A2E/m. The integration
time step was 0.001, or about 1/50 of the period of oscilla-
tion near the bottom of the well. The simulation results are
used to judge theoretical predictions obtained by integration
of Eq. ~10a! for the rate of energy loss. The relaxation is
characterized by DE(t)/DE(0), where DE(t)5^E(t)
2kBT&E(0) and the average is over 1000 histories of the ran-

dom force with the initial energy of the oscillator set to
E(0). ThetermDE(0) is the initial deviation from equilib-
rium, E(0)2kBT.

For the smallest value of the initial energy,E510kBT,
the theory and simulation results agree very well. Motion at
this low energy is described accurately by a harmonic refer-
ence system, for which the theoretical predictions are exact.
At the next higher energy,E540kBT, the theoretical predic-
tion is still quite good. At the highest energy,E580kBT, the
theoretical prediction notably deviates from the simulation
results. The theory predicts that the system relaxes slightly
faster than is seen to occur in the simulations. Att51, for
instance, the theoretical prediction for the energy relaxation
is thatDE(t)/DE(0)50.30, whereas a value of 0.32 is mea-
sured in the simulation, i.e. the error amounts to approxi-
mately 6%.

It is clear from Fig. 2 that the lowest energy excitation,
E510kBT, relaxes most quickly in terms of the decay of
DE(t)/DE(0), and that the highest energy excitation,
E580kBT, relaxes the slowest. The initial relaxation rates
have been computed from the simulation data in Fig. 2 at
early time by fitting an exponential decay to the simulation
data for t,0.12. We find that the initial decay rate for
E510kBT is 1.6260.04; the decay rate forE540kBT is
1.3460.03, and the decay rate forE580kBT is 0.4860.01.
The rates have been computed in units of inverse reduced
time, 1/t* and are summarized in Table I. The values pre-
dicted for the relaxation by Eq.~11! are seen to be quite
accurate.

As seen from Eq.~11!, the energy relaxation rate for an
oscillator with instantaneous energyE depends on the ratio
@J(E)2Jeq#/T(E). This is because, over a periodT(E), the
energy lossD(E)5g@J(E)2Jeq#, and g is constant for
Ohmic friction. For simplicity, we neglect the constant term
Jeq in the subsequent analysis, and normalize the rate of en-
ergy loss by the instantaneous energyE. The instantaneous
ratio J(E)/@ET(E)#52(D0 /E)@A12E/D0 2(12E/D0)]
is shown in the top panel of Fig. 3. A single relaxation rate
cannot be defined; instead, the instantaneous rate is strongly
dependent on the instantaneous energyE. The behavior of
the relaxation rate is due to a competition betweenJ(E) and

FIG. 2. The predicted energy relaxation of the Morse oscillator withV(q)
given in Fig. 1 and Ohmic frictiong51.65 is shown for three initial ener-
gies: 10kBT ~solid line!, 40 kBT ~dashed line!, and 80kBT ~dotted line!.
Simulation results are shown as thin solid lines. In the bottom panel, the
results are shown on a logarithmic scale.

TABLE I. Instantaneous energy relaxation rates.

Energy relaxation ratesa,b,c

Ohmic friction Exponential friction

E0 Simulation Theory Simulation Theory

10 kBT 1.624 1.60 2.61 1.81
40 kBT 1.343 1.38 2.91 2.58
80 kBT 0.481 0.52 2.52 7.17

aThe rates are given in units of inverse reduced time, 1/t* .
bThe theoretical prediction for the instantaneous relaxation rate is given by
Eq. ~11!.
cThe uncertainty in the last digit of the simulation results is indicated by the
subscript value, i.e., 1.624 indicates 1.6260.04.
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T(E). As energy increases,J(E) and T(E) both increase.
The period~which diverges asE→D0) increases more rap-
idly than the action and has the dominant effect.

It is interesting to note that even though the energy loss
per period can be substantial, the perturbation theory for the
energy relaxation rate is accurate. For example, at the largest
energy we examined,E(0)580kBT, the energy loss per pe-
riod is approximately 14kBT. The perturbation theory still
works because the actual perturbation parameter is not the
energy loss per period but rather the ratiog/v(E) of the
static friction to the instantaneous frequency of the oscillator.
At low solute energies, v(E)'v05120, and
g/v(E)'0.014, which is quite small. In fact, for the pertur-
bation parameter to be as large as 0.1, i.e., for
g/v(E).0.1, the energy must be 98% of the dissociation
energy, in this case greater than 81.4kBT. The largest energy
we explored, 80kBT, corresponds to a perturbation parameter
of 0.073.

B. Exponential friction

We have also performed simulations using exponential
friction, g(t)5(g0 /t)exp(2t/t). For this form of friction,
g̃8(v)5g0 /(11v2t2). We used the parameters
t50.041 22 andg0542, both expressed in terms of the re-
duced time t* . With this choice of parameters,
g̃8(v0)51.65 for v05120. Note that the effective friction
for this frequency was chosen to reproduce the static friction
of the previous section.

At first, simulations were performed exactly as for the
Ohmic friction case, with each trajectory starting at the phase
point with initial q50 and initial q̇ positive. As expected,
this method produced reproducible oscillations in the energy
decay. To remove the oscillations and thus simplify the
analysis, we performed a second set of simulations in which
the initial phase point was chosen at random for each trajec-
tory. Only data from the second set of simulations are pre-
sented here.

For a given initial energyE~0!, the initial phase point for
each trajectory was chosen randomly and uniformly on the
microcanonical surface forE5E~0!. To accomplish this, we
selected a random timet random from a uniform distribution
between times 0 andT[E~0!#, the period for undamped mo-
tion at energyE~0!. The initialq andq̇ were then determined
by propagating the undamped motion from the inner turning
point for a timet random. This propagation can be performed
analytically; in this case, however, the propagation was per-
formed numerically. To ensure proper averaging, 10 000
phase points were selected at random for each of the three
initial energies,E~0!510 kBT, 40 kBT, and 80kBT. These
initial phase points are depicted in Fig. 4. For clarity, only
1000 of each of the 10 000 phase points are shown for each
of the three initial energies. The inner ring corresponds to the
lowest energy, 10kBT, and the outer ring corresponds to the
highest energy, 80kBT.

The simulation results forDE(t)/DE(0) for the three
initial energies 10, 40, and 80kBT are shown in Fig. 5. Also
shown are the relaxation predictions from Eq.~10a!. In the
top panel of the figure, the relaxation is shown on a regular
axis, and in the bottom panel the relaxation is shown on a
semi-logarithmic axis. The gross features of the relaxation,
common to both the theoretical predictions~thick lines,
dashes, and dots! and the simulation results~thin lines! are
evident in these plots.

First, the results depicted in Fig. 5 demonstrate that~af-
ter a short transient period! the overall relaxation rate in-
creases with increasing excitation energy. The relaxation is
slowest for the smallest excitation energy~E510 kBT, thick
line!, and is fastest for the largest excitation energy~E580

FIG. 3. The relaxation rate of a Morse oscillator coupled to Ohmic friction
is determined by the ratio J(E)/ET(E)5(2D0 /E)
@A12E/D02~12E/D0!# ~top panel! and by the density of bath modes
g̃8@v~E!# ~middle panel!. The overall relaxation rategeff ~bottom panel! is
equal to the product of these two quantities, and is shown for the parameters
we have used in simulations with exponential friction.

FIG. 4. The initial phase points of the Morse oscillator are shown for simu-
lations with three different initial energies: 10kBT ~inner circle!, 40 kBT
~middle circle!, and 80kBT ~outer circle!. For clarity, only 1000 phase
points are shown for each set, although 10 000 initial phase points were used
in each of the three sets to produce 10 000 independent trajectories per set.
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kBT, dotted line!. In this respect, the theoretical predictions
agree with the simulation results. According to the theory,
the relaxation rate for a given oscillator energyE is directly
proportional to the product of two factors. The first factor,
J(E)/ET(E), measures the dependence of the oscillator ac-
tion on the oscillator energy. For a harmonic oscillator, this
quantity is unity. For the Morse oscillator, this quantity is
equal to~2/x!@A12x2~12x!#, wherex5E/D0 ~the ratio of
the oscillator energy to the dissociation energy!, and is
shown in the top panel of Fig. 3. The first factor therefore
decreases as the energy decreases, therefore favoring a
slower relaxation rate as the oscillator energy increases~as
was seen with Ohmic friction!.

This effect is outweighed, however, by the behavior of
the second factor, the component of the frictiong̃8~v! evalu-
ated at the local frequencyv~E! corresponding to the oscil-
lator energy. The quantityg̃8~v! is depicted in the middle
panel of Fig. 3 as a function of the oscillator energyE. It is
clear that this second factor is an increasing function of the
oscillator energy. At larger energies, the oscillator frequency
decreases, and the friction has a larger component at a lower
frequency.

The overall relaxation rate is the product of the two fac-
tors described above, and it is depicted in the bottom panel
of Fig. 3. The frequency-dependent behavior ofg̃8~v! is
clearly the dominant effect in determining the frequency de-
pendence of the relaxation rate. The relaxation rate is seen to
increase with oscillator energy for all but the highest ener-
gies. Of course, at very high energies, the oscillator period
diverges and the relaxation rate goes to zero. This creates a
turnover in the relaxation rate for energies very close to the
dissociation energyD0. To lowest order in 1/~v0t!2, where

v0 is the oscillator frequency at the bottom of the well andt
is the decay time of the exponential friction, the turnover
occurs atE/D051/~v0t!2, or 0.959 for the parameters we
have chosen. This low-order estimte is very close to the ac-
tual location of the turnover,E/D050.9697, orE580.43
kBT.

After an early transient period, the overall energy relax-
ation predicted by the theory is faster than is seen in the
simulations in Fig. 5. The same type of systematic error was
observed in the previous section dealing with Ohmic friction,
but the error is larger here. The reason that the overall dis-
crepancy is larger for memory friction than for static friction
is most likely because the perturbation parameter is becom-
ing larger. The effective perturbation parameter isg0/v~E!,
whereg0 is the full damping~rather than the component of
the friction at the oscillator frequency, which is smaller!. In
our simulations, the perturbation parameter for energies close
to kBT is 0.35, and the parameter increases as the excitation
energy increases. The perturbation theory also fails to predict
the early-time oscillations in the energy relaxation. These
oscillations are shown in greater detail in Fig. 6, along with
the theoretical predictions. Other than the lack of oscilla-
tions, the general agreement between theory and simulation
is quite good for the two lower energies.

The perturbation theory for the energy loss embodied in
Eq. ~10a! is incapable of predicting the oscillations in the

FIG. 5. The predicted energy relaxation of the Morse oscillator withV(q)
given in Fig. 1 and exponential friction is shown for three initial energies: 10
kBT ~solid line!, 40 kBT ~dashed line!, and 80kBT ~dotted line!. Simulation
results are shown as thin solid lines. In the bottom panel, the results are
shown on a logarithmic scale. In the simulations, 10 000 trajectories with
randomly chosen initial phase contributed for each of the three energies.

FIG. 6. The early-time results in Fig. 5 for a Morse oscillator withV(q)
given in Fig. 1, coupled to an exponential-friction bath, are shown for three
initial energies: 10kBT ~bottom panel!, 40 kBT ~middle panel!, and 80kBT
~top panel!. Simulation results are shown as thin solid lines.
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decay because it involves only a first derivative of the energy
with respect to time. A higher-order perturbation theory, in-
volving higher-order derivatives, would be required to obtain
such oscillations. The exact result for the energy relaxation
of a harmonic oscillator coupled to an exponential bath does
show oscillations, and we present such results below. First,
however, we compare the initial rate of energy loss predicted
by the theory to that observed in the simulations.

For purposes of comparison, the envelope of the energy
decay from the simulation is used to determine the initial rate
of energy loss. Thus, the initial energy rate from the simula-
tion is defined as

initial rate52~1/t1!ln@DE~ t1!/DE~0!#, ~15!

wheret1 is the maximum for the first oscillation. The relax-
ation using the largest initial energy,E580 kBT, did not
produce an oscillation large enough to yield a maximum in
the energy decay. In this case the initial rate was estimated
by an exponential fit to the simulation data fort,0.1. The
rates from the simulation are 2.660.1 for E510 kBT, 2.9
60.1 forE540 kBT, and 2.560.2 forE580 kBT. The rates
from the theory are, respectively, 1.81, 2.58, and 7.17. These
rates are summarized, along with the results from Ohmic
friction, in Table I. Unlike the theoretical prediction, the ini-
tial rate of energy decay is not a monotonically increasing
function of the initial energy. The initial rate increases from
E510 kBT to 40 kBT, then decreases from 40kBT to 80
kBT. It is likely that the perturbation theory is failing at the
highest energy of the Morse oscillator due to the extreme
anharmonicity at this energy. The initial rate from perturba-
tion theory is 30% too small at the lowest energy, and 10%
too small at the middle energy.

We now return to an investigation of the oscillations in
the energy decay. Oscillations arise in the energy relaxation
of a harmonic oscillator coupled to an exponential bath due
to the different correlation functions involvingq andq̇ in Eq.
~16! being out of phase with each other. When the initial
energy of an oscillator of frequencyv0 is selected from a
microcanonical ensemble, one can show that the energy re-
laxation is

DE~ t !/DE~0!5~1/2!Cqq
2 ~ t !1~1/2!Cq̇q̇

2 ~ t !1~1/v0
2!Ċqq

2 ~ t !,
~16!

whereCqq(t) andCq̇q̇(t) are, respectively, the normalized
correlation functionŝq(t)q(0)&/^q2& and ^q̇(t)q̇(0)&/^q̇2&.8

The Laplace transforms of these correlation functions are
simple to express in terms ofD(s)5s21sg̃(s)1v0

2:

C̃qq~s!5@s1g̃~s!#/D~s!, ~17!

C̃̇qq~s!52v0
2/D~s!, ~18!

C̃q̇q̇~s!5s/D~s!. ~19!

When the friction kernel is exponential, performing the in-
verse Laplace transform reduces to obtaining the roots of a
cubic polynomial. These roots can be obtained analytically
from a well-known formula.24

In the top panel of Fig. 7 the early-time simulation re-
sults are compared with this theory for the energy relaxation
usingv@E~0!# for the frequency of the harmonic oscillator.
The three roots required for the inverse Laplace transform
are listed in Table II. For the lowest energy,E~0!510 kBT,
the theory does quite well in predicting the oscillations in the
energy relaxation. This good agreement is to be expected
since anharmonicities are negligible for this low an excita-
tion energy. For the next larger excitation energy,E~0!540
kBT, the correlation function theory predicts an oscillation in
the energy relaxation at the same time that the oscillation
occurs in the simulation results. For the highest energy,E~0!
580 kBT, this theory predicts oscillations much larger than
those seen in the simulations.

Although the correlation-function based theory describes
the early-time oscillations in energy relaxation, it fails to

FIG. 7. The predicted energy relaxation of the Morse oscillator withV(q)
given in Fig. 1 and exponential friction is shown for three initial energies: 10
kBT ~bottom panel!, 40 kBT ~middle panel!, and 80kBT ~top panel!. Simu-
lation results are shown as thin solid lines. The thick curves are predicted
from the correlation function̂q(t)q~0!& based on the initial value of the
oscillator frequency,v~E0!.

TABLE II. Roots needed for the inversse Laplace transform.

E~0! Roots

10 kBT 221.21,20.77266116.6i
40 kBT 215.94,20.7579690.35i
80 kBT 23.342,20.6142626.43i
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describe the relaxation properly for longer times. The dis-
crepancy is quite evident for the early-time results depicted
in Fig. 7 and continues to grow for longer times. This is
especially true for the largest initial energy,E~0!580 kBT.

IV. CONCLUSION

As opposed to the relaxation of a harmonic oscillator
coupled to a dissipative bath, for which the energy relaxation
rate is independent of the excitation energy, the energy relax-
ation rate of an anharmonic oscillator does depend on the
excitation energy. We have developed a simple theory for
determining the relaxation rate of an anharmonic oscillator.
The theory relates the anharmonic oscillator to an effective
harmonic oscillator chosen to have the same actionJ(E) and
frequencyv(E) for the instantaneous value of the energyE.
We find that the theoretical prediction performs well in com-
parison to simulation results for a Morse oscillator.

The theory we have developed predicts a striking quali-
tative difference for relaxation due to coupling to Ohmic
friction, and for relaxation due to coupling to memory fric-
tion. For Ohmic friction, the relaxation rate decreases as the
excitation energy increases. This is because the instantaneous
rate of energy loss is proportional toJ(E)/T(E). The action
J(E) changes slowly as the energyE approaches the disso-
ciation energy, whereas the periodT(E) diverges in the same
limit.

Conversely, for exponential friction~or other appropriate
dissipative baths!, the relaxation rate can increase with in-
creasing energy. The relaxation rate for memory friction is
dependent on the density of bath modes at the oscillator fre-
quency. The qualitative picture is that of a dynamically
changing solute frequency which slides in and out of reso-
nance with bath modes.16,17 The spectrum of bath modes is
often largest at low frequencies commensurate with the rat-
tling of solvent atoms adjacent to a solute. The effective
frequency of a Morse oscillator decreases as its energy in-
creases, allowing it to couple more effectively with these low
frequency solvent modes, and increasing the rate of energy
relaxation.

The perturbation theory described here is incapable of
producing the expected oscillations in the energy relaxation
which arise naturally when even a purely harmonic oscillator
is coupled to a bath with memory friction. The oscillations
are predicted very well by a separate perturbation theory for
the autocorrelation function̂q(t)q~0!& for an appropriate
reference system. In our implementation, the reference sys-
tem was based on the Morse oscillator at its initial energy.
Because we did not allow the reference system to adjust to
the instantaneous energy of the oscillator, the energy relax-
ation predicted according tôq(t)q~0!& was only correct at
early times. It is not too difficult to imagine an improved
perturbation theory in which the reference system is allowed
to implicitly adjust as the oscillator loses energy to the bath.
In light of the excellent early-time results depicted in Fig. 7,
such a perturbation theory would no doubt provide nearly
quantitative agreement with simulation results.

The theoretical results obtained here are based on the

framework of GLE dynamics. Our theory accounts for the
frequency of an excited mode sliding in and out of resonance
with modes in a bath represented by a GLE friction kernel.
Thus the validity of our approach is probably limited to sys-
tems for which the GLE is a good approximation for the
solvent friction, and for which the perturbation theory for the
energy loss is reasonable. For memory friction, the perturba-
tion parameter is proportional to the full damping~rather
than the component of the damping at the solute frequency!.
Thus, the perturbation parameter for memory friction can be
large even when the actual energy loss is small, leading to
errors in the perturbation theory and in the predicted relax-
ation. It is easy to envision a PGH-type coordinate transfor-
mation which would correct for this problem with the pertur-
bation theory.21 It would also be possible to introduce
corrections due to space and time dependent friction.24,25To
account for space dependence, the energy loss expression,
Eq. ~7! would be modified to include an integration of the
space dependence. In this case, the energy loss would no
longer be directly related to the action.

We find a systematic error in the theoretical predictions,
namely that the predicted relaxation rate is slightly too large.
However, in light of the simplicity of the harmonic reference
system, it is important to note that the systematic error is
quite small.
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APPENDIX: DERIVATION OF THE ENERGY LOSS
D(E)

The rate of change of the energyE5V(q)1 1
2mq̇

2 is

dE~ t !

dt
5
dV~q!

dq
q̇~ t !1mq̇~ t !q̈~ t !

5q̇~ t !F2E t

dt8g~ t2t8!mq̇~ t8!1j~ t !G . ~A1!

The second equation follows from the definition of the GLE,
Eq. ~1!. We neglectj(t) for the moment and concentrate on
the energy dissipation. The energy loss per period,D(E), is

D~E!5E
0

T~E!

dt
dE

dt

52E
0

T~E!

dtq̇~ t !E t

dt8g~ t2t8!mq̇~ t8!, ~A2!

whereT(E)52p/v(E) is the period of the anharmonic os-
cillator at energyE.

We can find the energy lossD(E) to the lowest order in
the damping by inserting into Eq.~A2! the trajectoryq0(t)
corresponding to the undamped harmonic reference system,
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q0~ t !5AJ~E!/pmv~E!cos~v~E!t !. ~A3!

The energy loss, to lowest order in the dampingg(t), is

D~E!52
v~E!J~E!

p E
0

T~E!

dt sin~v~E!t !

3E
2`

t

dt8g~ t2t8!sin~v~E!t8!. ~A4!

Extending the limit on the second integral to2` is appro-
priate when the decay ofg(t) is fast relative to the period
T(E). It should also be appropriate to extend the limit of the
integral when the periodT(E) is fast relative to the time
required to losekBT of energy. The second integral can be
expressed as sin(v(E)t)g̃8(v(E))2cos(v(E)t)g̃9(v(E)).
Using the orthogonality of sin(v(E)t) and cos(v(E)t) over the
periodT(E), we find that

D~E!52J~E!g̃8~v~E!!. ~A5!

This equation implies that energy is dissipated until
J(E)50, i.e., until all the energy has been dissipated from
the oscillator into the bath. In reality, one expects dissipation
to continue until the oscillator has attained thermal equilib-
rium with an energy on the order ofkBT.

When terms involving the random forcej(t) are re-
tained in the calculation ofD(E), the oscillator is found to
gain energy back from the bath. This can be seen by express-
ing the velocity q̇(t) as q̇0(t)1dq̇(t), where q̇0(t) is the
velocity of the undamped reference trajectory. To lowest or-
der in the perturbation due to the frictional bath,

dq̇~ t !5E t

dt8m21j~ t8!. ~A6!

Note that terms involving the friction kernelz(t) are of
higher order and do not appear. Inserting this expression for
dq̇(t) into Eq.~A2!, we find an energy gain per period which
on average is

E
0

T~E!

dtE t

dt8m21^j~ t !j~ t8!&5kBTg̃8~0!T~E!. ~A7!

We note that this perturbation theory for the energy gain per
period is not entirely correct. First, our low order expansion
for dq̇(t) implies that all the bath modes are capable of

driving the oscillator coordinate. Actually, only those bath
modes resonant with the oscillator are capable of driving its
motion, which suggests the substitutiong̃8(0)→g̃8(v(E)).
Furthermore, the low order perturbation theory has a secular
divergence whenT(E) becomes large. However, for a har-
monic reference system, we have the relationshipT(E)
5J(E)/E, which suggests an energy gain per period of
g̃8(v(E))J(E)kBT/E. Furthermore, for a harmonic refer-
ence, J(E)kBT/E5J(kBT)[Jeq, which provides the ex-
pression we used for the energy loss per period:

D~E!52g̃8~v~E!!@J~E!2Jeq#. ~A8!

For energies larger thankBT, the oscillator loses energy to
the frictional bath; for energies smaller thankBT, the oscil-
lator gains energy from the bath.
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