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Several heuristic rules are developed to assist in the implementation of the reversible reference
system propagator algorithfRESPA. This is done through the use of examples, illustrating the

use of properly chosen rRESPA splits of various types, as well as the dangers associated with
improperly chosen ones. It is concluded that a particle-based rRESPA split should be used only

when there is a great disparity in particle masses, and that a force-based split should be used only
when there is no persisting opposition between forces in the system which are integrated with

different time steps. ©1996 American Institute of Physids$0021-960806)00928-3

I. INTRODUCTION general principles which should help in avoiding inefficient
rRESPA propagators.

As with many other areas of computational chemistry,  In Sec. Il we first review the theory behind the rRESPA
molecular dynamicsMD) simulations have progressed at a propagator, and derive two commonly used examples. One
remarkable pace over the past few decades. Systems whigli these partitions the system forces, while the other per-
are suitable for MD simulation are constantly growing in forms a partition based on particle identities. In Sec. lll we
both size and complexity, while the simulation times are alsapply variations on these propagators to four different model
increasing relentlessly. One of the most important factorgystems, pointing out what makes for a successful implemen-
responsible for this continued progress, of course, is theation of the rRESPA method. Section IV summarizes the
astounding rate of improvement in computer power. Thes¢essons learned from these different examples, and presents
“brute force” gains have been further compounded, thoughsome general conclusions for use in developing new
by the development of faster algorithms and integrators. ResRESPA propagators.
cent techniques such as the fast multipole mettadi the
reversible reference system propagator algoritHRESPA? Il. THEORY
accelerate simulations by up to a factor of (®ef. 3—
roughly equivalent to waiting seven years for faster com- A molecular dynamics trajectory involves propagating
puter hardwaré. the state of a system forward in time, where the sIg

Multiple-time-scale methods such as rRESPA allow thespecifies the individual particles’ positions and momenta at
more slowly varying components of a system to be intetimet,
grated with a fairly long time step,.wh|le still using smaller (1) ={x O pi(O). (1)
time steps for the components which are moving most rap-
idly. This results in faster simulation speeds than are obtain]Ne time propagation is handled by an operaggt), with
able using single-time-step methods, and the time saving§'e pProperty that
can be used to study larger systems, for longer simulation  p(At)=G(At)I[(0). 2
times. Various implementations of the rRESPA method have ] o
been applied to a wide variety of systefieresulting in This operf':\torG(t) is generally some approximation to the
speedups by factors of 4 to 15. true classical propagatd(t),

Although rRESPA is quite simple to implement, it re- U(t)=e 1, ©)
quires a decision about which parts of the system are to be
integrated with which time steps. In some cases, a clear gigvhere
parity between strong and weak forces or heavy and light N
particles makes the choice obvious. For others, choosing the i£={ ,H}=2
best partitioning of the system is more of an art than an exact =1
science. Still, this decision can have extremely importanis the Liouvillian for a system witiN degrees of freedom,
consequences, and an improper choice can result in a lesgpressed in Cartesian coordinates. The first term inside the
than optimally efficient propagator, or even one which issum above is responsible for advancing the positigni
worse than the original single-time-step method. time by an amount proportional to the velocitigs the sec-

This paper is an attempt to provide some guidelines foond term advances the velocities in proportion to the accel-
use when applying rRESPA to new systems. By consideringrationsF;/m,; .
several example systems, and comparing rRESPA propaga- The reversible reference system propagator algorithm is
tors which do not work to those which do, we develop somea prescription for generating a discretized propag&iit)

oL Fio
vi (9Xi m; an

(4
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which reversibly integrates different components of the sysand the “fast” component includes the effect of the fast
tem under twgor more different time steps. To accomplish forces on the velocities, as well as the effect of the velocities
this, the Liouvillian is first divided into a “slow” and a on the positions,
“fast” piece.

=S i 1« Fyf) o
=i St (5) s Vi T2 T
Then by performing a symmetrical Trotter factorizaffoof g EM) 4
the classical propagator, we arrive at an approximation to = —+——, (10
ox m Jdv
U(At),
G(AD) = ¢ 7sbii2gl 71l 72 © where we require that
o s - FiY+F{=F;. (1D
which is accurate ta”(At”). The approximation results from . _ - S
the fact that exf ) and exgi #;t) do not necessarily Using this decomposition of the Liouvillian in Eq7),
commute. we obtain a propagator of the form
If we now factor the inner term in this propagator imto (s)
identical pieces, we obtain G(At)= AP o ot i
pieces, we ¢ _ (A=exq 5 "y 55 || XF Ot 5%
G(At):el //SAtIZ[eI [fﬁt]nel //SAtIZ, (7) F(f ) 5 N At F(S) P
wherest=nAt. This smaller time stept is used to integrate +at m 5) 2 m %) : (12)

the parts of the dynamics advancediby; , while the larger , ) . . i
time stepAt is used to advance the terms affectedi b . To use this propagator inan MD_5|muIat|on, the inner propa-
This symmetrical Trotter factorization can be repeated adator must be split once more, in order to decouple the po-
many times as desired, and at least one more factorization Gftion and velocity operators. This is done with another Trot-
the inner propagator is typically required to separate the pot' factorization, giving a velocity Verlet-like inner
sition and velocity components of the propagator. This finalProPagator,
subdivision generates a velocity Verlet-like integretemnd AtE® 4 StET) 5

) exp( 2 m 5)
n

will be illustrated in the following section. As long as the G(At)=exp - - -~

symmetry of the propagator is preserved, the opef@fdrt)

will generate explicitly time-reversible dynamits. d St F) o
Clearly the choice of how to divide the Liouvillian in Xex;{ otv 5) N2 m 5)

Eq. (5) is critical, and the most useful split is often dictated

by the physics of the problem at hand. Occasionally, how- Xex;{g is) i)

ever, several different choices seem appropriate, and some- 2 m dv/’

times the most obvious factorization does not turn out to b

the most efficient. The aim of this paper is to provide som

guidelines for choosing a rRESPA split which is likely to rors introduced at this point in a derivation of the pure ve-

produce accurate and efficient simulations. This will be donefocity Verlet propagatol With the propagator in this form, a

primarily through the discussion of examples in Sec. Ill. " L2
First, however, we describe two different categories Oftrajectory can be generated from an initial () through

rRESPA propagators which will prove useful in the discus_repeated application of the operator identity

Note that this step introduces additional errors of order
(né8t3)=7(AtSt?), which are smaller than the(At®) er-

sion which follows. eSf(q)=f(q+c). (14)
A. Force-based RESPA split Thus the propagator in E413) produces the following dy-
For a system which interacts with itself via pairwise "@Mics algorithm:
forces, the full Liouvillian of Eq.4) can be written At
ve—v+F® —
S 0,1 Fiy o . _ 2m
| = : Ui x; 2 & m v f ( ) doi=1n
where Fj; = —F;; represents the pair force acting between ;. +f(f) ﬂ
atomsi andj. If these forces are separable into two groups 2m

which act on different time scales, we may divide the Liou- X< X+uvét
villian correspondingly. The “slow” component of the Li-
ouvillian includes the effect of the slow forces on the particle
velocities,

ot
ve—v+F) —
2m

end do
FY o F® g At

1
i Ze=5 2 " gm0 9  ve—v+F® —
S 24 iz My Ju; m Jdv 2m

J. Chem. Phys., Vol. 105, No. 4, 22 July 1996



1428 Stuart, Zhou, and Berne: Molecular dynamics with multiple time scales

Note that while the velocities will be updated on two At
different time scales, the positions will be updated using onlyn—vn+Fn am
the smallest time step. This is a direct consequence of At

choosing to segregate only the sldarcesinto i, and  x,—x,+vy, =
thus this type of rRESPA algorithm is referred to as a 2
force-based split. This class of rRESPA propagators is appli- PR = ﬂ
cable to a wide range of systems, and various forms of it "~ """ ' " 4m
have been used to accelerate simulations of Wat@nic  do i=1n
melts?® small organic molecule®’ buckminsterfullerend,
proteins®>®~! Car—Parrinello dynamic¥, and path integral o+ Fr
molecular dynamics. T 2m
X|<*X|+U|5t

. _ vi—vtF 5=
B. Particle-based RESPA split 2m

While a separation based on forces is perhaps the mosnd do

widely used variant of the rRESPA algorithm, it is not the At
only one. Another common situation in MD simulations is to Vh“~Un*Fn 7
have some particles which are significantly lighter than the At

others. Since the particles’ velocities will scale with the x,«—x,+v, > '
square root of their mass, it makes sense to devise a rRESPA

propagator that takes advantage of this fact. In this case, the —vp+Fp ﬂ

most convenient rRESPA propagator uses a division based1 4m

on particles, instead of forces. The slow component of the  Here, the positions are updated on both time scales,

Liouvillian will now contain the terms which affect either the gjnce the components of the Liouvillian were separated

positions or the velocities of the heavy particles, based on particle identity, and this class of rRESPA propa-

gators is described as using a particle-based split. Propaga-

i Ze= > v i+ E > i 7 tors of this general form are also widely applicable, and have
icheay| X 2 {ZF m; du; been used to simulate mixtures of light and heavy Lennard-

g Fn o Jones particle$diatomic oscillators in a monatomic batf®

+—— (15  polarizable ions in aqueous solutibh:> and ab initio mo-

=p, — ,
h 07Xh m (9Uh . 16
lecular dynamicg?

and the fast component will contain the terms which affect

the light particles, Ill. EXAMPLES
=S o 7. 1 S Fij o The two rRESPA propagators described in the previous
o icwone | Lo 2 {7 m; v, section are presented merely as a framework for the discus-

sion to follow—many other reversible propagators can also
=y, i+ i i. (16) be constructed using the rRESPA techniqueor most ap-

dx; M dv plications, in fact, a choice must be made between several
reasonable rRESPA propagators. Consider the case of a stiff
oscillator in a slow-moving bath. One could either treat the

scillator as a light degree of freedom in a bath of heavy
particles using Eq(17),>*® or separate the fast spring force
from the slower forces acting in the bath using Et).° In

After substituting these terms into the Trotter factoriza-
tion of Eq.(7), the position and velocity terms in the expo-
nents can be separated using a further Trotter expansio
which results in a propagator of the form

AtF, 9 At 9 practice, there will be differences between these two ap-
G(At)=ex 7 o SP 5 Uh (97) proaches, in both the accuracy of the integration and the
" " CPU time required by the simulation, and the correct choice
At F, 9 StF, 9 J depends on the nature of the system. By considering several
“eXn ﬁh) [ex 2m r9_v|) 9XF< oty (9_x|) examples in the sections to follow, we |Ilystrate the impor-
tance of a properly chosen rRESPA split, and draw some
StF 9\ |" At F, 4 conclusions about how to predict which rRESPA propagators
X ex 2>m (9_1“) 4 m Wh) will be most rewarding when treating novel systems.
A. Analytical treatment: Harmonic oscillator
At d AtF, o
X ex 2 Uh a_xh ex Zm E) 17 Consider the model system depicted in Fig. 1. This sys-
tem consists of a chargg, with massm, moving in a har-
This is equivalent to the algorithmic prescription monic potential with force constamiw?. The particle also
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represents the part of the Liouvillian that acts on its position.

i The propagatoG" is identical to the usual velocity Verlet
» integrator, which for our shifted harmonic oscillator can be
written as
E
q _ qE . . 2x 42
X(At)= W+XO+XOA — 3Xgw At~ (24
-mw2x gE
_‘W X(At)=Xo— Xow?At— Xow?At?+ XAt (25
q Note that these equations match the Taylor expansions of
Egs.(19) and(20) exactly through terms af(At?), confirm-
ing that the error in a velocity Verlet trajectory is 6fAt®).
More specifically, the leading terms in the trajectory errors
after one time step are

AxWV=ow?AtS, (26)

AXW= Exow?At3. 27)
FIG. 1. One-dimensional model system with a fast linear force and a slow

constant force. Note that for any trajectory which oscillates symmetrically

through the minimum of the potential, these errors will av-

erage to zero over time, guaranteeing a stable simulation.
feels a uniform electric field of strength. This system will If we wish to use rRESPA on this system, it would seem
prove useful as a one-dimensional analog for a polarizabl8atural to separate the “fast” spring force from the “slow”
solute, but for now the important feature is that its dynamicsconstant force due to the electric field, using a force-based
can be solved analytically, facilitating a discussion of thePropagator as given by EGL3). This turns out to be a mis-
errors induced by using approximate propagators of variout@ke in certain circumstances, for reasons which will become
types. clear in a moment. To illustrate this point, we proceed to

The single dynamical variable in this system is the posiartition the Liouvillian such that

tion x of the charge. In terms of this variable, the potential is qE 4

i (71/ = —_—
V(X)=imw?x?>—qEX, (18 =1 ax’ (28)
and the trajectory is given by 9 J
_ | Zi=X —— w’X —. (29)
X(t)= —— +Xg cog wt) + — sin(wt), (19
M ® To permit us to concentrate only on the errors associated
. . . ith the rRESPA split, k f tor of th
(1) = — xow Sin(wt) + X COS wt), 20 ¥(\;|rm er split, we make use of a propagator of the
wherex,=x(0)— qE/mw? is the particle’s initial displace- G(At) = 6l #sAt/2gi ZiAtgi 7oAtz (30)

ment from the minimum of the potential arg=x(0) is its

initial velocity. These equations provide a standard againsyith no further factorization of the inner term. Using an ana-
which we may compare the predictions of both the veIOC|ty|ytica| solution for the dynamics generated by the inner

Verlet and rRESPA propagators. _ propagator is equivalent to taking—0, and eliminates all
Using_the rRESPA formalism, the velocity Verlet of the errors except those associated with the separation of
propagatdi' can be generated by writing time scale€? This results in an integrator of the form
GVV(At) — ei %vAt/2ei %xAtei 7, At2 (21) E
’ q )
X(At)=| Xo+ cog wAt
where (A= X+ 7| COS wAl)
 F qE) , 4 X 1 9E -
PR _( - e L 22 +( 242 —; wAt|sin(wA), (31)
represents the part of the Liouvillian that acts on the parti- . _ qE . 19
cle’s velocity, and X(AD ==Xt g ] SiNwAD + 5 1 77 o®At
i Ly=> i 23 +'+lqE 2At At 32
1. Zy=X Ix (23 Xo 2 mawl ? cog wAt). (32

J. Chem. Phys., Vol. 105, No. 4, 22 July 1996



1430 Stuart, Zhou, and Berne: Molecular dynamics with multiple time scales

a) a)
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FIG. 3. Energy trace for the trajectory of a charged harmonic oscillator in a
constant electric field when propagated by velocity Vefetld lineg and
rRESPA (thin lineg. Time step for each method is 0027/ w.

(@ Maximum kinetic energyq?E2/20000mw?. (b) Maximum kinetic
energy=2q°E?/mw?. Note the difference in scale.

FIG. 2. Errors in the trajectory of a charged harmonic oscillator in a con-
stant electric field when propagated by velocity Ver{bold lines and
rRESPA(thin lineg. Time step for each method is 0837/w. The quantity
plotted is the deviation from the analytically correct trajectory.
(@ Maximum kinetic energyg?E?/20000mw?. (b) Maximum kinetic
energy=2q°E%/mw?. Note the difference in scale. The increasing errors in

the velocity Verlet simulations represent a dephasing of the trajectory, no : :
an instability, Lonsistently opposes, and is nearly equal to, the slow force

from the electric field. Even though the slow force is con-
stant, treating it on a different time scale than the spring

When the Taylor expansions of these equations are con{/—?/fe cz?]n |r|lfjuc_e con5|der_ablle errorr]s, as shovr\]/n n R@' 2 i
pared to the Taylor expansions of the exact propad#&tqs. en the kinetic energy Is large, however, the spring wi

(19) and (20)], the leading terms in the RESPA errors areoscillate through the minimum of the potential, and the
seen to be spring force will not act in a consistent direction relative to

the force due to the electric field. In this case, the errors in
the rRESPA propagator can be smaller than those from ve-
locity Verlet, and the trajectory more stable, as in Fig)2
The energy traces for these two cases are displayed in Fig. 3,
AxR= — i q_Ez WAL, (34) showing that rRESPA can also provide energy conservation
12 mw that is either better or worse than velocity Verlet, again de-
Comparing these errors to those generated by the velocitgfnd'ng on the importance of the slow force. Note, however,
Verlet algorithm[Eqs. (26) and (27)], we see two important gt .both propagators generate stable trajectories with no
differences. The leading term in the rRESPA position error irift in the energy. o
only ~(At%), suggesting that rRESPA has the potential to  1h€ conclusion we may draw at this point is a rather
generate a more accurate trajectory. Equally important, how@Pvious one, which will be echoed in the more realistic ex-
ever, is the fact that the rRESPA errors are systematicall mples to follow: A subdivision of the L.IOL.JVI||Ian WI” fail if
negative. Unlike the velocity Verlet errors, which average toth€ Slow and the fast forces are of similar magnitude and
zero over a full period of the oscillator, the predicted COnsistently opposing each other. This is a rather basic prin-
rRESPA positions and velocities will be consistently moreCiPle, which has been pointed out before, and is implicit in
negative than the analytically correct vald@swhich of ~the terminology of a “reference” and a “correction”
these two factors will dominate the dynamics depends upOH.ro.pagatoF. These equal and opposite forces become more
how strong the slow force is relative to the fast force. difficult to spot in more complicated systems, however, and
These differences between velocity Verlet and rRESpANe application of this principle is not always so obvious.
are illustrated in Fig. 2, which shows the error in the trajec- . .
tory for these two propagators. When the kinetic energy i§3 - Polarizable ions
low, the particle spends all of its time stretched away from  Although the model in the previous section was chosen
the origin by the electric field. Thus the fast spring forceprimarily for its simplicity, it is also a useful analog for

1 qE
AxR=— ﬂ% (1)4At4, (33)

J. Chem. Phys., Vol. 105, No. 4, 22 July 1996



Stuart, Zhou, and Berne: Molecular dynamics with multiple time scales 1431

several physical systems. The fast oscillator in a slowly vary- a)
ing field can represent a diatomic molecule in a slow Bdth, ;

1 L] T T 1 T Ll

or the dipolar degrees of freedom in an extended-Lagrangian (;5 =
: rRESPA —

polarizable MD simulatiod®!%?42*These two cases, in fact,

correspond quite well to the two sets of conditions in the
previous section. In the case of a diatomic solute, the oscil-
lator is typically in thermal equilibrium with the rest of the @725
bath. The intramolecular bond will thus vibrate through the

(kcal /‘ mol)

zero of the potential as in Figs(l® and 3b), and the sepa- 735 ; I N n — N 7
ration of forces should cause no problem. When the oscilla- 50 100 150 200 250 300 350 400
tor is a polarizable point dipole, however, its kinetic energy time (fs)
is usually kept quite low, in order to keep the dipole near its b}
optimum value-*1®?*Consequently, the force from the bath  .7.3302
will consistently oppose the spring force as in Fig&) 2and -7.3303 |
3(a), and the rRESPA split describe in the previous section - -7-3304 |
. [=3
would be expected to fail. £ -7.3305
To illustrate this, we consider a system consisting of a § 7-33%
. S = .7.3307 F
polarizable chloride ion solvated by a cluster of 255 water = 73308 L
molecules.(A finite system is chosen in order to eliminate ;3350 |
any energy conservation issues associated with cutoffs or 733 1 L . L L L L

50 100 150 200 250 300 350 400
time (fs)

Ewald sums. The simulation details have been described
previously*'® we summarize them only briefly here. The

water model used is the four-point transferable intermolecu-
lar potential(TIP4P of Jorgenseret al?® The model for CT FIG. 4. Energy trace for a simulation of Drude chloride ion in TIP4P water

is a Drude oscillatc?t7'28 with a net charge o 1|e| which for both velom'ty Verle_t(bolq lineg and rRESPA(thin lineg propagatqrs.
(a) lon—water interactions in outer rRESPA propagatby. lon—water in-

interacts  with .the W?'ter molecules V"? COU|0mb. ar.]dteractions in inner rRESPA propagator. Note the difference in scale.
Lennard-Jones interactions. These Drude ions are maintained
at extremely low temperatures<l K) by periodically

quenching their velocities, so that they provide an accuratgye jon—water interactions in the inner propagator, together
representation of the instantaneous ionic dipole momentgyith the spring forces that they oppose. This requires a larger
This n;é)dEI_ is similar in many ways to the ionic shell ,ymper of interactions to be evaluated in the inner propaga-
model;™ which has also been used to model systems ofqr pyt ensures that the slow force will not always act in the

polarizable ions. same direction relative to the Drude spring vector. With the
The rRESPA split which corresponds to the model systqce separation modified to have the form

tem of the previous section involves placing the slowly vary-

ing forces in the slow part of the propagator, and the quickly ~ Fiy'=(1—=38") (1= 8))F;; (38)
varying spring forces in the fast part. Thus we define (f)_ (s)
(f)_ 5D . F'] _Fij_Fijs . (39)
Fij "= or o7 Fij s (39 and withAt=1 fs andot=0.25 fs as before, the simulation
(S _pE(f) results are as shown in Fig(B. This time the rRESPA
I:ij _FIJ I:ij ) (36)

algorithm provides energy conservation directly comparable
where &° is a delta function which discriminates betweento that of velocity Verlet, with CPU times that are nearly
Drude ions and atoms in other types of molecules, four times faster.

1, ieDrude ion

P = (37

' 0, otherwise. C. Ewald

This force-based split is used in the rRESPA propagator of  Another situation for which this sort of analysis proves
Eq. (13), with an outer time step oAt=1 fs and an inner useful is in systems which use Ewald summation. Since
time step ofdt=At/4=0.25 fs, with the results shown in Ewald sums are used to evaluate long-ranged Coulombic in-
Fig. 4@. Also shown is an energy trace from a velocity teractions, it seems natural to use them as a basis for sepa-
Verlet simulation withAt=1 fs, which results in consider- rating near(fasy and far(slow) forces in a rRESPA split. A
ably better energy conservation. straightforward application of this idea does indeed provide a
As predicted, separating the spring force and the batmoticeable speeduf,but a careful examination shows that a
force is counterproductive in this case. Since the spring islightly less obvious split provides for an even more efficient
kept cold, the bath force is constantly acting to stretch theropagator.
Drude spring, maintaining a persisting opposition between In general, the technique of Ewald sufhss useful in
spring and bath forces, which results in an accumulation ofystems with large partial charges, since the long-ranged
errors. A better alternative would be to put the forces fromCoulomb interactions do not converge sufficiently when
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1432 Stuart, Zhou, and Berne: Molecular dynamics with multiple time scales

summed over a single unit cell. The slowlgnd condition-  With these definitions, we may define a rRESPA split with
ally) converging sum of electrostatic interactions

1 ’ i
elyyy o ©

[rij+n

Fij ==V, Vi (47)

is rearranged so that part of it is summed in real space, and Fi= _Vrijvikjsr (48)

the rest is summed in Fourier spate, _
and use Eq(13) to propagate the dynamic&he real-space

VeI:E 2 E il erfa( k1) forces could also be further subdivided into distance classes,
T 7 19 rij if desired) Such an approach seems perfectly reasonable,
given the disparity in distances over which the terms in the
1 1 4n? .
IS S T q-q-e*kz"“‘z cosk-r: real-_andk-space sums act. Inde_ed, an approach very s_|m|lar
29 9 & w3 ke N to this has been used recently in large-scale Ewald simula-
tions of proteing?!
K E 9 (41) AIthqugh this particula_r rRESPA split i_s moderately suc-
\/; T cessful, it is not necessarily the best choice. The reason for

this is that the “long-ranged’k-space sum still contains
With a suitable choice for the screening parameter some fraction ofverypair interaction, even the most short-
both sums can be made to converge reasonably quitkly.ranged. For typical values of the screening parametewen
More specifically k is always chosen so that the first term in nearest-neighbor Coulomb interactions can be diminished
the expression aboughe real-space sunis adequately con-  gignificantly (20%—40% by the complementary error func-
verged within a radius of no more thar=L/2, whereL is  tjon in the real-space sum. This screened amount is then
the side length of the cubic unit cell. Therefore, the first termgaygjuated in th&-space sum, which is the “slow” piece of
includes primarily short-ranged interactions. The secondne propagator described above. The presence of these short-
term (the k-space sum on the other hand, results from a ranged interactions in thie space sum will limit the size of
Fourier expansion of the potential due to an infinite array ofne large time step\t more than would be necessary if the
Gaussian charges, much of which is considerably longers|ow piece of the propagator were truly long ranged. Indeed,
ranged than the real-space sum. Under the usual assumptig the published report which uses this propagator, the
that long-ranged forces may be updated less frequently thaspace forces required a time step which was shorter than
short-ranged forces, it thus seems reasonable to separate W&t used for some of the real-space fortes.
real- andk-space sums in a rRESPA split. For example, ifwe  Asin the previous two examples, this rRESPA propaga-
rewrite the Ewald sum in the form tor can be seen to produce a persistent opposition between
1 two important forces in the system. This is illustrated graphi-
Ve'=§2_ > Ve, (42) cally in Fig. 5. For configurations where a molecule is
b roughly stationary with respect to of@ more of its neigh-
where bors, the repulsive Lennard-Jong@s]) forces will approxi-
mately cancel the attractive electrostatic forces. When the
erfa(«rij) forces are divided into separate slgkvspace and fast(real-
T space and DJcontributions, there will be a similar cancella-
tion between the fast and slow forces. More significantly, the
1 A2 242 2k fast forces will be consistently repulsive and the slow forces
+ g go e e K4k cosk-rij — &jj \/—— , consistently attractive. This situation will persist for as long
a . . .
as the two molecules in question remain closely bound. In
(43 systems with strong hydrogen bon@shich can persist for
thousands of time stepshe stage is then set for the same
type of systematic errors that were observed in the previous
two sections.
VE=VP+VE, (44) A better alternative would be to assign thentire
Coulomb interaction between nearby atom pairs to the fast

Vii=aig| (1- &)

1

then we can separate the real-space lasgace parts of the
potential,

with propagator, including both real- arldspace contributions.
erfo( 1)) Forces acting between distant atoms can then be assigned to
Vii=(1-6;j)qq; (45  the slow propagator. Thus all pair forces are subdivided

Fii based on the basis of the distance over which they act, re-

and gardless of whether they are real-spacekespace forces.
Somewhat surprisingly, this can be implemented with less

5 2_" . computation than for the real-spakefpace split described

! N above. This is done by first dividing the electrostatic pair

(46) energy of Eq.(43) into a contribution from the central unit

1 4’772 1L2/1.2
ViP=aia)| 5 2 o e " coskery—
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H )
H 0.07 | ]
- = = -t
{b) H \ E 0.06
<1 o S o005t .
—> H— §
ks 0.04} .
H
H 0.03 i
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(c)
Fﬁ_ Osi“’> H 0.01 | E
/ h\ ! .
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H algorithm speed (ps / CPU hour)

. ) FIG. 6. Energy conservation as a function of algorithm speed for velocity
F'G- 5. IIIustratlon_of the opposing forces generated byareal—dpaqm/ce‘ Verlet (bold line), near/far rRESPA(thin line), and real spack/space
split of the Ewald interactionga) Lennard-Jones and Coulomb forces will rRESPA(dashed ling

largely cancel for a pair of hydrogen-bonded moleculbsRoughly 2/3 of

the Coulomb interaction will be included in the real-space term, the rest will

be included in thé&k-space sum(c) If the k-space terms are all included in ) ) o ) ]

the slow propagator, there will be a persistent opposition between the two ~ Using this division of the potential, we can define a
halves of the rRESPA propagator with respect to the molecular axis. rRESPA Split which separates the fast force due to 0n|y the
most short-ranged interactions,

cell (n=0) and another from all image cea+#0). Then=0 o
contribution is equivalent to the usual minimum-image from the remaining slow forces,

boundary conditions, Fi(js)= —[1-S(r; )]Vrijv?j _ Vrijvir} , (53)
VO=(1-6) ﬂ (49) where the switching functio®(r) is equal to unity at =0,

N o) and smoothly decreases decreases to zero beyond some cut-
and the contribution from highan contains the remaining off distance. The use _Of a switching function 'S & common
terms in Eq.(43) method used to minimize the energy conservation errors that

R are typically associated with abrupt cutoffs, such as the one
erf(r ;) implicit in ;) .3 This subdivision of the forces can then be

Vii=aigy| — (1= &) ———
ij

used in the force-split rRESPA propagator of Etg3).
To demonstrate that this near/far rRESPA split is indeed
24 more efficient than the real spakegpace split, we have ap-
Sij 7| plied both propagators, as well as velocity Verlet, to simulate
e a system of 256 TIP4P water molecules at 298 K and a
(500  density of 1.0 g/mL(L=19.71 A. Ewald sums were used
with k=6.0L and 257k vectors. The switching function
S(r) was chosen to be a cubic spline with first derivatives
VE= VO 1y (51 equal to zero at=6 A andr=10 A. All LJ and real-space
oo Coulomb interactions were terminated beyome-9.85
Note that the calculation of" is nearly equivalent to the A~L/2 in both the rRESPA and the velocity Verlet simula-
calculation of the full Ewald sum, with the substitution of a tions.
standard error function for its complement. ThS is sig- Each of the three propagatofeelocity Verlet, near/far
nificantly more expensive to compute thaff, which in- rRESPA and real-spadespace rRESPAwas used in a se-
volves no special functions and can even be obtained at ndes of 8 ps simulations with varying time steps. For the
cost during the time steps in whid” must be calculated. rRESPA simulationsn was chosen to be 2 in E4L3), so
Furthermore, all of the terms ik{{} are truly long ranged, thatst=At/2. The energy conservation of each of these runs
acting at distances of at ledst2. This is the ideal situation is plotted in Fig. 6 against the number of picoseconds which
for a rRESPA split, since the most expensive part of thecan be simulated in one CPU hour on an IBM RS/6000 590.
calculation is also the most long-ranged. This makes it easy to compare the speed of the different

1 472

— K214k
+2, —5-——>¢
&o wL3 K?

cosk-rj;—

so that
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algorithms at a constant level of energy conservation. Energy .5 gs4 . . : ' - .
conservation is defined here as the root mean square single- vfilri?}ya gg%if —
step energy error, normalized by the root mean square single- particle rRESPA - - -
step change in the kinetic energy,

ose _ ((E(t+AD—E(1)*)'" 54 5556
oake  ((KE(t+At)—KE(1))?)Y* (54)

where the averages are performed over the length of the
simulation®* A value of 0.02, for example, means that the
fluctuations in the total system energy are 2% as large as the
fluctuations in the kinetic energy.

The important quantity to notice in Fig. 6 is the ratio of -5.859
each rRESPA speed to the speed of the velocity Verlet algo-
rithm at a given level of energy conservation; this represents
the speedup attributable to the method in question. Calculat-
ing this ratio shows that the near/far rRESPA split is 25% to
35% faster than velocity Verlet, whereas the real space/
space split produces only an 11% speedup. While neither of
these numbers is very impressi¢ieoth would improve for
larger systems and a multilevel rRESPA spthis demon-  FG. 7. Energy trace for a simulation of 4000 Lennard-Jones particles, one
strates that a carefully constructed rRESPA propagator casf which initially has a kinetic energy 10 000 times larger than the average

provide two to three times the benefit of a more obviousKE of the remaining particles. Curves shown are for velocity Verlet with
choice At=0.001 reduced time unitold line), a rRESPA particle splitsee Egs.
’ (55) and (56)] with At=0.004 andst=0.001 (dotted ling and a rRESPA
force split[see Eqs(58) and(59)] with At=0.004 andst=0.001(thin line).

-5.857

—

5.858

Energy (reduced units)

-5.86

1 ! L 1 L

0.2 0.3 0.4 0.5 0.6 0.7

-5.861 !

time (reduced units)

D. Hot/cold system

As a final example, we consider the “hot/cold” system
described in a recent pap€rThis system consists of smalll
number of extremely hofi.e., fast-moving particles sur-

This rRESPA split turns out to be less than ideal, how-
ever, when we consider its effects more carefully. The stron-

ded by a bath of | o] dis rel i th est forces in the system will be experienced during the col-
rounded by a bath of cooler particles, and is relevant in thgg; involving hot atoms, since these are the most

study of relaxation dynamics following photoexcitation. Us- energetic particles. In particular, the collisions between hot

ing tradi'tional prop::;\gators, a very smhall time step ;m;ls’tfbeand cold atoms will typically be quite forceful. In these col-
used to integrate this system, due to the presence of the fags;, 5 however, the subdivision of the Liouvillian proposed

moving particles. With a pro,perly Ch‘?se” rRESI_DA SIOIit'in Egs.(55) and(56) will place one part of the collision force
however, much of the system’s dynamics can be mtegrate% the fast propagator and its reaction force in the slow

with %Iarger time step offering considerable savings in Cpupropagator. As we have seen from the examples in the pre-

| th | diff ceding sections, separating strong and opposing forces in this
As usual, there are several different rRESPA propagatorvcvay typically leads to poor energy conservation. This prin-

which can be applied to this system. And once again, they,,jo 1ogs true for the current case as well, as shown in Fig.
may be evaluated by considering the effect they have on th. tpe energy conservation for a 4000-particle Lennard-

forces in the system. Jones system with one initially hyperkinetic particle is con-

Sinc_e the pbjective is to integrate the dynamics O_f thesiderably worse with a rRESPA particle-based split than it is
hot particles with a smaller ime step than the cold particlesy, velocity Verlet over the duration of the reequilibration
the most obvious choice for a rRESPA propagator is to use Beriod and has a noticeable drift

particle-based split as described in Sec. Il B, with each par- To avoid this problem, we must find a rRESPA split
ticle assigned to a piece of the propagator based on itgich puts all reciprocal force pairs involving the hot atoms

velocity, into the same piece of the propagator. This can be accom-
o g F, 0 . plished with a force-based split of the form
If,/)'fzz Uiﬁ—’_ﬁﬁ_v- 0(|Ui|_v ); (55
' Lo Fiy'=0v* = [viD) 6(v* = [v;Fyj; (58)
C o 1“7 Fi (9 (f)
IKSZZ Vi o T m o o(v* —[vil), (56) Fij '=[1—0(0* —|vi]) 0(v* = |v;)]F;; - (59

Note that all forces between pairs of hot atoms, as well as
those between hot and cold atoms, have been assigned to the
fast piece of the Liouvillian; the cold—cold forcés majority

_]0, x<0 of the interactions are assigned to the slow piece of the
e(x)_[l, x>0 (57) Liouvillian. A propagator can then be constructed as in Eq.

wherev* is a threshold velocity which is used to define the
“hot” atoms, and 6(x) is the unit step function,
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(13). The energy conservation with this propagator is signifi-tains extremely light particles. These particles are typically
cantly improved from both velocity Verlet and the previous 10 to 100 times lighter than the heavy particles in the system,
rRESPA propagator, as shown in Fig. 7. and often represent electronic degrees of freedfbri? Al-

We should note, however, that there are other problemghough there is still a separation of equal and opposing forces
associated with this particular type of rRESPA propagatorbetween the two subsystems during every light/heavy colli-
These arise as a result of the step functions in E&®.and  sjon, these collisions have a relatively minor impact on the
(59). The purpose of these step functions is to discriminaterajectories of the heavy particles, since the light particles
between two classes of forces in order to determine wheRave smaller momenta. The effect on the light particles is
they should be applied in the rRESPA propagator. Since thgyrge, of course, but these particles are being integrated with
velocities upon which this decision is based can change ahe smaller time step. We suggest restricting the use of a
two points during each small time step, as well as two duringarticle-based rRESPA split to cases where the disparity in

each large time step, these forces should be repartitioned g$;sses between light and heavy particles is at least a factor
often as &+2 times per large time stepCf. Eq. (13) and 4 10.

the algorithm which follows if. This introduces considerable

algorithmic complexity which we prefer to avoid. Instead, to the nature of this rRESPA split, each pair of equal and

the approach taken in Ref. 17 was to classify the atoms aépposing forces will remain in the same piece of the
hot or cold only once per large time step. While this simpli-

i ; L . ropagator—no force will be integrated separately from its
fies and speeds up the MD simulation, it has the side effe(g bag g P y

of making the discriminant step functions in EqS8) and irect reaction force. The problem arises here when one
(59) nonlocal in time, thereby destroying the reversibility of broadly defined type of force is separated from a different

the algorithm. This has the unwelcome result of inducing ag{i)gn\,\llar:tc\:/]ece%n;:Ztseen;grfepspiossier:n:[é(lj?atsslmz Cﬁiitth:s?r??r?é
slight drift at times longer than those shown in Fig. 7. For y-app '

systems in which this would be a problem, the Solutionharmonic restoring force of Secs. Il A and Il B. Sometimes
would be to use a fully local implementation of’EQSS) and 2 persistent opposition_ between two forces can be more
(59); this would require a careful implementation to avoid subtle, howevgr, as with the LennarQ—Jopes zknspa(?e
storage or recalculation of tHex N force array, and would Ewald forces in Sec. Il C. In these situations there is no
be somewhat slower than the current impler;wentation I:urgubstitute for a certain amount of physical intuition about the
thermore, a fully local implementation appears to require thesystem being studied. One must conS|der the various forces
use of a smooth switching function in place of the abrupt" the system and where they are being placed in the
cutoffs in Eq.(58) and(59); this is analogous to the case for FRESPA split. It there is a physical reason why one type of

distance cutoffs, such as those in E@2) and (53). fqrce shogld oppose a force which is being integrgted with.a
different time step, one should be extremely cautious. If this

opposition is temporary, and will be erased over the time
IV. CONCLUSION scale of a molecular collision, for example, then there is less

Each of the four examples considered above provides gause for concern. But if the opposition persists over longer

different illustration of a rRESPA propagator that does nottime scales, then the energy conservation and trajectory will
work as well as expected. In each case, the flaw was attrifikely suffer as a result, and a different rRESPA split should
' be considered.

uted to an important force in the system which was separate’
from an opposing force of some kind, and integrated with Some of the most successful uses of the rRESPA method

different time step. While this is an important observation, ithave_corr;tzlgeldl several different rRESPA splits in a nested
alone is not enough to determirae priori which rRESPA  algorithm=="=""For these cases, the guidelines developed
splits will be efficient. Indeed, it is something of a tautology: @P0ve should be applied to each subdivision of the
Every conservative system has a net force of zero, so thagdouvillian. If the forces are separated based on several dif-
any RESPA split will necessarily separate equal and oppoderent criteria(e.g., distance and force typt®~*), then care
ing forces. For these observations to have more predictivéhould be taken that any consistently opposing forces are
value, we must consider particle- and force-based splits sep#itegrated with the same time step. And a combined mass
rately. and force split requires a system with both a tenfdd

The hot/cold system discussed in Sec. Ill D provides ondlreatef mass difference between light and heavy particles as
example of a particle-based rRESPA split. For this system, #ell as separable, nonopposing forces.
particle-based split was less advantageous than a force-based The factorization of the classical propagator used in
split since it separated equal and opposite forces acting béRESPA is a very powerful method, which can accelerate
tween colliding atoms. Since any particle-based split willsimulations by factors of 4 to 15. It can, however, introduce
separated some paired reaction forces in this manner, or@rors which are not present in standard MD algorithms, and
may well wonder why it is that all particle-based rRESPA some care is required to ensure that these do not pose a
splits do not fail. problem. By illustrating some of the pitfalls that can result

Examples in the literature which do successfully imple-from incautious application of the rRESPA method, we hope
ment a particle-based rRESPA split-*®have one feature in to make them easier for others to avoid when using rRESPA
common: They all make use of a fast subsystem which conen previously untreated systems.

For force-based splits, the issue is a little different. Due
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