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Several heuristic rules are developed to assist in the implementation of the reversible reference
system propagator algorithm~rRESPA!. This is done through the use of examples, illustrating the
use of properly chosen rRESPA splits of various types, as well as the dangers associated with
improperly chosen ones. It is concluded that a particle-based rRESPA split should be used only
when there is a great disparity in particle masses, and that a force-based split should be used only
when there is no persisting opposition between forces in the system which are integrated with
different time steps. ©1996 American Institute of Physics.@S0021-9606~96!00928-2#

I. INTRODUCTION

As with many other areas of computational chemistry,
molecular dynamics~MD! simulations have progressed at a
remarkable pace over the past few decades. Systems which
are suitable for MD simulation are constantly growing in
both size and complexity, while the simulation times are also
increasing relentlessly. One of the most important factors
responsible for this continued progress, of course, is the
astounding rate of improvement in computer power. These
‘‘brute force’’ gains have been further compounded, though,
by the development of faster algorithms and integrators. Re-
cent techniques such as the fast multipole method1 and the
reversible reference system propagator algorithm~rRESPA!2

accelerate simulations by up to a factor of 15~Ref. 3!—
roughly equivalent to waiting seven years for faster com-
puter hardware.4

Multiple-time-scale methods such as rRESPA allow the
more slowly varying components of a system to be inte-
grated with a fairly long time step, while still using smaller
time steps for the components which are moving most rap-
idly. This results in faster simulation speeds than are obtain-
able using single-time-step methods, and the time savings
can be used to study larger systems, for longer simulation
times. Various implementations of the rRESPA method have
been applied to a wide variety of systems,2,3,5–17resulting in
speedups by factors of 4 to 15.

Although rRESPA is quite simple to implement, it re-
quires a decision about which parts of the system are to be
integrated with which time steps. In some cases, a clear dis-
parity between strong and weak forces or heavy and light
particles makes the choice obvious. For others, choosing the
best partitioning of the system is more of an art than an exact
science. Still, this decision can have extremely important
consequences, and an improper choice can result in a less
than optimally efficient propagator, or even one which is
worse than the original single-time-step method.

This paper is an attempt to provide some guidelines for
use when applying rRESPA to new systems. By considering
several example systems, and comparing rRESPA propaga-
tors which do not work to those which do, we develop some

general principles which should help in avoiding inefficient
rRESPA propagators.

In Sec. II we first review the theory behind the rRESPA
propagator, and derive two commonly used examples. One
of these partitions the system forces, while the other per-
forms a partition based on particle identities. In Sec. III we
apply variations on these propagators to four different model
systems, pointing out what makes for a successful implemen-
tation of the rRESPA method. Section IV summarizes the
lessons learned from these different examples, and presents
some general conclusions for use in developing new
rRESPA propagators.

II. THEORY

A molecular dynamics trajectory involves propagating
the state of a system forward in time, where the stateG(t)
specifies the individual particles’ positions and momenta at
time t,

G~ t !5~$xi~ t !%,$pi~ t !%!. ~1!

The time propagation is handled by an operatorG(t), with
the property that

G~Dt !5G~Dt !G~0!. ~2!

This operatorG(t) is generally some approximation to the
true classical propagatorU(t),

U~ t !5eiLt, ~3!

where

iL5$ ,H%5(
i51

N Fv i ]

]xi
1
Fi

mi

]

]v i
G ~4!

is the Liouvillian for a system withN degrees of freedom,
expressed in Cartesian coordinates. The first term inside the
sum above is responsible for advancing the positionsxi in
time by an amount proportional to the velocitiesv i ; the sec-
ond term advances the velocities in proportion to the accel-
erationsFi /mi .

The reversible reference system propagator algorithm is
a prescription for generating a discretized propagatorG(Dt)
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which reversibly integrates different components of the sys-
tem under two~or more! different time steps. To accomplish
this, the Liouvillian is first divided into a ‘‘slow’’ and a
‘‘fast’’ piece.

iL5 iLs1 iL f . ~5!

Then by performing a symmetrical Trotter factorization18 of
the classical propagator, we arrive at an approximation to
U(Dt),

G~Dt !5eiLsDt/2eiL fDteiLsDt/2, ~6!

which is accurate toO ~Dt3!. The approximation results from
the fact that exp~iLst! and exp~iL f t! do not necessarily
commute.

If we now factor the inner term in this propagator inton
identical pieces, we obtain

G~Dt !5eiLsDt/2@eiL fdt#neiLsDt/2, ~7!

wheredt5nDt. This smaller time stepdt is used to integrate
the parts of the dynamics advanced byiL f , while the larger
time stepDt is used to advance the terms affected byiLs .
This symmetrical Trotter factorization can be repeated as
many times as desired, and at least one more factorization of
the inner propagator is typically required to separate the po-
sition and velocity components of the propagator. This final
subdivision generates a velocity Verlet-like integrator,2 and
will be illustrated in the following section. As long as the
symmetry of the propagator is preserved, the operatorG(Dt)
will generate explicitly time-reversible dynamics.2

Clearly the choice of how to divide the Liouvillian in
Eq. ~5! is critical, and the most useful split is often dictated
by the physics of the problem at hand. Occasionally, how-
ever, several different choices seem appropriate, and some-
times the most obvious factorization does not turn out to be
the most efficient. The aim of this paper is to provide some
guidelines for choosing a rRESPA split which is likely to
produce accurate and efficient simulations. This will be done
primarily through the discussion of examples in Sec. III.
First, however, we describe two different categories of
rRESPA propagators which will prove useful in the discus-
sion which follows.

A. Force-based RESPA split

For a system which interacts with itself via pairwise
forces, the full Liouvillian of Eq.~4! can be written

iL5(
i

Fv i ]

]xi
1
1

2 (
jÞ i

Fi j

mi

]

]v i
G , ~8!

whereFi j52F ji represents the pair force acting between
atomsi and j . If these forces are separable into two groups
which act on different time scales, we may divide the Liou-
villian correspondingly. The ‘‘slow’’ component of the Li-
ouvillian includes the effect of the slow forces on the particle
velocities,

iLs5
1

2 (
i

(
jÞ i

Fi j
~s!

mi

]

]v i
[
F ~s!

m

]

]v
, ~9!

and the ‘‘fast’’ component includes the effect of the fast
forces on the velocities, as well as the effect of the velocities
on the positions,

iL f5(
i

Fv i ]

]xi
1
1

2 (
jÞ i

Fi j
~ f !

mi

]

]v i
G

[v
]

]x
1
F ~ f !

m

]

]v
, ~10!

where we require that

Fi j
~s!1Fi j

~ f !5Fi j . ~11!

Using this decomposition of the Liouvillian in Eq.~7!,
we obtain a propagator of the form

G~Dt !5expS Dt

2

F ~s!

m

]

]v D FexpS dtv
]

]x

1dt
F ~ f !

m

]

]v D G
n

expS Dt

2

F ~s!

m

]

]v D . ~12!

To use this propagator in an MD simulation, the inner propa-
gator must be split once more, in order to decouple the po-
sition and velocity operators. This is done with another Trot-
ter factorization, giving a velocity Verlet-like inner
propagator,

G~Dt !5expS Dt

2

F ~s!

m

]

]v D FexpS dt

2

F ~ f !

m

]

]v D
3expS dtv

]

]xDexpS dt

2

F ~ f !

m

]

]v D G
n

3expS Dt

2

F ~s!

m

]

]v D . ~13!

@Note that this step introduces additional errors of order
O ~ndt3!5O ~Dtdt2!, which are smaller than theO ~Dt3! er-
rors introduced at this point in a derivation of the pure ve-
locity Verlet propagator.# With the propagator in this form, a
trajectory can be generated from an initial stateG~0! through
repeated application of the operator identity

ec~]/]q! f ~q!5 f ~q1c!. ~14!

Thus the propagator in Eq.~13! produces the following dy-
namics algorithm:

v←v1F ~s!
Dt

2m
do i51,n

v←v1F ~ f !
dt

2m
x←x1vdt

v←v1F ~ f !
dt

2m

end do

v←v1F ~s!
Dt

2m
.
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Note that while the velocities will be updated on two
different time scales, the positions will be updated using only
the smallest time step. This is a direct consequence of
choosing to segregate only the slowforces into iLs , and
thus this type of rRESPA algorithm is referred to as a
force-based split. This class of rRESPA propagators is appli-
cable to a wide range of systems, and various forms of it
have been used to accelerate simulations of water,19 ionic
melts,20 small organic molecules,6,7 buckminsterfullerene,8

proteins,3,9–11 Car–Parrinello dynamics,12 and path integral
molecular dynamics.5

B. Particle-based RESPA split

While a separation based on forces is perhaps the most
widely used variant of the rRESPA algorithm, it is not the
only one. Another common situation in MD simulations is to
have some particles which are significantly lighter than the
others. Since the particles’ velocities will scale with the
square root of their mass, it makes sense to devise a rRESPA
propagator that takes advantage of this fact. In this case, the
most convenient rRESPA propagator uses a division based
on particles, instead of forces. The slow component of the
Liouvillian will now contain the terms which affect either the
positions or the velocities of the heavy particles,

iLs5 (
iPheavy

Fv i ]

]xi
1
1

2 (
jÞ i

Fi j

mi

]

]v i
G

[vh
]

]xh
1
Fh

m

]

]vh
, ~15!

and the fast component will contain the terms which affect
the light particles,

iL f5 (
iP light

Fv i ]

]xi
1
1

2 (
jÞ i

Fi j

mi

]

]v i
G

[v l
]

]xl
1
Fl

m

]

]v l
. ~16!

After substituting these terms into the Trotter factoriza-
tion of Eq. ~7!, the position and velocity terms in the expo-
nents can be separated using a further Trotter expansion,
which results in a propagator of the form

G~Dt !5expS Dt

4

Fh

m

]

]vh
DexpS Dt

2
vh

]

]xh
D

3expS Dt

4

Fh

m

]

]vh
D FexpS dt

2

Fl

m

]

]v l
DexpS dtv l

]

]xl
D

3expS dt

2

Fl

m

]

]v l
D GnexpS Dt

4

Fh

m

]

]vh
D

3expS Dt

2
vh

]

]xh
DexpS Dt

4

Fh

m

]

]vh
D . ~17!

This is equivalent to the algorithmic prescription

vh←vh1Fh

Dt

4m

xh←xh1vh
Dt

2

vh←vh1Fh

Dt

4m
do i51,n

v l←v l1Fl

dt

2m
xl←xl1v ldt

v l←v l1Fl

dt

2m

end do

vh←vh1Fh

Dt

4m

xh←xh1vh
Dt

2

vh←vh1Fh

Dt

4m

.

Here, the positions are updated on both time scales,
since the components of the Liouvillian were separated
based on particle identity, and this class of rRESPA propa-
gators is described as using a particle-based split. Propaga-
tors of this general form are also widely applicable, and have
been used to simulate mixtures of light and heavy Lennard-
Jones particles,2 diatomic oscillators in a monatomic bath,2,13

polarizable ions in aqueous solution,14,15 and ab initio mo-
lecular dynamics.16

III. EXAMPLES

The two rRESPA propagators described in the previous
section are presented merely as a framework for the discus-
sion to follow—many other reversible propagators can also
be constructed using the rRESPA technique.2 For most ap-
plications, in fact, a choice must be made between several
reasonable rRESPA propagators. Consider the case of a stiff
oscillator in a slow-moving bath. One could either treat the
oscillator as a light degree of freedom in a bath of heavy
particles using Eq.~17!,2,13 or separate the fast spring force
from the slower forces acting in the bath using Eq.~13!.5 In
practice, there will be differences between these two ap-
proaches, in both the accuracy of the integration and the
CPU time required by the simulation, and the correct choice
depends on the nature of the system. By considering several
examples in the sections to follow, we illustrate the impor-
tance of a properly chosen rRESPA split, and draw some
conclusions about how to predict which rRESPA propagators
will be most rewarding when treating novel systems.

A. Analytical treatment: Harmonic oscillator

Consider the model system depicted in Fig. 1. This sys-
tem consists of a chargeq, with massm, moving in a har-
monic potential with force constantmv2. The particle also
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feels a uniform electric field of strengthE. This system will
prove useful as a one-dimensional analog for a polarizable
solute, but for now the important feature is that its dynamics
can be solved analytically, facilitating a discussion of the
errors induced by using approximate propagators of various
types.

The single dynamical variable in this system is the posi-
tion x of the charge. In terms of this variable, the potential is

V~x!5 1
2mv2x22qEx, ~18!

and the trajectory is given by

x~ t !5
qE

mv2 1x0 cos~vt !1
ẋ0
v

sin~vt !, ~19!

ẋ~ t !52x0v sin~vt !1 ẋ0 cos~vt !, ~20!

wherex05x(0)2qE/mv2 is the particle’s initial displace-
ment from the minimum of the potential andẋ05 ẋ(0) is its
initial velocity. These equations provide a standard against
which we may compare the predictions of both the velocity
Verlet and rRESPA propagators.

Using the rRESPA formalism, the velocity Verlet
propagator21 can be generated by writing

Gvv~Dt !5eiLvDt/2eiLxDteiLvDt/2, ~21!

where

iLv5
F

m

]

] ẋ
52S x2

qE

mv2Dv2
]

] ẋ
~22!

represents the part of the Liouvillian that acts on the parti-
cle’s velocity, and

iLx5 ẋ
]

]x
~23!

represents the part of the Liouvillian that acts on its position.
The propagatorGvv is identical to the usual velocity Verlet
integrator, which for our shifted harmonic oscillator can be
written as

x~Dt !5
qE

mv2 1x01 ẋ0Dt2
1
2x0v

2Dt2, ~24!

ẋ~Dt !5 ẋ02x0v
2Dt2 1

2ẋ0v
2Dt21 1

4x0v
4Dt3. ~25!

Note that these equations match the Taylor expansions of
Eqs.~19! and~20! exactly through terms ofO ~Dt2!, confirm-
ing that the error in a velocity Verlet trajectory is ofO ~Dt3!.
More specifically, the leading terms in the trajectory errors
after one time step are

Dxvv5 1
6ẋ0v

2Dt3, ~26!

D ẋvv5 1
12x0v

4Dt3. ~27!

Note that for any trajectory which oscillates symmetrically
through the minimum of the potential, these errors will av-
erage to zero over time, guaranteeing a stable simulation.

If we wish to use rRESPA on this system, it would seem
natural to separate the ‘‘fast’’ spring force from the ‘‘slow’’
constant force due to the electric field, using a force-based
propagator as given by Eq.~13!. This turns out to be a mis-
take in certain circumstances, for reasons which will become
clear in a moment. To illustrate this point, we proceed to
partition the Liouvillian such that

iLs5
qE

m

]

] ẋ
; ~28!

iL f5 ẋ
]

]x
2v2x

]

] ẋ
. ~29!

To permit us to concentrate only on the errors associated
with the rRESPA split, we make use of a propagator of the
form

G~Dt !5eiLsDt/2eiL fDteiLsDt/2 ~30!

with no further factorization of the inner term. Using an ana-
lytical solution for the dynamics generated by the inner
propagator is equivalent to takingdt→0, and eliminates all
of the errors except those associated with the separation of
time scales.22 This results in an integrator of the form

x~Dt !5S x01 qE

mv2D cos~vDt !

1S ẋ0v 1
1

2

qE

mv2 vDt D sin~vDt !, ~31!

ẋ~Dt !52S x01 qE

mv2Dv sin~vDt !1
1

2

qE

mv2 v2Dt

1S ẋ01 1

2

qE

mv2 v2Dt D cos~vDt !. ~32!

FIG. 1. One-dimensional model system with a fast linear force and a slow
constant force.
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When the Taylor expansions of these equations are com-
pared to the Taylor expansions of the exact propagator@Eqs.
~19! and ~20!#, the leading terms in the RESPA errors are
seen to be

DxR52
1

24

qE

mv2 v4Dt4, ~33!

D ẋR52
1

12

qE

mv2 v4Dt3. ~34!

Comparing these errors to those generated by the velocity
Verlet algorithm@Eqs.~26! and ~27!#, we see two important
differences. The leading term in the rRESPA position error is
only O ~Dt4!, suggesting that rRESPA has the potential to
generate a more accurate trajectory. Equally important, how-
ever, is the fact that the rRESPA errors are systematically
negative. Unlike the velocity Verlet errors, which average to
zero over a full period of the oscillator, the predicted
rRESPA positions and velocities will be consistently more
negative than the analytically correct values.23 Which of
these two factors will dominate the dynamics depends upon
how strong the slow force is relative to the fast force.

These differences between velocity Verlet and rRESPA
are illustrated in Fig. 2, which shows the error in the trajec-
tory for these two propagators. When the kinetic energy is
low, the particle spends all of its time stretched away from
the origin by the electric field. Thus the fast spring force

consistently opposes, and is nearly equal to, the slow force
from the electric field. Even though the slow force is con-
stant, treating it on a different time scale than the spring
force can induce considerable errors, as shown in Fig. 2~a!.
When the kinetic energy is large, however, the spring will
oscillate through the minimum of the potential, and the
spring force will not act in a consistent direction relative to
the force due to the electric field. In this case, the errors in
the rRESPA propagator can be smaller than those from ve-
locity Verlet, and the trajectory more stable, as in Fig. 2~b!.
The energy traces for these two cases are displayed in Fig. 3,
showing that rRESPA can also provide energy conservation
that is either better or worse than velocity Verlet, again de-
pending on the importance of the slow force. Note, however,
that both propagators generate stable trajectories with no
drift in the energy.

The conclusion we may draw at this point is a rather
obvious one, which will be echoed in the more realistic ex-
amples to follow: A subdivision of the Liouvillian will fail if
the slow and the fast forces are of similar magnitude and
consistently opposing each other. This is a rather basic prin-
ciple, which has been pointed out before, and is implicit in
the terminology of a ‘‘reference’’ and a ‘‘correction’’
propagator.2 These equal and opposite forces become more
difficult to spot in more complicated systems, however, and
the application of this principle is not always so obvious.

B. Polarizable ions

Although the model in the previous section was chosen
primarily for its simplicity, it is also a useful analog for

FIG. 2. Errors in the trajectory of a charged harmonic oscillator in a con-
stant electric field when propagated by velocity Verlet~bold lines! and
rRESPA~thin lines!. Time step for each method is 0.0332p/v. The quantity
plotted is the deviation from the analytically correct trajectory.
~a! Maximum kinetic energy5q2E2/20000mv2. ~b! Maximum kinetic
energy52q2E2/mv2. Note the difference in scale. The increasing errors in
the velocity Verlet simulations represent a dephasing of the trajectory, not
an instability.

FIG. 3. Energy trace for the trajectory of a charged harmonic oscillator in a
constant electric field when propagated by velocity Verlet~bold lines! and
rRESPA ~thin lines!. Time step for each method is 0.0332p/v.
~a! Maximum kinetic energy5q2E2/20000mv2. ~b! Maximum kinetic
energy52q2E2/mv2. Note the difference in scale.
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several physical systems. The fast oscillator in a slowly vary-
ing field can represent a diatomic molecule in a slow bath,2,13

or the dipolar degrees of freedom in an extended-Lagrangian
polarizable MD simulation.14,15,24,25These two cases, in fact,
correspond quite well to the two sets of conditions in the
previous section. In the case of a diatomic solute, the oscil-
lator is typically in thermal equilibrium with the rest of the
bath. The intramolecular bond will thus vibrate through the
zero of the potential as in Figs. 2~b! and 3~b!, and the sepa-
ration of forces should cause no problem. When the oscilla-
tor is a polarizable point dipole, however, its kinetic energy
is usually kept quite low, in order to keep the dipole near its
optimum value.14,15,24Consequently, the force from the bath
will consistently oppose the spring force as in Figs. 2~a! and
3~a!, and the rRESPA split describe in the previous section
would be expected to fail.

To illustrate this, we consider a system consisting of a
polarizable chloride ion solvated by a cluster of 255 water
molecules.~A finite system is chosen in order to eliminate
any energy conservation issues associated with cutoffs or
Ewald sums.! The simulation details have been described
previously;14,15 we summarize them only briefly here. The
water model used is the four-point transferable intermolecu-
lar potential~TIP4P! of Jorgensenet al.26 The model for Cl2

is a Drude oscillator27,28 with a net charge of21ueu which
interacts with the water molecules via Coulomb and
Lennard-Jones interactions. These Drude ions are maintained
at extremely low temperatures~,1 K! by periodically
quenching their velocities, so that they provide an accurate
representation of the instantaneous ionic dipole moments.
This model is similar in many ways to the ionic shell
model,29 which has also been used to model systems of
polarizable ions.

The rRESPA split which corresponds to the model sys-
tem of the previous section involves placing the slowly vary-
ing forces in the slow part of the propagator, and the quickly
varying spring forces in the fast part. Thus we define

Fi j
~ f !5d i

Dd j
DFi j ; ~35!

Fi j
~s!5Fi j2Fi j

~ f ! , ~36!

where di
D is a delta function which discriminates between

Drude ions and atoms in other types of molecules,

d i
D5 H1,0, iPDrude ion

otherwise. ~37!

This force-based split is used in the rRESPA propagator of
Eq. ~13!, with an outer time step ofDt51 fs and an inner
time step ofdt5Dt/450.25 fs, with the results shown in
Fig. 4~a!. Also shown is an energy trace from a velocity
Verlet simulation withDt51 fs, which results in consider-
ably better energy conservation.

As predicted, separating the spring force and the bath
force is counterproductive in this case. Since the spring is
kept cold, the bath force is constantly acting to stretch the
Drude spring, maintaining a persisting opposition between
spring and bath forces, which results in an accumulation of
errors. A better alternative would be to put the forces from

the ion–water interactions in the inner propagator, together
with the spring forces that they oppose. This requires a larger
number of interactions to be evaluated in the inner propaga-
tor, but ensures that the slow force will not always act in the
same direction relative to the Drude spring vector. With the
force separation modified to have the form

Fi j
~s!5~12d i

D!~12d j
D!Fi j ; ~38!

Fi j
~ f !5Fi j2Fi j

~s! . ~39!

and withDt51 fs anddt50.25 fs as before, the simulation
results are as shown in Fig. 4~b!. This time the rRESPA
algorithm provides energy conservation directly comparable
to that of velocity Verlet, with CPU times that are nearly
four times faster.

C. Ewald

Another situation for which this sort of analysis proves
useful is in systems which use Ewald summation. Since
Ewald sums are used to evaluate long-ranged Coulombic in-
teractions, it seems natural to use them as a basis for sepa-
rating near~fast! and far~slow! forces in a rRESPA split. A
straightforward application of this idea does indeed provide a
noticeable speedup,11 but a careful examination shows that a
slightly less obvious split provides for an even more efficient
propagator.

In general, the technique of Ewald sums30 is useful in
systems with large partial charges, since the long-ranged
Coulomb interactions do not converge sufficiently when

FIG. 4. Energy trace for a simulation of Drude chloride ion in TIP4P water
for both velocity Verlet~bold lines! and rRESPA~thin lines! propagators.
~a! Ion–water interactions in outer rRESPA propagator.~b! Ion–water in-
teractions in inner rRESPA propagator. Note the difference in scale.
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summed over a single unit cell. The slowly~and condition-
ally! converging sum of electrostatic interactions

Vel5
1

2 (
n

(
i

( 8
j

qiqj
ur i j1nu

~40!

is rearranged so that part of it is summed in real space, and
the rest is summed in Fourier space,31

Vel5
1

2 (
i

(
jÞ i

qiqj
erfc~kr i j !

r i j

1
1

2 (
i

(
j

(
kÞ0

1

pL3
4p2

k2
qiqje

2k2/4k2 cosk–r i j

2
k

Ap
(
i
qi
2. ~41!

With a suitable choice for the screening parameterk,
both sums can be made to converge reasonably quickly.32

More specifically,k is always chosen so that the first term in
the expression above~the real-space sum! is adequately con-
verged within a radius of no more thanr5L/2, whereL is
the side length of the cubic unit cell. Therefore, the first term
includes primarily short-ranged interactions. The second
term ~the k-space sum!, on the other hand, results from a
Fourier expansion of the potential due to an infinite array of
Gaussian charges, much of which is considerably longer-
ranged than the real-space sum. Under the usual assumption
that long-ranged forces may be updated less frequently than
short-ranged forces, it thus seems reasonable to separate the
real- andk-space sums in a rRESPA split. For example, if we
rewrite the Ewald sum in the form

Vel5
1

2 (
i

(
j
Vi j
el , ~42!

where

Vi j
el5qiqjF ~12d i j !

erfc~kr i j !

r i j

1
1

pL3 (
kÞ0

1
4p2

k2
e2k2/4k2 cosk–r i j2d i j

2k

Ap
G ,

~43!

then we can separate the real-space andk-space parts of the
potential,

Vi j
el5Vi j

rs1Vi j
ks, ~44!

with

Vi j
rs5~12d i j !qiqj

erfc~kr i j !

r i j
~45!

and

Vi j
ks5qiqjF 1

pL3 (
kÞ0

4p2

k2
e2k2/4k2 cosk–r i j2d i j

2k

Ap
G .

~46!

With these definitions, we may define a rRESPA split with

Fi j
~ f !52“ r i j

Vi j
rs ~47!

and

Fi j
~s!52“ r i j

Vi j
ks, ~48!

and use Eq.~13! to propagate the dynamics.~The real-space
forces could also be further subdivided into distance classes,
if desired.! Such an approach seems perfectly reasonable,
given the disparity in distances over which the terms in the
real- andk-space sums act. Indeed, an approach very similar
to this has been used recently in large-scale Ewald simula-
tions of proteins.11

Although this particular rRESPA split is moderately suc-
cessful, it is not necessarily the best choice. The reason for
this is that the ‘‘long-ranged’’k-space sum still contains
some fraction ofeverypair interaction, even the most short-
ranged. For typical values of the screening parameterk, even
nearest-neighbor Coulomb interactions can be diminished
significantly ~20%–40%! by the complementary error func-
tion in the real-space sum. This screened amount is then
evaluated in thek-space sum, which is the ‘‘slow’’ piece of
the propagator described above. The presence of these short-
ranged interactions in thek space sum will limit the size of
the large time stepDt more than would be necessary if the
slow piece of the propagator were truly long ranged. Indeed,
in the published report which uses this propagator, the
k-space forces required a time step which was shorter than
that used for some of the real-space forces.11

As in the previous two examples, this rRESPA propaga-
tor can be seen to produce a persistent opposition between
two important forces in the system. This is illustrated graphi-
cally in Fig. 5. For configurations where a molecule is
roughly stationary with respect to one~or more! of its neigh-
bors, the repulsive Lennard-Jones~LJ! forces will approxi-
mately cancel the attractive electrostatic forces. When the
forces are divided into separate slow~k-space! and fast~real-
space and LJ! contributions, there will be a similar cancella-
tion between the fast and slow forces. More significantly, the
fast forces will be consistently repulsive and the slow forces
consistently attractive. This situation will persist for as long
as the two molecules in question remain closely bound. In
systems with strong hydrogen bonds~which can persist for
thousands of time steps! the stage is then set for the same
type of systematic errors that were observed in the previous
two sections.

A better alternative would be to assign theentire
Coulomb interaction between nearby atom pairs to the fast
propagator, including both real- andk-space contributions.
Forces acting between distant atoms can then be assigned to
the slow propagator. Thus all pair forces are subdivided
based on the basis of the distance over which they act, re-
gardless of whether they are real-space ork-space forces.
Somewhat surprisingly, this can be implemented with less
computation than for the real-space/k-space split described
above. This is done by first dividing the electrostatic pair
energy of Eq.~43! into a contribution from the central unit
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cell ~n50! and another from all image cells~nÞ0!. Then50
contribution is equivalent to the usual minimum-image
boundary conditions,

Vi j
05~12d i j !

qiqj
r i j

, ~49!

and the contribution from highern contains the remaining
terms in Eq.~43!,

Vi j
n5qiqjF2~12d i j !

erf~kr i j !

r i j

1(
kÞ0

1

pL3
4p2

k2
e2k2/4k2 cosk–r i j2d i j

2k

Ap
G ,

~50!

so that

Vi j
el5Vi j

01Vi j
n ~51!

Note that the calculation ofVn is nearly equivalent to the
calculation of the full Ewald sum, with the substitution of a
standard error function for its complement. ThusVn is sig-
nificantly more expensive to compute thanV0, which in-
volves no special functions and can even be obtained at no
cost during the time steps in whichVn must be calculated.
Furthermore, all of the terms inVi j

n are truly long ranged,
acting at distances of at leastL/2. This is the ideal situation
for a rRESPA split, since the most expensive part of the
calculation is also the most long-ranged.

Using this division of the potential, we can define a
rRESPA split which separates the fast force due to only the
most short-ranged interactions,

Fi j
~ f !52S~r i j !“ r i j

Vi j
0 , ~52!

from the remaining slow forces,

Fi j
~s!52@12S~r i j !#“ r i j

Vi j
02“ r i j

Vi j
n , ~53!

where the switching functionS(r ) is equal to unity atr50,
and smoothly decreases decreases to zero beyond some cut-
off distance. The use of a switching function is a common
method used to minimize the energy conservation errors that
are typically associated with abrupt cutoffs, such as the one
implicit in Vi j

0 .33 This subdivision of the forces can then be
used in the force-split rRESPA propagator of Eq.~13!.

To demonstrate that this near/far rRESPA split is indeed
more efficient than the real space/k-space split, we have ap-
plied both propagators, as well as velocity Verlet, to simulate
a system of 256 TIP4P water molecules at 298 K and a
density of 1.0 g/mL~L519.71 Å!. Ewald sums were used
with k56.0/L and 257k vectors. The switching function
S(r ) was chosen to be a cubic spline with first derivatives
equal to zero atr56 Å and r510 Å. All LJ and real-space
Coulomb interactions were terminated beyondr59.85
Å'L/2 in both the rRESPA and the velocity Verlet simula-
tions.

Each of the three propagators~velocity Verlet, near/far
rRESPA and real-space/k-space rRESPA! was used in a se-
ries of 8 ps simulations with varying time steps. For the
rRESPA simulations,n was chosen to be 2 in Eq.~13!, so
thatdt5Dt/2. The energy conservation of each of these runs
is plotted in Fig. 6 against the number of picoseconds which
can be simulated in one CPU hour on an IBM RS/6000 590.
This makes it easy to compare the speed of the different

FIG. 5. Illustration of the opposing forces generated by a real-space/k-space
split of the Ewald interactions.~a! Lennard-Jones and Coulomb forces will
largely cancel for a pair of hydrogen-bonded molecules.~b! Roughly 2/3 of
the Coulomb interaction will be included in the real-space term, the rest will
be included in thek-space sum.~c! If the k-space terms are all included in
the slow propagator, there will be a persistent opposition between the two
halves of the rRESPA propagator with respect to the molecular axis.

FIG. 6. Energy conservation as a function of algorithm speed for velocity
Verlet ~bold line!, near/far rRESPA~thin line!, and real space/k-space
rRESPA~dashed line!.
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algorithms at a constant level of energy conservation. Energy
conservation is defined here as the root mean square single-
step energy error, normalized by the root mean square single-
step change in the kinetic energy,

sDE

sDKE
5

^~E~ t1Dt !2E~ t !!2&1/2

^~KE~ t1Dt !2KE~ t !!2&1/2
, ~54!

where the averages are performed over the length of the
simulation.34 A value of 0.02, for example, means that the
fluctuations in the total system energy are 2% as large as the
fluctuations in the kinetic energy.

The important quantity to notice in Fig. 6 is the ratio of
each rRESPA speed to the speed of the velocity Verlet algo-
rithm at a given level of energy conservation; this represents
the speedup attributable to the method in question. Calculat-
ing this ratio shows that the near/far rRESPA split is 25% to
35% faster than velocity Verlet, whereas the real space/k-
space split produces only an 11% speedup. While neither of
these numbers is very impressive~both would improve for
larger systems and a multilevel rRESPA split! this demon-
strates that a carefully constructed rRESPA propagator can
provide two to three times the benefit of a more obvious
choice.

D. Hot/cold system

As a final example, we consider the ‘‘hot/cold’’ system
described in a recent paper.17 This system consists of small
number of extremely hot~i.e., fast-moving! particles sur-
rounded by a bath of cooler particles, and is relevant in the
study of relaxation dynamics following photoexcitation. Us-
ing traditional propagators, a very small time step must be
used to integrate this system, due to the presence of the fast-
moving particles. With a properly chosen rRESPA split,
however, much of the system’s dynamics can be integrated
with a larger time step offering considerable savings in CPU
time.17

As usual, there are several different rRESPA propagators
which can be applied to this system. And once again, they
may be evaluated by considering the effect they have on the
forces in the system.

Since the objective is to integrate the dynamics of the
hot particles with a smaller time step than the cold particles,
the most obvious choice for a rRESPA propagator is to use a
particle-based split as described in Sec. II B, with each par-
ticle assigned to a piece of the propagator based on its
velocity,

iL f5(
i

Fv i ]

]xi
1
Fi

mi

]

]v i
Gu~ uv i u2v* !; ~55!

iLs5(
i

Fv i ]

]xi
1
Fi

mi

]

]v i
Gu~v*2uv i u!, ~56!

wherev* is a threshold velocity which is used to define the
‘‘hot’’ atoms, andu(x) is the unit step function,

u~x!5 H0,1, x,0
x.0. ~57!

This rRESPA split turns out to be less than ideal, how-
ever, when we consider its effects more carefully. The stron-
gest forces in the system will be experienced during the col-
lisions involving hot atoms, since these are the most
energetic particles. In particular, the collisions between hot
and cold atoms will typically be quite forceful. In these col-
lisions, however, the subdivision of the Liouvillian proposed
in Eqs.~55! and~56! will place one part of the collision force
in the fast propagator and its reaction force in the slow
propagator. As we have seen from the examples in the pre-
ceding sections, separating strong and opposing forces in this
way typically leads to poor energy conservation. This prin-
ciple holds true for the current case as well, as shown in Fig.
7: The energy conservation for a 4000-particle Lennard-
Jones system with one initially hyperkinetic particle is con-
siderably worse with a rRESPA particle-based split than it is
for velocity Verlet over the duration of the reequilibration
period, and has a noticeable drift.

To avoid this problem, we must find a rRESPA split
which puts all reciprocal force pairs involving the hot atoms
into the same piece of the propagator. This can be accom-
plished with a force-based split of the form

Fi j
~s!5u~v*2uv i u!u~v*2uv j u!Fi j ; ~58!

Fi j
~ f !5@12u~v*2uv i u!u~v*2uv j u!#Fi j . ~59!

Note that all forces between pairs of hot atoms, as well as
those between hot and cold atoms, have been assigned to the
fast piece of the Liouvillian; the cold–cold forces~a majority
of the interactions! are assigned to the slow piece of the
Liouvillian. A propagator can then be constructed as in Eq.

FIG. 7. Energy trace for a simulation of 4000 Lennard-Jones particles, one
of which initially has a kinetic energy 10 000 times larger than the average
KE of the remaining particles. Curves shown are for velocity Verlet with
Dt50.001 reduced time units~bold line!, a rRESPA particle split@see Eqs.
~55! and ~56!# with Dt50.004 anddt50.001 ~dotted line! and a rRESPA
force split@see Eqs.~58! and~59!# with Dt50.004 anddt50.001~thin line!.
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~13!. The energy conservation with this propagator is signifi-
cantly improved from both velocity Verlet and the previous
rRESPA propagator, as shown in Fig. 7.

We should note, however, that there are other problems
associated with this particular type of rRESPA propagator.
These arise as a result of the step functions in Eqs.~58! and
~59!. The purpose of these step functions is to discriminate
between two classes of forces in order to determine when
they should be applied in the rRESPA propagator. Since the
velocities upon which this decision is based can change at
two points during each small time step, as well as two during
each large time step, these forces should be repartitioned as
often as 2n12 times per large time step.@Cf. Eq. ~13! and
the algorithm which follows it.# This introduces considerable
algorithmic complexity which we prefer to avoid. Instead,
the approach taken in Ref. 17 was to classify the atoms as
hot or cold only once per large time step. While this simpli-
fies and speeds up the MD simulation, it has the side effect
of making the discriminant step functions in Eqs.~58! and
~59! nonlocal in time, thereby destroying the reversibility of
the algorithm. This has the unwelcome result of inducing a
slight drift at times longer than those shown in Fig. 7. For
systems in which this would be a problem, the solution
would be to use a fully local implementation of Eqs.~58! and
~59!; this would require a careful implementation to avoid
storage or recalculation of theN3N force array, and would
be somewhat slower than the current implementation. Fur-
thermore, a fully local implementation appears to require the
use of a smooth switching function in place of the abrupt
cutoffs in Eq.~58! and~59!; this is analogous to the case for
distance cutoffs, such as those in Eqs.~52! and ~53!.

IV. CONCLUSION

Each of the four examples considered above provides a
different illustration of a rRESPA propagator that does not
work as well as expected. In each case, the flaw was attrib-
uted to an important force in the system which was separated
from an opposing force of some kind, and integrated with
different time step. While this is an important observation, it
alone is not enough to determinea priori which rRESPA
splits will be efficient. Indeed, it is something of a tautology:
Every conservative system has a net force of zero, so that
any RESPA split will necessarily separate equal and oppos-
ing forces. For these observations to have more predictive
value, we must consider particle- and force-based splits sepa-
rately.

The hot/cold system discussed in Sec. III D provides one
example of a particle-based rRESPA split. For this system, a
particle-based split was less advantageous than a force-based
split since it separated equal and opposite forces acting be-
tween colliding atoms. Since any particle-based split will
separated some paired reaction forces in this manner, one
may well wonder why it is that all particle-based rRESPA
splits do not fail.

Examples in the literature which do successfully imple-
ment a particle-based rRESPA split2,14–16have one feature in
common: They all make use of a fast subsystem which con-

tains extremely light particles. These particles are typically
10 to 100 times lighter than the heavy particles in the system,
and often represent electronic degrees of freedom.14–16 Al-
though there is still a separation of equal and opposing forces
between the two subsystems during every light/heavy colli-
sion, these collisions have a relatively minor impact on the
trajectories of the heavy particles, since the light particles
have smaller momenta. The effect on the light particles is
large, of course, but these particles are being integrated with
the smaller time step. We suggest restricting the use of a
particle-based rRESPA split to cases where the disparity in
masses between light and heavy particles is at least a factor
of 10.

For force-based splits, the issue is a little different. Due
to the nature of this rRESPA split, each pair of equal and
opposing forces will remain in the same piece of the
propagator—no force will be integrated separately from its
direct reaction force. The problem arises here when one
broadly defined type of force is separated from a different
type which consistently opposes it. In some cases the oppo-
sition between these forces is immediately apparent, as in the
harmonic restoring force of Secs. III A and III B. Sometimes
a persistent opposition between two forces can be more
subtle, however, as with the Lennard-Jones andk-space
Ewald forces in Sec. III C. In these situations there is no
substitute for a certain amount of physical intuition about the
system being studied. One must consider the various forces
in the system and where they are being placed in the
rRESPA split. It there is a physical reason why one type of
force should oppose a force which is being integrated with a
different time step, one should be extremely cautious. If this
opposition is temporary, and will be erased over the time
scale of a molecular collision, for example, then there is less
cause for concern. But if the opposition persists over longer
time scales, then the energy conservation and trajectory will
likely suffer as a result, and a different rRESPA split should
be considered.

Some of the most successful uses of the rRESPA method
have combined several different rRESPA splits in a nested
algorithm.3,6,8–11 For these cases, the guidelines developed
above should be applied to each subdivision of the
Liouvillian. If the forces are separated based on several dif-
ferent criteria~e.g., distance and force type3,6,8–11!, then care
should be taken that any consistently opposing forces are
integrated with the same time step. And a combined mass
and force split requires a system with both a tenfold~or
greater! mass difference between light and heavy particles as
well as separable, nonopposing forces.

The factorization of the classical propagator used in
rRESPA is a very powerful method, which can accelerate
simulations by factors of 4 to 15. It can, however, introduce
errors which are not present in standard MD algorithms, and
some care is required to ensure that these do not pose a
problem. By illustrating some of the pitfalls that can result
from incautious application of the rRESPA method, we hope
to make them easier for others to avoid when using rRESPA
on previously untreated systems.
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