The energy relaxation of a nonlinear oscillator coupled to a linear bath
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We develop an expression for the rate of energy relaxation of a nonlinear oscillator coupled to a
linear, dissipative bath. This particular type of model has wide applicability to studies of relaxation
rates of vibrational modes in chemical systems. The energy relaxation rate is estimated by relating
the anharmonic oscillator to an effective harmonic reference system. The theoretical predictions
compare favorably with simulation results for the energy relaxation of a Morse osciilatmupled

to an Ohmic bath andi) coupled to a bath with exponentially decaying friction. The dependence
of the initial relaxation rate on the excitation energy of a Morse oscillator is qualitatively different
for the two cases. When the oscillator is coupled to an Ohmic bath, the initial relaxation rate
decreases as a function of the excitation energy. When exponentially decaying friction is employed,
however, the initial relaxation rate is an increasing function of the excitation energyl998
American Institute of Physic§S0021-9605)00541-X]

I. INTRODUCTION mechanical oscillator coupled to a quantum mechanical
bath®'* Indeed, if the oscillator and bath modes are har-
A vibrationally excited molecule in the presence of amonic and the coupling is bilinear, both a classical and a
thermal bath of other molecules will eventually come toquantum treatment lead to the same prediction for the relax-
equilibrium by losing energy to the bath. The rate of energyation rate'®
loss can serve as a probe of intramolecular couplings and A noteworthy limitation of the theoretical treatment out-
intermolecular interactions. Consequently, relaxation ratefined is that the solute mode is assumed to be harmonic. In
for particular systems can vary over many orders of magnireality, molecular vibrations are anharmonic, and the anhar-
tude. In a real molecular solvent, energy relaxation dependsonicity becomes increasingly important as higher energies
on the strength of the coupling between a vibrationally ex-are probed. Thus the instantaneous frequency of an anhar-
cited molecule and the surrounding solvent. Furthermore, imonic oscillator can depend sensitively on the instantaneous
order for there to be effective energy transfer, there must bescillator energy. As an excited oscillator relaxes, the instan-
a frequency match between the solute vibrations and the solaneous frequency can slide in and out of resonance with
vent modes. This resonance condition between the taggesblvent moded®’ The result is that there is no longer a
excited mode and the solvent modes can cause a wide varigingle rate describing the vibrational relaxation, but rather a
tion in vibrational relaxation rates in different systems. dynamically changing rate which depends on the instanta-
Early theoretical models have represented the excitedeous energy.
solute vibrational mode as a harmonic oscillator, and the sol-  Molecular dynamics simulations have demonstrated this
vent modes as a collection of harmonic oscillators. The dyeffect. Early workers, stimulated by experimental results for
namics generated by such a model are equivalent to a gethe photolysis, geminate recombination, and vibrational re-
eralized Langevin equatiofGLE) with time-dependent laxation of , in CCl,,'® noted a stagnation effect in the
friction. The resonance condition between the solute and sotelaxation of } and B in simple fluid$®?° and in Ar
vent becomes clear through a perturbation theory estimatelusterst’ More recently, Tuckerman and Berne have per-
for the vibrational relaxation rate. This rate can be extractedormed molecular dynamics simulations of a diatomic mol-
from the Fourier transform of the friction kernel of the bath, ecule with an internal Morse potential in a fluid of Lennard-
taken at the frequency of the excited oscilldtdtThe same Jones particle§ They found that the relaxation rate was very
general form for the relaxation rate is obtained for a quantundependent on the excitation energy. They were also able to
extract a friction kernel from the full molecular dynamics,
dpermanent address: CuraGen Corporation, 322 East Main Street, Branfofﬁ,nd to use the friction kernel in a stochastic GLE simulation.

Connecticut 06405, The GLE dynamics successfully reproduced the energy re-
Ppermanent address: Department of Chemistry, Columbia University, NeWaxation from molecular dynamics. This indicates that the
York, New York 10027. GLE friction kernel accurately represents the full molecular
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1112 Bader et al.: Relaxation of a nonlinear oscillator

solvent. The GLE can be considered an intermediate stegverage implies a sampling over random force histories
between a molecular dynamics simulation and a theoretica(t). In the remainder of this section, we develop a theoreti-
prediction for the relaxation rate. Although the GLE itself cal prediction for the relaxation d(t) back to equilibrium.
performed well, Tuckerman and Berne noted that a lineakVe restrict attention to the case of weak frictional damping.
response estimate of the relaxation rate, based on the GLE practical definition for weak damping is that the oscillator
friction kernel and on motion close to the bottom of the undergoes many periods of motion before losing energy on
Morse potential, was a poor predictor of the relaxation. the order ofkgT.

We focus here on extending the theoretical treatment for We suppose that the potentidl(q) corresponds to
a harmonic oscillator to understand the relaxation of an anpurely harmonic motion,
harmonic oscillator coupled to a dissipative bath in the con-
text of GLE dynamics. The frequency of an anharmonic os- V(q)= %,uwéqz. (5)
cillator depends on its energy, and consequently it changes
throughout the relaxation. We develop in Sec. Il a perturbaThe condition of weak damping implies thap> ' (wo).®
tion theory prediction for the energy relaxation rate. ThisWhen this condition is satisfied, perturbation theory predicts
prediction is based on a harmonic reference system whicthat
depends on the instantaneous energy of the anharmonic os-

cillator through the oscillator actiod(E). In Sec. Ill, the (E(t)—kgT)g(0)

theoretical predictions are discussed along with results from E(0)—kgT =exd —t/Ty], ®)
trajectories obtained by simulations of the full GLE dynam-

ics. with T; =% (w,).8 The average is over random force his-

A striking feature predicted by the theory and evident intories, and the subscript indicates that the initial energy of
the simulation results is the qualitative difference for relax-the oscillator isE(0).
ation of a Morse oscillator due to Ohmic friction and relax- This expression can be obtained as follows. First, we
ation due to memory friction. In the case of Ohmic friction, assume that the oscillator initially has eneBith a period
we find that the energy relaxation rate is faster the lower thef T(E). The average energy change of the oscillator over a
energy. Conversely, for memory friction the relaxation rateperiod is defined ad (E). We also assume that the potential
can be faster the higher the energy. This difference provideis harmonic,V(q) =3uwjg® Averaging over random force
an immediate experimental criterion to judge whether or nohistories and dispensing with the angle brackets, it can be
memory friction is important, and is discussed in greatershown thatt2?
depth in the conclusion, Sec. IV.
A(E)=—7"(00)[I(E)— Jeg]. 0
Il. THEORY . . .
The action of the oscillator at enerdyis J(E),
The system considered here consists of an oscillator
coupled linearly to a dissipative bath. The coupling of the
oscillator to the bath is described by a generalized Langevin J(E)= é pda, ®)
equation, which includes a frictional damping and a stochas-
tic force, and the integral is over the orbit of enerBy The termJg is
9 ¢ the average action at equilibrium, &¢kgT).
wg(t)y=— 7a V(q)—J’ dt’z(t—tH)gt")+£(1). (1) At this point we generalize the perturbation theory to an
q anharmonic oscillator. For an anharmonic oscillator at energy
The effective mass of the oscillatqris «, the bare potential E, it is possible to define an effective instantaneous fre-
is V(g), and the stochastic forggt) is related to the friction quency from the relationship
kernel{(t) by the fluctuation—dissipation theorem,

(0= BLEE(0)). I o ©
The thermal energg 1 iskgT. It is convenient to define the
Fourier—Laplace transform af(t)/« as We use the effective frequeney(E) and the actiord(E) to
o define a harmonic reference system. The frequency of the
&’(m)+i§/’(w)=f dt €°tZ(t)/ . 3 harmonic reference system is,=w(E) and the action of
0 the harmonic reference is chosen to reproduce the value of
The energy of the oscillator is defined as the action of the anharmonic system. This implies that the

1 energy of the harmonic system, equald6E)J(E)/27, can
E=V(a)+ 210" ) be different fromE, the energy of the anharmonic system.
We suppose that d@t=0 the oscillator is placed in a high We assume that the harmonic reference system, defined
energy stateE>kgT. We also assume that the potential by J(E) andw(E), can be used to estimate the energy loss
V(q) is harmonic for energies arou@T. The form of the of the anharmonic oscillator. The change in the average en-

GLE then requires thafE(t))—kgT ast—w, where the ergy is then
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dE
——=A(E)/T(E)

5= (109
== (@(E)[I(E) = Jegl/[dIE)/dE] (10b)
=—'(o(E))dE/d IN[I(E)— Jeg. (100

A derivation of Eq.(109 may be found in the Appendix.
Thus we find for the relaxation of the action the equation

(100

The frequencyw(E) can also be written in terms of the
action asw(J)=2wdE(J)/dJ, allowing the energy loss
equation to be expressed entirely in terms of the aclidh
andJgq:

(d/dt)IN[I(E) —Jegl = — 7' (w(E)).

(d/dt)IN[I—Jeg=— ' [ (I)]. (100

In these equations, the actidfE) has taken on the meaning
of J((E(t))). The initial relaxation rate immediately follow-
ing an excitation to energk is defined as

A(E)

(E—KeD)T(E) ° )

initial rate=

If the friction is Ohmic,y’ (w)=7y,, and the time decay
of the action is particularly simple:J(t)—Jeq=[J(0)
—Jede™ 7', whereJ(0) is J(E(0)) andJ(t) is J((E(t))).

We have the interesting result that, for an anharmonic oscil-
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FIG. 1. The Morse potential(q)=Dy(1—e 92 is shown for parameters
D,=207.36,0=4.167, ankgT=2.5. The local frequency of the oscillator,
w(E)=wqVy1—E/Dy, is shown in the bottom panel.

For exponential friction with decay time, one obtains
Y (w)=vI/(1+ w?7?). The frequencyw(J) is found using
Eqgs.(9) and(12b) to be wy(1—2xJ). In this case the action
can be computed by integrating the equation

(d/dD)IN[I(t) = Jegl= — ¥ /[ 1+ TPwh(1-2xI)?] (128

lator, the decay of the action is purely exponential. The enzq obtainJ(t). Then(E(t))=(we/2)I(t)(1— xI(1)).

ergy relaxation, however, is no longer exponential, unless

In practice, it is a simple matter to integrate Et03

E(J) is linear inJ, i.e., unless the oscillator is harmonic. To directly. Furthermore, it is not necessary to have an analytic

obtain the energy relaxation in the general case, one mu

insertJ(t) into the appropriate expression fiafJ) to obtain

(E(1)).

For example, let us consider a Morse oscillator with dis-

sociation energy,

V(q)=Do(1-e 92 (129

The frequency for small oscillations abouj=0 is

wo=a2Dq/p. The periodT (E) = (27/ wg)/1—E/D, for

E smaller than the dissociation energy. One finds that

E=(wo/2m)I(1— xJ), (12b)

with the anharmonicity parametey=wq/(87Dg). The
classical anharmonicity parametgrcan be related to the
guantum mechanical anharmonicity paramegtgerwhich de-
termines the quantized energy levéls,} for the Morse os-
cillator,

En=(n+1/2%hwo— xo(N+1/12%hw. (120

Using the correspondence{ 1/2)—J/2=#, one finds that
X= Xel27h.

Returning to Eq(12h), and definingdJ=J(0) — J¢q, We
find for Ohmic friction that

E(t)= (wo2m)[Jegt Ade ™[ 1~ x(Jegt Ade )],
(129

Hinctional form to represeni(t) andy’(w). This is of par-

ticular relevance to molecular dynamics studies, which pro-
duce numerical results fo£(t). All that is necessary for
integrating Eq.(109 is a table of values foly’ ().

llI. RESULTS AND DISCUSSION

To test the theory presented in the previous section, we
have performed computer simulations for the energy relax-
ation of a Morse oscillator coupled to a frictional bath. The
parameters of the Morse oscillator were selected to match
those used in an earlier stublyn the earlier study reduced
units were used to characterize the dynamical friction and the
Morse oscillator. The dynamical friction on the vibrational
displacement was calculated in a Lennard-Jones fluid with
potential parameters and . Thus one defines the reduced
temperaturelT* =kgT/ €, the reduced bond lengiti =r/ao,
the reduced timet* =(e/ma?)Y%, and the reduced fre-
quencyw* =(ma?/€)Y?w. In these units the dissociation en-
ergy wasDy,=207.36 withT*=2.5. The Morse oscillator
consisted of two Lennard-Jones balls with reduced mass
m* =1 coupled by a Morse potential, giving the oscillator
the reduced mass* = 1/2. The length scale parameteifor
the Morse potential was chosen to be 4.167. This yields a
value of 120 for the harmonic frequeney,. The anharmo-
nicity paramter then equajg=0.023. A plot of the potential
is shown in the top panel of Fig. 1. In the bottom panel of the
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TABLE I. Instantaneous energy relaxation rates.

sl J Energy relaxation raté8<
06k ] Ohmic friction Exponential friction
AE(t :
o 0.4 | Eq Simulation Theory Simulation Theory
02k ] 10 kgT 1.62 1.60 2.6 181
L , ———Te 40 kgT 1.34 1.38 29 2.58
0.0 0.5 1.0 1.5 2.0 80 kgT 0.48 0.52 25 7.17
aThe rates are given in units of inverse reduced timg;.1/
bThe theoretical prediction for the instantaneous relaxation rate is given by
Eq. (12).
AE(t “The uncertainty in the last digit of the simulation results is indicated by the
XE(0) subscript value, i.e., 1.6andicates 1.62-0.04.
1 . . .
0043 0.5 1.0 15 2.0

t
dom force with the initial energy of the oscillator set to

FIG. 2. The predicted energy relaxation of the Morse oscillator With) E(0). Theterm AE(O) is the initial deviation from equilib-
given in Fig. 1 and Ohmic frictiony=1.65 is shown for three initial ener-  rium, E(O)— kBT_
gies: 10kgT (solid ling), 40 kgT (dashed ling and 80kgT (dotted ling. For the smallest value of the initial energ&: 1G(BT1
Simulation results are shown as thin solid lines. In the bottom panel, th%h th d si lati It II. Moti t
results are shown on a logarithmic scale. e eory an s_lmu a an results agree very well. o Ion a
this low energy is described accurately by a harmonic refer-
ence system, for which the theoretical predictions are exact.
_ _ _ At the next higher energf =40kgT, the theoretical predic-
figure, the frequency of the oscillator is shown as a functionion is still quite good. At the highest enerdy=80kgT, the

of the energy. The frequency and action are theoretical prediction notably deviates from the simulation
results. The theory predicts that the system relaxes slightly
w(E)=wyy1—-E/Dy and (13)  faster than is seen to occur in the simulationst#Atl, for
instance, the theoretical prediction for the energy relaxation
J(E)=(47Do/wo)[ 1~ 1~ (E/Dy)] (14)  isthatAE(t)/AE(0)=0.30, whereas a value of 0.32 is mea-
sured in the simulation, i.e. the error amounts to approxi-
as functions of the energy. mately 6%.

We now relate the reduced units of the simulation to the It is clear from Fig. 2 that the lowest energy excitation,
physical parameters corresponding to liquid argon. Thé&E=10kgT, relaxes most quickly in terms of the decay of
Lennard-Jones parameters for liquid argon elle;~120 K AE(t)/AE(0), and that the highest energy excitation,
ando~3.4 A Thus the reduced temperatufé =1/2 cor- E=80kgT, relaxes the slowest. The initial relaxation rates
responds toT=300 K and the length scale parameterhave been computed from the simulation data in Fig. 2 at
a=4.167 corresponds to a distance of 14.2 A. The reducegarly time by fitting an exponential decay to the simulation
unit of timet* is then equivalent to 2.15 ps, amgt corre- data fort<0.12. We find that the initial decay rate for
sponds to a frequency of 0.465/ps or 2.47 ¢mTherefore, E=10KkgT is 1.62£0.04; the decay rate foE=40KkgT is
the reduced frequency of 120 corresponds to 296%crithe  1.34+0.03, and the decay rate f&=80kgT is 0.48-0.01.

anharmonicity parametey corresponds to 6.4610°%Js, The rates have been computed in units of inverse reduced
giving x.=0.0043. time, 1t* and are summarized in Table I. The values pre-

dicted for the relaxation by Eq.l1l) are seen to be quite
accurate.

Results of simulations using Ohmic friction are shown in ~ As seen from Eq(11), the energy relaxation rate for an
Fig. 2. A single choice was made for the Ohmic friction oscillator with instantaneous energydepends on the ratio
parameter, y=1.65. Three initial energies were used,[J(E)—Jel/T(E). This is because, over a perid¢E), the
E=10, 40, and 8kgT. For each choice of initial energy, energy lossA(E)=1[J(E)—Je, and y is constant for
1000 trajectories were run. Each trajectory was initiated aDhmic friction. For simplicity, we neglect the constant term
q=0 with a positive velocityq=y2E/u. The integration Jeqin the subsequent analysis, and normalize the rate of en-
time step was 0.001, or about 1/50 of the period of oscilla-ergy loss by the instantaneous enefjyThe instantaneous
tion near the bottom of the well. The simulation results areratio J(E)/[ET(E)]=2(Dy/E)[ V1—E/Dy —(1—E/Dy)]
used to judge theoretical predictions obtained by integratioms shown in the top panel of Fig. 3. A single relaxation rate
of Eq. (109 for the rate of energy loss. The relaxation is cannot be defined; instead, the instantaneous rate is strongly
characterized by AE(t)/AE(0), where AE(t)=(E(t) dependent on the instantaneous endfgyThe behavior of
—kgT)g(0) @and the average is over 1000 histories of the ranthe relaxation rate is due to a competition betwégh) and

A. Ohmic friction
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1 30 '« 1 Ll T i
0.8 s ..
20 : \ N
ET(E) (4 10} .
]
0.2 0F, 4
0 .
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Iw E . - . . .
V(B [ _ p
101 ) FIG. 4. The initial phase points of the Morse oscillator are shown for simu-
00 0'2 0'4 0I6 0I8 1 lations with three different initial energies: 3T (inner circle, 40 kgT
’ ’ ’ ’ (middle circle, and 80kgT (outer circle. For clarity, only 1000 phase
8 . r . . points are shown for each set, although 10 000 initial phase points were used
in each of the three sets to produce 10 000 independent trajectories per set.
6
Yeft 4
9 At first, simulations were performed exactly as for the
. . . ‘ Ohmic friction case, with each trajectory starting at the phase
00 0.2 0.4 0.6 0.8 1 point with initial g=0 and initial g positive. As expected,

. E/Dy ' this method produced reproducible oscillations in the energy

F1G. 3. The relaxati oM " o to Ohmic frict decay. To remove the oscillations and thus simplify the
. o. e relaxation rate of a Morse oscillator coupled to mic friction H H : H ;
is  determined by  the  ratio J(E)/ET(E)=(2D,/E) analysis, we performed a second set of simulations in which

[VI_E/D,—(1-E/Dy)] (top panel and by the density of bath modes the initial phase point was chosen at random for each trajec-
5'[(E)] (middle panel. The overall relaxation rate.; (bottom panelis  tory. Only data from the second set of simulations are pre-
equal to the product of these two quantities, and is shown for the parametesented here.

we have used in simulations with exponential friction. For a given initial energ¥(0), the initial phase point for
each trajectory was chosen randomly and uniformly on the
microcanonical surface fde=E(0). To accomplish this, we
selected a random timgg,,qom from a uniform distribution
between times 0 an@i[ E(0)], the period for undamped mo-
%ion at energ\E(0). The initialg andq were then determined

T(E). As energy increases(E) and T(E) both increase.
The period(which diverges a&— D) increases more rap-
idly than the action and has the dominant effect.

It is interesting to note that even though the energy los
per period can be substantial, the perturbation theory for the” ! . :
energy relaxation rate is accurate. For example, at the Iargegf)mt f_or a t'metf?”dom' This propagation can be.performed
energy we examinedE(0)=80kgT, the energy loss per pe- analytically; in _th|s case, however, the propagatlpn was per-
riod is approximately 1&gT. The perturbation theory still formed npmerlcally. To ensure proper averaging, 10000
works because the actual perturbation parameter is not t 1ase pomt; were selected at random for each of the three
energy loss per period but rather the rafitw(E) of the initial energies,E(0)=10 kgT, 40 kgT, and 80kgT. These

static friction to the instantaneous frequency of the oscillator!nltlal phase points are depicted in Fig. 4. For clarity, only

At low solute energies, w(E)~wy=120, and 1000 of each of the 10 000 phase points are shown for each

ylw(E)~0.014, which is quite small. In fact, for the pertur- of the three initial energies. The inner ring corresponds to the
bation pa.raméter o be as Iar‘ge as’ 01 ie folowestenergy, 1&gT, and the outer ring corresponds to the

: .. __highest energy, 8@;T.
vlw(E)>0.1, the energy must be 98% of the dissociation X B
energy, in this case greater than 8k . The largest energy The simulation results forE(t)/AE(0) for the three

we explored, 8RgT, corresponds to a perturbation parameterJnltlal energies 10, 40,'and %T are shown in Fig. 5. Also
of 0.073. shown are the relaxation predictions from E#0g. In the

top panel of the figure, the relaxation is shown on a regular

axis, and in the bottom panel the relaxation is shown on a

semi-logarithmic axis. The gross features of the relaxation,
We have also performed simulations using exponentiacommon to both the theoretical predictiorithick lines,

friction, y(t)=(yo/7)exp(—t/7). For this form of friction, dashes, and dgtand the simulation result@hin lineg are

Y (0)=70/(1+w%7?). We used the parameters evident in these plots.

7=0.041 22 andy,=42, both expressed in terms of the re- First, the results depicted in Fig. 5 demonstrate thit

duced time t*. With this choice of parameters, ter a short transient peripdhe overall relaxation rate in-

v'(wo)=1.65 for wy=120. Note that the effective friction creases with increasing excitation energy. The relaxation is

for this frequency was chosen to reproduce the static frictiorslowest for the smallest excitation enerdy=10 kgT, thick

of the previous section. line), and is fastest for the largest excitation ene(Gy-80

y propagating the undamped motion from the inner turning

B. Exponential friction
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FIG. 5. The predicted energy relaxation of the Morse oscillator With) 09
given in Fig. 1 and exponential friction is shown for three initial energies: 10 0.8
kgT (solid line), 40kgT (dashed ling and 80kgT (dotted ling. Simulation AE(t) :
results are shown as thin solid lines. In the bottom panel, the results are AE(0) 0.7
shown on a logarithmic scale. In the simulations, 10 000 trajectories with 0.6
randomly chosen initial phase contributed for each of the three energies. 0.5

0.4

T
7

B>
[sal ]

Fl J 1 \t\
01 02 03 04 05

10 kT

1

0 01 02 03 04 05
t

kgT, dotted ling. In this respect, the theoretical predictions _ o _ .
agree with the simulation results. According to the theory,'C: 8- The early-time results in Fig. 5 for a Morse oscillator w(x)

. . . . . given in Fig. 1, coupled to an exponential-friction bath, are shown for three
the relaxation rate for a given oscillator eneigys directly  ipjtial energies: 1GsT (bottom panel 40kT (middle panel, and 80kgT
proportional to the product of two factors. The first factor, (top panel. Simulation results are shown as thin solid lines.

J(E)/ET(E), measures the dependence of the oscillator ac-
tion on the oscillator energy. For a harmonic oscillator, this
quantity is unity. For the Morse oscillator, this quantity is w; is the oscillator frequency at the bottom of the well and
equal to(2/x)[ V1—x—(1—-x)], wherex=E/D, (the ratio of is the decay time of the exponential friction, the turnover
the oscillator energy to the dissociation enérggnd is  occurs atE/Dy,=1/w,n? or 0.959 for the parameters we
shown in the top panel of Fig. 3. The first factor thereforehave chosen. This low-order estimte is very close to the ac-
decreases as the energy decreases, therefore favoringtual location of the turnoverE/D,=0.9697, orE=80.43
slower relaxation rate as the oscillator energy increéass kgT.
was seen with Ohmic friction After an early transient period, the overall energy relax-

This effect is outweighed, however, by the behavior ofation predicted by the theory is faster than is seen in the
the second factor, the component of the frictigitw) evalu-  simulations in Fig. 5. The same type of systematic error was
ated at the local frequenay(E) corresponding to the oscil- observed in the previous section dealing with Ohmic friction,
lator energy. The quantity’(w) is depicted in the middle but the error is larger here. The reason that the overall dis-
panel of Fig. 3 as a function of the oscillator enefgyltis  crepancy is larger for memory friction than for static friction
clear that this second factor is an increasing function of thés most likely because the perturbation parameter is becom-
oscillator energy. At larger energies, the oscillator frequencyng larger. The effective perturbation parameteryjsw(E),
decreases, and the friction has a larger component at a lowarhere v, is the full damping(rather than the component of
frequency. the friction at the oscillator frequency, which is smalldn

The overall relaxation rate is the product of the two fac-our simulations, the perturbation parameter for energies close
tors described above, and it is depicted in the bottom paneb kgT is 0.35, and the parameter increases as the excitation
of Fig. 3. The frequency-dependent behavior @¥iw) is  energy increases. The perturbation theory also fails to predict
clearly the dominant effect in determining the frequency dethe early-time oscillations in the energy relaxation. These
pendence of the relaxation rate. The relaxation rate is seen tuscillations are shown in greater detail in Fig. 6, along with
increase with oscillator energy for all but the highest enerthe theoretical predictions. Other than the lack of oscilla-
gies. Of course, at very high energies, the oscillator periodions, the general agreement between theory and simulation
diverges and the relaxation rate goes to zero. This createsigquite good for the two lower energies.
turnover in the relaxation rate for energies very close to the  The perturbation theory for the energy loss embodied in
dissociation energy,. To lowest order in 1k,n? where Eq. (10a is incapable of predicting the oscillations in the
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decay because it involves only a first derivative of the energy 1 r . . .

with respect to time. A higher-order perturbation theory, in- 0.9F> 80 kpT -

volving higher-order derivatives, would be required to obtain 08} ° 7

such oscillations. The exact result for the energy relaxation AEQ) o] % |

of a harmonic oscillator coupled to an exponential bath does AE(0) 0‘6 N ]

show oscillations, and we present such results below. First, ' . .

however, we compare the initial rate of energy loss predicted 0.5¢ N

by the theory to that observed in the simulations. 0'40 01 02 03 04 05
For purposes of comparison, the envelope of the energy

decay from the simulation is used to determine the initial rate 1 T T T T

of energy loss. Thus, the initial energy rate from the simula- 09} 40 kT

tion is defined as 0.8F A\ .
L AEQ) ool N -
initial rate=—(1/t;)IN[AE(t,)/AE(0)], (15 AE(0) 0'6 > ~

wheret, is the maximum for the first oscillation. The relax- 05F J N

ation using the largest initial energ =80 kgT, did not 0.4 . ) . h h

produce an oscillation large enough to yield a maximum in 0 01 02 03 04 05

the energy decay. In this case the initial rate was estimated

by an exponential fit to the simulation data fior0.1. The 1 ' ' ' X

rates from the simulation are 2:40.1 for E=10 kgT, 2.9 0.9F 10 k5T +

+0.1 forE=40kgT, and 2.5-0.2 for E=80kgT. The rates sz oof ]

from the theory are, respectively, 1.81, 2.58, and 7.17. These AE(0) -

rates are summarized, along with the results from Ohmic 0.6 7

friction, in Table I. Unlike the theoretical prediction, the ini- 0.5 L

tial rate of energy decay is not a monotonically increasing 0‘40 01 02 03 04 05

function of the initial energy. The initial rate increases from t

E=10 kgT to 40 kgT, then decreases from 4T to 80 _ _ _ _
k.T. It is likelv that the perturbation theorv is failing at the FIG. 7. The predicted energy relaxation of the Morse oscillator With)

B'- Yy p - y g given in Fig. 1 and exponential friction is shown for three initial energies: 10
highest energy of the Morse oscillator due to the extreme,T (bottom panel 40k T (middle panel, and 80kgT (top panel. Simu-
anharmonicity at this energy. The initial rate from perturba-lation results are shown as thin solid lines. The thick curves are predicted
tion theory is 30% too small at the lowest energy, and 1094rom the correlation functiofg(t)q(0)) based on the initial value of the

. ! illator f Eo).
too small at the middle energy. oscillator frequencyw(Eo)

We now return to an investigation of the oscillations in
the energy decay. Oscillations arise in the energy relaxation
of a harmonic oscillator coupled to an exponential bath du
to the different correlation functions involvingandgq in Eq.
(16) being out of phase with each other. When the initial
energy of an oscillator of frequenay, is selected from a
microcanonical ensemble, one can show that the energy r
laxation is

In the top panel of Fig. 7 the early-time simulation re-
Sults are compared with this theory for the energy relaxation
using w[E(0)] for the frequency of the harmonic oscillator.
The three roots required for the inverse Laplace transform
are listed in Table Il. For the lowest enerd(0)=10 kgT,
fhe theory does quite well in predicting the oscillations in the
energy relaxation. This good agreement is to be expected
AE(t)/AE(O)z(l/Z)ng(t)+(1/2)C(_2m(t)+(1/wg)¢§q(t), since anharmonicities are negligible for this low an excita-
(16) tion energy. For the next larger excitation energy))=40
kgT, the correlation function theory predicts an oscillation in
where Cgq(t) and Cq4(t) are, respectively, the normalized the energy relaxation at the same time that the oscillation
correlation functionsg(t)q(0))/(g% and(a(t)q(0))/(a®».>  occurs in the simulation results. For the highest enegg)
The Laplace transforms of these correlation functions are=go kgT, this theory predicts oscillations much larger than

simple to express in terms @f(s) =s’+s¥(s) + wj: those seen in the simulations.
~ 5 Although the correlation-function based theory describes
Cqo(8)=[st+¥(s)]/D(s), (17 the early-time oscillations in energy relaxation, it fails to
Caq(S)=—wp/D(s), (18)
- TABLE II. Roots needed for the inversse Laplace transform.
Cgq(s)=s/D(s). (19
E(0) Roots
When the friction kernel is exponential, performing the in-
10kgT -21.21,-0.7726+116.6

verse Laplace _transform reduces to obtalnlrjg the rootg of a 20k.T —15.94 —0.7579+90.35
cubic polynomial. These roots can be obtained analytically 80 ksT ~3.342,-0.6142+26.43
from a well-known formulg?
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describe the relaxation properly for longer times. The disframework of GLE dynamics. Our theory accounts for the
crepancy is quite evident for the early-time results depictedrequency of an excited mode sliding in and out of resonance
in Fig. 7 and continues to grow for longer times. This iswith modes in a bath represented by a GLE friction kernel.
especially true for the largest initial enerdy0)=80 kgT. Thus the validity of our approach is probably limited to sys-
tems for which the GLE is a good approximation for the
solvent friction, and for which the perturbation theory for the
energy loss is reasonable. For memory friction, the perturba-

As opposed to the relaxation of a harmonic oscillatortion parameter is proportional to the full dampirigather
coupled to a dissipative bath, for which the energy relaxatiorthan the component of the damping at the solute frequency
rate is independent of the excitation energy, the energy relaxthus, the perturbation parameter for memory friction can be
ation rate of an anharmonic oscillator does depend on thiarge even when the actual energy loss is small, leading to
excitation energy. We have developed a simple theory fofrrors in the perturbation theory and in the predicted relax-
determining the relaxation rate of an anharmonic oscillatoration. It is easy to envision a PGH-type coordinate transfor-
The theory relates the anharmonic oscillator to an effectivénation which would correct for this problem with the pertur-
harmonic oscillator chosen to have the same acli@) and ~ bation theory’* It would also be possible to introduce
frequencyw(E) for the instantaneous value of the enefgy ~ Corrections due to space and time dependent fri¢fidnTo
We find that the theoretical prediction performs well in com-account for space dependence, the energy loss expression,
parison to simulation results for a Morse oscillator. Eq. (7) would be modified to include an integration of the

The theory we have developed predicts a striking qualispace dependence. In this case, the energy loss would no
tative difference for relaxation due to coupling to Ohmic longer be directly related to the action.
friction, and for relaxation due to coupling to memory fric- ~ We find a systematic error in the theoretical predictions,
tion. For Ohmic friction, the relaxation rate decreases as theamely that the predicted relaxation rate is slightly too large.
excitation energy increases. This is because the instantanedd§wever, in light of the simplicity of the harmonic reference
rate of energy loss is proportional 8¢E)/T(E). The action ~System, it is important to note that the systematic error is
J(E) changes slowly as the ener§iyapproaches the disso- quite small.
ciation energy, whereas the perid(E) diverges in the same
limit.

Conversely, for exponential frictiofor other appropriate  ACKNOWLEDGMENTS
dissipative baths the relaxation rate can increase with in-
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creasing energy. The relaxation rate for memory friction ISg cience FoundatiofB.J.B) and by the Alexander von Hum-

dependent on the F’er_‘s“y O.f bath _modes at the oscilla’For fre6oldt FoundationB.J.B). We thank Professor Gregory Voth
quency. The qualitative picture is that of a dynam|callyf0r very useful comments on microcanonical sampling
changing solute frequency which slides in and out of reso- '

nance with bath modé§:!’ The spectrum of bath modes is
often largest at low freque_nmes commensurate with the .ratAPPENDlx: DERIVATION OF THE ENERGY LOSS
tling of solvent atoms adjacent to a solute. The effect|veA £)
frequency of a Morse oscillator decreases as its energy in-
creases, allowing it to couple more effectively with these low  The rate of change of the ener@y=V(q) + 3G is
frequepcy solvent modes, and increasing the rate of energy dE()  dV(q) . o
relaxation. ——=—q(t)+ xq(t)g(t)

The perturbation theory described here is incapable of dt dq
producing the expected oscillations in the energy relaxation
which arise naturally when even a purely harmonic oscillator =q(t)
is coupled to a bath with memory friction. The oscillations
are predicted very well by a separate perturbation theory fof he second equation follows from the definition of the GLE,
the autocorrelation functioq(t)q(0)) for an appropriate EQ. (1). We neglect(t) for the moment and concentrate on
reference system. In our implementation, the reference sy$he energy dissipation. The energy loss per pero(), is
tem was based on the Morse oscillator at its initial energy. 18 dE
Because we did not allow the reference system to adjust to A(E)zf
the instantaneous energy of the oscillator, the energy relax-
ation predicted according (t)q(0)) was only correct at TE) t _
early times. It is not too difficult to imagine an improved =—f dIQ(t)f dt’ y(t=t")uq(t’), (A2)
perturbation theory in which the reference system is allowed 0
to implicitly adjust as the oscillator loses energy to the bathwhereT(E) =27/ w(E) is the period of the anharmonic os-
In light of the excellent early-time results depicted in Fig. 7,cillator at energyE.
such a perturbation theory would no doubt provide nearly  We can find the energy loss(E) to the lowest order in
guantitative agreement with simulation results. the damping by inserting into E4A2) the trajectoryqg(t)

The theoretical results obtained here are based on theorresponding to the undamped harmonic reference system,

IV. CONCLUSION

t
—f dt' y(t—t)uat)+&1)|. (Al

dta
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do(t) = VI(E)/ mw(E)cog w(E)t). (A3)  driving the oscillator coordinate. Actually, only those bath
_ _ . modes resonant with the oscillator are capable of driving its
The energy loss, to lowest order in the dampi(@), is motion, which suggests the substitutign(0)— 3’ (o(E)).
w(E)J(E) (T(E) . Furthermore, the low order perturbation theory has a secular
A(E)=— TJ; dt sin(w(E)t) divergence wherT(E) becomes large. However, for a har-

monic reference system, we have the relationsh{f)
t ) =J(E)/E, which suggests an energy gain per period of
Xfﬁwdt'V(t_t')s'”(w(E)t')- (A4 5 (w(E))I(E)kgT/E. Furthermore, for a harmonic refer-
_ o _ . ence, J(E)kgT/E=J(kgT)=J¢q, Which provides the ex-
Extending the limit on the second integral to= is appro-  pression we used for the energy loss per period:
priate when the decay of(t) is fast relative to the period ~,
T(E). It should also be appropriate to extend the limit of the ~ A(E)= =7 (@(E)[I(E) — Jegl. (A8)
integral when the period (E) is fast relative to the time For energies larger thakysT, the oscillator loses energy to
required to lose&kgT of energy. The second integral can be the frictional bath; for energies smaller thkgT, the oscil-
expressed as si(E)t)y' (w(E))—cos@(E)N)y" (w(E)). lator gains energy from the bath.
Using the orthogonality of sir{(E)t) and cos(E)t) over the
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