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Large scale simulations of macromolecules in solution that do not suffer from artifacts arising from
force truncations are becoming feasible. New force evaluation algorithms such as the fast multipole
method~FMM! and multiple time scale integration methods such as the reversible reference system
propagator algorithm~r -RESPA! have been combined and used to perform fast and stable
simulations of large macromolecular systems. A consistent treatment of the long-range forces in
simulations with periodic boundary conditions requires the use of a periodic form of the Coulomb
potential. In this article, the FMM is extended to periodic systems, and combined with RESPA,
yielding a new algorithm that is successfully applied to the simulation of large biomolecules in
solution. If the interactions at different stages are separated smoothly, good energy conservation is
obtained even for time steps as large as 12 fs on a system of over 40 000 atoms, and a CPU speedup
of more than a factor of 20 is achieved compared to the standard Verlet integrator with Ewald sum
for the Coulombic interaction. As compared with the recently developed particle-mesh Ewald
~PME! method, the periodicr -RESPA/FMM has a break-even point at about 20 000 atoms; for
larger systems,r -RESPA/FMM is expected to be more efficient. ©1997 American Institute of
Physics.@S0021-9606~97!51923-4#
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I. INTRODUCTION

Performing large scale simulations of macromolecules
solution is still a challenge. For some problems, a reali
representation of the effects of the solvent environment
cessitates an atomistic model of both solute and solvent,
the need for large numbers of atoms. Since the numbe
pairwise interactions amongN atoms grows likeN2, the di-
rect computation of all of them is not practical, even w
current supercomputers, for more than a few thousand ato
This problem is often circumvented in biomolecular simu
tions by truncating the forces beyond a ‘‘cutoff’’ distance.1,2

With clever pair-list generating algorithms, the compu
tional cost scales asO(N). However, the truncation of force
changes the underlying physical system. Recently, it
been shown that the truncation of long-range electrost
interactions introduces unrealistic physical effects.3–12 To
avoid the truncation of long-range interactions, seve
groups have experimented with approximate schemes
which the most widely used is the fast multipole meth
~FMM! of Greengard and Rokhlin13–17 and its variants.18–22

This algorithm, described in more detail in Sec. II, decrea
the computational burden toO(N) by cleverly exploiting a
hierarchy of clusters and using multipolar expansions to
proximate the potential produced by these clusters. Rece
another promising algorithm, particle-mesh Ewa
~PME!,21,23–25has been described in the literature.

Another common approach to speed up the simula

a!Electronic mail: ronlevy@lutece.rutgers.edu
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of solvated biomolecules is the use of holonomic co
straints26,27 to effectively freeze the rapidly varying degree
of freedom, thus allowing for larger time steps. Unfort
nately, the use of a Verlet integrator plus these constra
limits the time step that can be safely taken to between
and 2 fs, depending on the complexity of the system. Fo
solvated protein of about 1000 atoms, one is typically limit
to a time step of 1 fs. To go beyond these limitations, alg
rithms more sophisticated than the usual Verlet integrator
necessary, and several multiple time step methods have
proposed.2,28–37The reversible reference system propaga
algorithm ~r -RESPA! developed by Berneet al.33 is a gen-
eral technique which yields a family of multiple time ste
integration algorithms.

In this article, we devise a new algorithm which com
bines the periodic FMM for computing the long-range ele
trostatic forces with the RESPA multiple time scale integ
tor, and apply it to simulations of solvated proteins wi
periodic boundary conditions. The periodic FMM is nece
sary to handle, in a consistent manner, the effects of perio
boundary conditions, which are typically used in simu
ations that include explicit solvent. The combine
r -RESPA/FMM algorithm for free boundary conditions wa
described in an article by Zhou and Berne;34 this article ex-
tends their treatment to the periodic case. We also re
comparisons with published performance figures for
PME andr -RESPA/PME methods.

The structure of the article is as follows. In Sec. II, th
FMM is described, based largely on Greengard
9835835/15/$10.00 © 1997 American Institute of Physics
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9836 Figueirido et al.: Large scale simulation of macromolecules in solution
dissertation.13 Since most simulations use periodic bounda
conditions, the consistent treatment of the electrostatic in
actions in a periodic system using the FMM is discussed
Sec. III. Section IV provides a description of ther -RESPA
technique, with the emphasis on the separation of for
based on different distance scales. In Sec. V, the separa
of forces in the FMM used in the applications of th
r -RESPA method is discussed. This separation in FMM
be done in a number of ways, including a sharp separa
based on the boundaries between boxes, as done by
and Berne34 for isolated protein systems, or a smooth se
ration using a switching function. Switching functions ha
been widely used in nonbonded force separations
r -RESPA.33,34 We have implemented both methods a
compare their efficiency. Section VI presents an analysis
simulations on several different systems, ranging from a p
of ions in aqueous solution to a solvated macromolec
with emphasis on the energy conservation as a function
the simulation parameters. From this analysis, it appears
the presence of solvent has a dramatic effect on the con
vation of energy: For a given level of energy conservation
more accurate simulation is needed when the solvent is
cluded. It also emerges that using a smooth switching fu
tion sometimes allows the use of a much larger time s
than when the sharp separation is implemented. In Sec.
we report the results of timing tests, as well as a compari
with the PME method. Finally, we offer some conclusio
and discuss the implications of our findings for biomolecu
simulations.

In Appendix A, we present some technical details co
cerning the extension of the FMM to periodic boundary co
ditions. Appendix B provides details of our implementati
inside the molecular mechanics packageIMPACT.38

II. THE FAST MULTIPOLE METHOD

The fast multipole method~FMM!13,14 has already been
described in several articles, at varying levels of detail.
overview of the method is given below.

The FMM starts from the observation that the elect
static potential produced by a collection of charges can
approximated by a multipolar sum

f~x!'(
l50

p

(
m52 l

l

~21! l
ml

m

Al
mix2x0i l11 Yl

m~x2x0̂!, ~1!

where the multipolar coefficientsml
m depend only on the

sources and not on the observation point,x is the observation
point, andx0 is the geometric center of the charges. The ca
indicates the unit vector. Our definition of the multipol
coefficients, which is chosen to simplify the equations t
follow,17 differs from the usual one by the factor
(21)l /Al

m , whereAl
m is given by the formula13

Al
m5

~21! l

A~ l2m!! ~ l1m!!
. ~2!

In contrast to White and Head Gordon,17 however, we use
the same nonstandard normalization for the spherical
monics as Greengard:13
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m~u,f!5A~ l2m!!

~ l1m!!
Pl
m~cosu!eimf ~3!

for m>0 and

Yl
2m5Yl

m* . ~4!

Although the use of this approximation was proposed alm
twenty years ago,39,40Appel41 was the first to recognize tha
one can compute these coefficients efficiently using a hie
chical algorithm, where the particles are collected into ‘‘clu
ters’’ at different levels. The first level,L50, encompasses
all the particles in the system; each successive levelL11 is
obtained by dividing the clusters at levelL into octants. After
this construction has proceeded up to some specified l
L, where the clusters typically contain only a few particle
the multipole coefficients are computed for each cluster
that level, using the formula

ml
m5~21! lAl

m(
a

qaixa2x0i lYl
2m~xa2x0̂!, ~5!

where the sum is taken over all charged particles in the c
ter, andx0 is the geometric center of the cluster. The alg
rithm continues then by evaluating the coefficients of a cl
ter at levelL in terms of those of its octants at levelL11.
For this purpose, a ‘‘multipole translation’’ formula is use

ml8
m5(

j50

l

(
n52 j

j

J~m2n,n!

3ml2 j
m2n~21! j ix2x8i jAj

nYj
2n~x2x8̂! ~6!

which gives the coefficients of the multipole expansi
aroundx8 in terms of the coefficients of the multipole expa
sion aroundx, whereJ(m,n) is given by

J~m,n!5 H ~21!min$umu,unu% if m•n,0
1 otherwise. ~7!

Barnes and Hut42 improved on Appel’s method by intro
ducing a faster algorithm for ‘‘loading’’ the particles ont
the clusters at levelL, that is, deciding to which of the 8L

clusters each particle belongs. This algorithm was shown
Salmon43 to be asymptoticallyO(N logN); he also described
a parallel version. Hernquist,44 Makino,45,46 and Barnes47

later modified this algorithm to improve the performance
vector supercomputers. Saito20 and Shimadaet al.21 de-
scribed algorithms that used similar ideas. Greengard
Rokhlin13,14went a step further with the observation that t
multipolar expansions of the potentials produced by sev
clusters could be lumped together into a local expansion
the form

f~x!5(
l50

p

(
m52 l

l

l l
mAl

mix2x8i lYl
m~x2x8̂!, ~8!

where the coefficientsl l
m again are independent of the obse

vation point,x, but depend on the center of expansion,x8,
and showed that their algorithm was asymptoticallyO(N),
albeit with a large constant factor. The corresponding field
given by the formula
No. 23, 15 June 1997
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9837Figueirido et al.: Large scale simulation of macromolecules in solution
E~x!5(
l50

p

(
m52 l

l

l l
mAl

mix2x8i l21@2 lYl
m~x2x8̂!

1 i ~x2x8̂!3LYl
m#, ~9!

where the angular momentum operatorL acts as follows:

iLYl
m5S i Al ~ l11!2m~m11!

2
Yl
m11

1 i
Al ~ l11!2m~m21!

2
Yl
m21,

Al ~ l11!2m~m11!

2
Yl
m11

2
Al ~ l11!2m~m21!

2
Yl
m21, imYl

mD . ~10!

The coefficients of these local expansions are computed
hierarchical manner, described later, in which one of
steps involves a ‘‘multipole to local’’ translation formul
analogous to Eq.~6!

l l8
m5(

j50

p

(
n52 j

j

J8~n,m!mj
n 1

Al1 j
n2mix2x8i l1 j11

3Yl1 j
n2m~x2x8̂!, ~11!

where

J8~m,n!5 H ~21!min$umu,unu% if m•n.0
1 otherwise. ~12!

The other main step in this calculation is a ‘‘local to loca
translation formula,

l l8
m5(

j5 l

p

(
n52 j

j

J9~n,n2m!l j
n~21! j2 l ix2x8i j2 l

3Aj2 l
n2mYj2 l

n2m~x2x8̂!, ~13!

whereJ9 is given by

J9~m,n!5H ~21! unu if m•n,0
~21! um2nu if m•n.0 and umu,unu,
1 otherwise,

~14!

Boardet al.15 described one of the first implementatio
in the context of molecular dynamics. They also describe
parallel version. White and Head–Gordon17 studied the ac-
curacy and performance of the FMM as a function of t
number of multipoles retained in the sum,p, and the depth
L of the tree. Dinget al.18 described a slightly different al
gorithm where Cartesian multipoles are used instead of
expansions in spherical harmonics. Their method was lim
to only a few moments due to the complexity of the Car
sian representation. Fenleyet al.48 implemented an adaptiv
version of the FMM for their calculations of the total ele
trostatic energy of strands of DNA. None of these implem
J. Chem. Phys., Vol. 106,
a
e

a

e
d
-

-

tations, however, treated the case of periodic boundary c
ditions, although Schmidt and Lee49 had described an Ewald
like method to extend the FMM to this case.

The FMM involves the following stages.
~FMM.0! Create a tree structure to describe the clust

from levelsl50 to L. This must be done only once.
~FMM.1! Load the particles onto the clusters~nodes of

the tree! at levelL.
~FMM.2! Compute the multipolar coefficients of a

clusters at levelL, Eq. ~5!, and then use the recursive pro
cedure, Eq.~6!, to compute the coefficients at levell given
those at levell11, for l,L. At the end of this step, the
multipolar coefficients of an expansion around the cente
each cluster would have been computed.

~FMM.3! Using Greengard’s recursive algorithm, com
pute the coefficients of the local expansion, around the ce
of each clusterc at level l ( l<L). This involves two steps:
~i! shifting the local expansion coefficients ofc’s parent at
level l21 to c at levell , using Eq.~13!; ~ii ! adding the local
expansions from multipoles of clusters that are children
c’s parent’s first and second neighbors, but are neither
nor second neighbors ofc itself, using Eq.~11!. After this
step, the multipolar expansions of every cluster that is no
first nor a second neighbor ofc ~at the same levelu! are
lumped together. The first and second neighbors are
cluded because they are calculated directly.

~FMM.4! For each particle in a clusterc at the lowest
level L, compute the contribution to the energy and for
from the local expansion of distant multipoles using Eq.~9!;
add to this the contribution from the nearby particles th
have not contributed to the above local expansion coe
cients, that is, particles in eitherc, or first or second neigh-
bors ofc.

In step~FMM.4!, all the direct interactions between pa
ticles in c and those inc and its first and second neighbo
are computed; this is just like the direct approach, except
it is applied at levelL. IncreasingL decreases the size of th
clusters at that level, and therefore the time spent in s
~FMM.4!, however, it increases the total number of cluste
and thus the time spent in steps~FMM.2! and~FMM.3! @step
~FMM.1! is usually extremely fast#. Of these two, steps
~FMM.3! is by far the most expensive. To obtain an efficie
algorithm, one must therefore find a balance between s
~FMM.3! and~FMM.4!. One way to do this~see Sec. V! is to
use a deep tree~large L, small clusters! but to do step
~FMM.3! less often. This leads us naturally to consider m
tiple time step methods~see Sec. IV!.

III. EXTENSION TO PERIODIC BOUNDARY
CONDITIONS

The first implementation of the FMM for systems wit
periodic boundary conditions, to our knowledge, is that
Schmidt and Lee,49 although Greengard’s dissertation13 con-
tains a brief description of the main ideas. Recen
Esselink50 compared the algorithmic complexity of the per
odic FMM and the Ewald summation method. This secti
enlarges on the method of Schmidt and Lee and presen
No. 23, 15 June 1997
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9838 Figueirido et al.: Large scale simulation of macromolecules in solution
derivation of formulas which reduce to regular Ewald in t
proper limits. We were unable to reduce the correspond
formulas in Ref. 49 to the correct limiting forms.

In the description below, we assume that the simulat
box is cubic and its linear dimension isb. To introduce
periodic boundary conditions, it is convenient to think of t
simulation system as consisting of an~infinite! lattice of ex-
act replicas of the unit cell. We focus on one particular c
among them and call it the ‘‘central’’ box; the others will b
called the ‘‘proper copies.’’ The potential produced by
the proper copies at a pointx inside the central box can b
represented, neglecting for the moment issues of con
gence, by the infinite sum

f~x!5(
l50

p

(
m52 l

l

(
nÞ0

~21! lml
m

Yl
m~x2bn̂!

Al
mix2bni l11 . ~15!

Schmidt and Lee regarded these proper copies as ‘‘virtu
clusters and applied the same FMM algorithm to them a
the central box. More precisely, the proper copies can
subdivided into first and second neighbors of the central
and all the others. The third neighbors and more distant c
ies, that is, those for which at least one component ofn is
larger than 2, will be called ‘‘distant copies’’. The local fie
from these distant copies at pointx in the central box can
then be expressed by

f~x!5(
l50

p

(
m52 l

l

lm
l Al

mixi lYl
m~ x̂!, ~16!

where the expansion coefficients are given by the infin
sum

l l
m5(

j51

p

(
n52 j

j

J8~n,m!mj
n

3S 1

bl1 j11Al1 j
n2m ( 8

nÞ0

Yl1 j
n2m~ n̂!

ini l1 j11D . ~17!

~The j50 term does not enter the summation since the
is neutral.! The first and second neighbors are treated in
usual way as if they were part of the simulation volum
except that forces on particles inside them are never c
puted. In what follows, it is more convenient to consider t
sum in Eq.~17! as extending over all nonzeron; to get back
the constrained sum, we only need to subtract the exp
sum over first and second neighbors. This approach there
differs from the usual FMM in that the simulation box sta
with a nonzero local expansion, given by the sum in E
~17!, and all clusters have the same number of first and s
ond neighbors.

The only dependence on the instantaneous configura
of the charges in Eq.~17! lies in the multipole moments o
the central box,ml

m . Thus the infinite sums in parenthes
need be computed only once, provided the shape of the
tral simulation box does not change. Following Schmidt a
Lee, this computation is carried out using an extension of
Ewald summation method, which is described next; the d
vation parallels that given by de Leeuwet al.51 For fixed l
andm, we need to compute
J. Chem. Phys., Vol. 106,
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Sl
m[(

nÞ0

Yl
m~ n̂!

ini l11 , ~18!

which is conditionally convergent for 1< l<2 and abso-
lutely convergent forl.2. To obtain a convergent sum tha
can be manipulated, we replace Eq.~18! by

Sl
m5 lim

s→01
(
nÞ0

ini lYl
m~ n̂!

ini2l11 e2sini2. ~19!

With this regularization, the sum for oddl vanishes identi-
cally because of reflection symmetry. The sum over evel
converges absolutely but slowly. To accelerate the conv
gence, we proceed, as for the Ewald summation, and use
identity

1

x2r
5

1

G~r !
E
0

`

t r21e2tx2dt, ~20!

obtained from the definition of theG function by a simple
change of variables. Inserting this representation into
~19! gives,

Sl
m5 lim

s→01

1

GS l1 1

2D
(
nÞ0

ini lYl
m~ n̂!

3E
0

`

t l11/221e2~s1t !ini2dt. ~21!

For s.0, the sum converges absolutely and the summa
and integration can be interchanged, so that

Sl
m5 lim

s→01

1

GS l1 1

2D
E
0

`

dttl11/221

3(
nÞ0

ini lYl
m~ n̂!e2~s1t !ini2. ~22!

Separation of the integral at a midpoint, which de Lee
et al. call a2 , requires evaluation of the two sums

A5E
0

a2

dttl11/221(
nÞ0

ini lYl
m~ n̂!e2~s1t !ini2. ~23!

and

B5E
a2

`

dttl11/221(
nÞ0

ini lYl
m~ n̂!e2~s1t !ini2. ~24!

In the second sum, the convergence is absolute for as
.2a2, so that we can take the limits→01 with confi-
dence. We can then rewrite the sumB as

B5(
nÞ0

Yl
m~ n̂!

ini l11 E
a2ini2

`

t l11/221e2tdt. ~25!

We are thus led to consider the integrals

I r~x!5E
x

`

t r21e2tdt ~26!

which can be shown to satisfy the recurrence relation
No. 23, 15 June 1997
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9839Figueirido et al.: Large scale simulation of macromolecules in solution
I r~x!5xr21e2x1~r21!I r21~x!, ~27!

valid for any r . Since the values for half integralr (r5 l
11/2) are needed, the recurrence relations must be sup
mented with the initial value

I 1/2~x!5Ap@12erf~Ax!#, ~28!

where erf(x) is the usual error function.
The first sum is rather more complicated and the det

are given in Appendix A. After some algebra, one arrives
the final result for the sum over all proper copies:

Sl
m5(

nÞ0

Yl
m~ n̂!

ini l11

5(
nÞ0

Yl
m~ n̂!

ini l11 I l11/2~a2ini2!

1(
kÞ0

p l21/2i lYl
m~ k̂!iki l22e2p2iki2/a2. ~29!

As discussed above, the explicit sum over first and sec
neighbors must be subtracted from this result.

The results embodied in Eq.~29! resembles the Ewald
summation formula2,51 but differs from the latter in a key
aspect: whereas the Ewald summation formula gives
Wigner potential at each point in the unit cell, Eq.~29! gives
just the nontrivial part of the coefficients of the translati
matrix that converts the unit cell’s multipole moments into
local expansion around its center of the potential produ
by all the proper copies~that is, not including the centra
cell!. The full translation matrix is given by Eq.~17!.

IV. REVERSIBLE RESPA ( r -RESPA)

The reversible reference system propagator algorith
(r -RESPA!33 form a family of multiple time step algorithm
derived from a Trotter factorization of the Liouville propa
gator,

U~ t !5e2 i tL , ~30!

iL5(
j

S 1mj
pj

]

]qj
1Fj~q!

]

]pj
D . ~31!

The basic idea is to decompose the Liouville operator i
the sumL5L11L2 and then use the Trotter formula to a
proximate the full propagatorU(Dt) for a finite but small
time stepDt as

U~Dt !'U2S Dt

2 DU1~Dt !U2S Dt

2 D , ~32!

whereUj is the propagator associated withL j . This expan-
sion is accurate to orderO(Dt3), but judicious choice of the
decomposition can yield an algorithm for which a ‘‘long
Dt can be used; for a detailed discussion, the reader is
ferred to the original publication.33 This decomposition guar
antees that the integration is time reversible and confe
long-time stability on the integrator.33,35–37Different decom-
J. Chem. Phys., Vol. 106,
le-
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positions yield different integration algorithms;34,52,53for our
purposes, two decompositions are of interest. The first
composition defines

L5Lq1Lp , ~33!

iL q5(
j

1

mj
pj

]

]qj
, ~34!

iL p5(
j
Fj~q!

]

]pj
. ~35!

In this case, since each Liouville operator ‘‘propagates’’ on
one half of the conjugated variables, their finite-time prop
gators are easily computed:

Uq~Dt !g~q,p!5e2 iDtLqg~q,p!5gS q2
Dt

m
p,pD ~36!

Up~Dt !g~q,p!5e2 iDtLpg~q,p!5g@q,p2DtF~q!#,
~37!

whereg(q,p) is an arbitrary~smooth! function defined on
the phase space. From these identities and the approxim

U~Dt !'UpS Dt

2 DUq~Dt !UpS Dt

2 D ~38!

one immediately obtains the Verlet1 integration algorithm, as
shown in Ref. 33.

The second decomposition of interest separates
forces into ‘‘fast’’ and ‘‘slow’’ components,Ff andFs , and
the corresponding Liouville operators are defined by

iL f5(
j

(
j

S 1mj
pj

]

]qj
1Ff , j~q!

]

]pj
D , ~39!

iL s5(
j
Fs, j~q!

]

]pj
. ~40!

The fast propagator~reference propagator! can be further de-
composed as,

Uf~Dt !5FUf S Dt

n D Gn ~41!

followed by a Verlet-type decomposition for the inner prop
gator. All the algorithms described in this article follow th
pattern, with the innermost propagator handled by the sim
Verlet integrator. The advantage and disadvantage of dif
ent factorization are discussed in a recent article.54

The fast and slow components are often identified
separating a distance-dependent force into a short- an
long- ~or medium-! range pieces; this is conveniently don
with a ‘‘switching’’ function, s(r ), such thats(r )50 for r
,r l and s(r )51 for r.r u , where r l,r u are two cutoff
distances chosen according to the problem at hand.33,34,52

With such a switching function, one takes

Ff~r !5@12s~r !#F~r ! ~42!

Fs~r !5s~r !F~r !. ~43!
No. 23, 15 June 1997
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9840 Figueirido et al.: Large scale simulation of macromolecules in solution
The decomposition~39! can be applied recursively: the fa
forcesFf can be further decomposed into modes with diff
ent time scales, and the same Trotter expansion used on
decomposition.

In macromolecular simulations, one typically subjec
the system to holonomic constraints to keep the bond len
fixed during the simulation. Moreover, many water mod
have been parameterized assuming rigid geometries. T
constraints allow for larger time steps since the fast bo
vibrations are frozen. The use ofr -RESPA integrators, on
the other hand, allows the use of a short time step for
rapidly varying bonding forces, and a large time step for
nonbonding forces, the most-expensive part of calculatio
less frequently. However, since many force fields have b
parameterized assuming rigid bonds, it is useful to allow
these constraints. In all the integration algorithms descri
in this article, with the exception of simple Verlet~where all
the forces are computed at every step!, we treat the bonding
forces as the ‘‘fastest’’ forces, that is, they are the ones
get updated in the innermost propagator loop. Since it is o
inside that loop that the coordinates are updated, to sa
the holonomic constraints, we apply coordinate correcti
using, for example, theSHAKE26 algorithm, within this inner-
most loop. Since the time step is small, the updates are s
and SHAKE converges rapidly. If one wants to apply als
velocity corrections usingRATTLE27 they must, on the othe
hand, be applied after every update of the velocities, wh
occur at all levels. It should be noted that whenSHAKE and
RATTLE are used, the resulting RESPA integrator is no lon
reversible. Since the CPU time spent doing these upd
scales linearly with the number of atoms, the overhead
volved is negligible for large systems where the nonbon
force calculation consumes well over 90% of the time.

In Sec. V, the actual force decompositions used in
code are described.

V. COMBINING THE FMM WITH r -RESPA

The bottlenecks in the FMM are steps~FMM.3!, where
the local expansion coefficients are generated, and~FMM.4!,
where the interactions with particles that lie in a cluster
one of its first or second neighbors are computed. Usin
deeper tree~largerL! shifts the burden from step~FMM.4! to
~FMM.3!. The interactions between particles that are
from each other are computed through the local expans
in this step, and thus, this step involves the slowly vary
long-range force which can be treated in the outer loop.

The bonding forces will always comprise the innermo
loop. In our code, we have implemented several differ
decompositions of the nonbonding forces:

~i! r -RESPA2: all nonbonded forces are computed
once, that is, they are not decomposed; since
bonding forces are computed separately this is a t
stager -RESPA.

~ii ! r -RESPA3: the nonbonded forces are divided in
two ranges:~a! short range: those arising from th
direct pair interactions within the cluster itself and t
first neighbor clusters; and~b! long range: the rest
J. Chem. Phys., Vol. 106,
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that is, those computed as direct interactions with p
ticles in the second shell of clusters plus those co
puted via the local expansions;

~iii ! r -RESPA4: we divide the nonbonded interactions in
three ranges:~a! short range: those arising from th
cluster itself and first neighbors;~b! medium range:
those arising from the second neighbors; and~c! long
range: the contribution from the local expansions
distant multipoles;

For both r -RESPA3 andr -RESPA4, we have also
implemented variants~r -RESPA3-sm andr -RESPA4-sm, re-
spectively! which use a smooth, spherically symmetr
switching function to separate the direct interactions in
short and long range. The choice of decomposition is un
complete control of the user through special keywords ad
to the IMPACT command language~see Appendix B!.

As shown above, the direct calculation in the FMM
broken into two stages in two ways:~a! as in Zhou and
Berne,34 a sharp cutoff based on the cluster decomposit
for electrostatic forces in isolated proteins; and~b! using a
smooth, spherically symmetric switching function to defi
the short- and medium-range components~the long-range
component is always identified with that computed from t
local expansions!, as was done previously.33,34 The reason
for this dual implementation was to test whether the sha
ness of the Zhou–Berne cutoff introduces problems in s
ations other than those treated by them~proteins in vacuum!.

The particular form of the switching function used
r -RESPA3-sm andr -RESPA4-sm is not very important, a
long as it and its first derivative are continuous. We cho
the same form as Zhou and Berne had chosen for t
Lennard-Jones interactions, which were computed separa
from the electrostatic ones, in contrast to our code. T
switching function we use is defined by

s~r !5H 0 if r,r l ,

SS r2r l
r u2r l

D if r l<r<r u;

1 if r.r u

~44!

whereS is the polynomial

S~x!5x2~322x! ~45!

which has the property that its first derivative vanishes
both x50 andx51. It should be noted that the sharp, ce
based cutoff used inr -RESPA3 andr -RESPA4 is more natu-
ral, and results in a faster method, from the point of view
the FMM. A spherically symmetric switching function is, o
the other hand, more natural to separate the forces at di
ent length scales. It is possible, however, to consider als
smooth switching function with cubic symmetry.

Note that for the two-stage method~r -RESPA2! the
original FMM is used, since in this case we do not separ
the nonbonding forces into short- and long-range com
nents.

To combine the FMM with any of ther -RESPA integra-
tors, a slight modification of the algorithm described in S
II is needed. Steps~FMM.0! through~FMM.3! remain essen-
No. 23, 15 June 1997
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9841Figueirido et al.: Large scale simulation of macromolecules in solution
tially the same, except that~FMM.2! and ~FMM.3! are
skipped in all but the outermost loop, where the forces t
need to be computed contain the contribution from the lo
expansions. Step~FMM.4! is replaced by the following.

~FMM.48! For each particle in a clusterc at the lowest
level L, compute the contribution to the energy and for
from: ~a! the local expansion from distant multipoles arou
the center of the clusterc using Eq.~9!, if we are in the
outermost loop;~b! the medium-range interactions~from sec-
ond neighbors!, if this stage calls for it; or~c! the short-range
interactions~from cluster itself and its first neighbors!. No-
tice that the decomposition into short- and medium-ran
interactions is different, as discussed above, when a s
cutoff or a switching function are used.

VI. ENERGY CONSERVATION

Energy conservation during the simulation is a comm
requirement for an integration algorithm.33,34,38,55,56The de-
viations from exact energy conservation arise from ma
sources:~a! the finite time step used in the numerical int
gration, which renders the method only approximat
Hamiltonian;~b! the finite precision in the numerical evalu
ation of the forces;~c! the intrinsic deficiencies of the inte
gration algorithm, such as not being symplectic. In this
ticle, we are concerned mostly with~a! and~b!. To study the
effects of time step and errors in the forces on the ene
conservation, we have run simulations of several differ
systems, ranging from pure SPC water to ions in water
proteins in water. In addition, we have studied the effect
using periodic boundary conditions as opposed to f
boundary conditions on the energy conservation.

Two energy conservation parameters are commonly u
to describe the stability of a constant-energy molecular
namics ~MD! simulation.33,34,38,55One is the total energy
fluctuationDE defined by

DE[
1

NT
(
i51

NT UE02Ei

E0
U, ~46!

whereEi is the total energy at stepi , E0 is the initial energy,
andNT is the total number of time steps. This quantity h
been shown to be a reasonable measure of accuracy in
vious simulations,53,55 and a value ofDE<0.003, i.e.,
logDE,22.5, gives an acceptable numerical accuracy. A
other common measure of accuracy is the ratio of the
deviation of the total energy to the rms deviation of the
netic energy,38,56

R[
DErms

DKErms
. ~47!

A value ofR<0.05, has been used as an alternate crite
for stability in MD simulations.53,55 In this article, we use
logDE as a measure for the energy conservation.

As a test of accuracy, we have examined the error in
force between two oppositely charged ions in a 32 Å box
a function of their relative separation. The difference b
J. Chem. Phys., Vol. 106,
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tween the results of a very accurate Ewald calculation~h
511.0, r c516.0 Å, kmax530! and a FMM calculation with
L53, p520 was always less than 331026.

A. Ions in SPC water

We ran several 1 ps simulations using the simple Ve
integration algorithm, but using different force algorithm
on a system consisting of 1103 SPC water molecules p
one Cl2 and one Na1 ion. The simulation box was a cube o
side 32 Å. The SPC molecules were kept rigid usi
SHAKE/RATTLE26,27 as described in Sec. V. For the Ewa
method, the convergence parametera was chosen equal to
h/bx , wherebx is the linear dimension of the~cubic! box
andh was taken to be 5.5; the real-space cutoff distance
9 Å. For the FMM, the depth was fixed atL53 and the
number of multipoles was varied from a minimum ofp54
to a maximum ofp57. Figure 1 illustrates the drift with
respect to the initial total energy as a function of the sim
lation time. It indicates that for this ion/water system, a m
tipole level of at leastp56 should be used to generate
stable MD simulation, however, it is found that for isolate
protein systems, usingp54 is enough. This difference in
requiredp for proteins in vacuum and NaCl solution show
that the level of multipoles needed to achieve a speci
accuracy depends on the specific system. We will disc
this in Sec. VII.

Table I presents the results from several runs using
r -RESPA integrator. The entries in the first column give t
combination of force separation stages. The notation we
is analogous to that used by Zhou and Berne;34 each of the
four components corresponds to a particular stage—ex
that a ‘‘1’’ means that the corresponding stage is absent,

FIG. 1. Energy conservation for different force algorithms, using the Ve
integrator. The system studied contained one Cl2 and one Na1 ion, plus
1103 SPC water molecules. The dashed line corresponds to a simul
using the Ewald summation method~r c59 Å, h55.5, kmax55!; the others
are for simulations using the FMM with different number of multipole
(p).
No. 23, 15 June 1997



e-

in
-
ag
x

o

.
d
ve
ft
th

ot
ot
on

f
tio
st
a
se
n

e

he
sen
e, a
ater
all
ol-

de-
ity
m
ery
be

ps

ic
nd

, a
d
sed

is

in

ra-
oth
r
m,

an
up-
ore,

,
me

n-
he

9842 Figueirido et al.: Large scale simulation of macromolecules in solution
has been coalesced with the one immediately above~to the
right of! it. Thus, for example, the entry~2,2,1! means: a
three stager -RESPA with the two inner stages being r
peated for two steps each—that is, it is ar -RESPA3 ~or
r -RESPA3-sm!, according to the classification presented
Sec. V. The parameterDt gives the time step, in femtosec
onds, used for the outermost stage; those for the inner st
are obtained by dividing by the appropriate factor. For e
ample, if the first entry says~2,2,2!, and the time step for the
outermost stage is 4 fs, then the time step for the innerm
stage is given by

Dt f5
Dt

23232
50.5 fs. ~48!

The third column reports logDE, the quantity defined in Eq
~46!; the fourth column gives the number of CPU secon
used in the run. All the timings reported in this article ha
been normalized to a one node IBM RS6000 SP2. The fi
and sixth columns give some other common indicators of
quality of an integration algorithm:34,38 the rms deviation of
the total energy divided by, respectively, the average t
energy and the rms deviation of the kinetic energy; b
quantities are shown in percentages. All these simulati
were run using FMM withL53 andp57. From these re-
sults, it appears that the optimal force decomposition
~2,4,1! with a smooth force separation, and a time step o
fs, since this combination yields good energy conserva
(logDE523.61) at almost a third of the computational co
It is noteworthy also that separating the second neighbor
local expansion contributions results in poor energy con
vation, probably due to charge fluctuations near the bou
aries between second and third neighbors.

B. Proteins in water

The effect of solvating a protein was studied on thr
systems: ribonucleaseH(2rn2), arabinose-binding protein

TABLE I. Energy conservation for differentr -RESPA integrators. In all
cases, the FMM withL53, p57 was employed. The system studied co
tained one Cl2 and one Na1 ion, plus 1103 SPC water molecules. See t
text for a discussion of the parameters used.

Method Dt ~fs! logDE CPU (103 s/ps) DErms ~%! R ~%!

~2,1,1! 2 24.11 4.9 0.009 5
~4,1,1! 4 23.60 2.5 0.018 10
~2,2,1! 4 21.81 2.4 0.89 180
~2,2,1!a 4 24.01 3.4 0.009 5
~2,2,2! 4 22.03 3.2 0.53 140
~2,2,2!a 4 22.32 5.1 0.27 104
~8,1,1! 8 22.92 1.3 0.036 19
~2,4,1! 8 21.11 1.2 4.96 260
~2,4,1!a 8 23.61 1.7 0.021 11
~4,2,1! 8 21.05 1.4 5.68 260
~4,2,1!a 8 24.00 2.2 0.010 5
~2,2,2! 8 21.42 1.6 2.33 237
~2,2,2!a 8 21.68 2.5 1.24 212
~3,3,2! 8 21.47 2.2 1.94 202
~3,3,2!a 8 21.62 2.2 1.4 206

aUsing a smooth switching function.
J. Chem. Phys., Vol. 106,
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(8abp), and lysozyme. In all cases, the protein is put in t
center of a pre-equilibrated SPC water bath, which is cho
large enough to hold the protein. For the lysozyme cas
very large water box, 76 Å on each side, was used. The w
molecules that overlap with the protein are deleted in
cases. After these steps, the number of remaining water m
ecules are:~a! 1982 for ribonucleaseH; ~b! 5990 for
arabinose-binding protein; and~c! 14 093 for lysozyme. The
solvated proteins are then minimized by using a steepest
scent method, and equilibrated to about 300 °K by veloc
rescaling. After full equilibration of the protein-water syste
has been achieved, which can take a CPU week for v
large protein systems, a constant energy simulation can
run.

The results described below were obtained from 1
MD simulations of 2rn2/water ~8412 atoms!, 8abp/water
~22 913 atoms!, and lysozyme/water~44 259 atoms!. Two
algorithms for calculating electrostatic forces with period
boundary conditions, Ewald sum and periodic FMM; a
two integrators, Verlet andr -RESPA, are compared.

Table II lists logDE and CPU timings for protein
2rn2/water with different methods. For the Ewald method
cutoff r c515.0 Å andh58 are used in the real space, an
kmax510 is used in the reciprocal space. The parameters u
here should be close to the optimal values for 2rn2/water
system. The energy conservation of the Verlet/Ewald
found to be logDE523.20 in this case. The periodic FMM
was combined with ther -RESPA method as discussed
Sec. V; the parameters used wereL53 andp57. The re-
sults indicate that a smooth cutoff in RESPA force sepa
tions is necessary for protein/water systems. If a nonsmo
force separation~box separation! is used for both van de
Waals and Coulombic forces in this protein water syste
the logDE is 22.84,22.52,21.49, and20.89 for overall
time steps of 2, 4, 8, and 12 fs inr -RESPA, respectively.
This poor energy conservation might be due to our using
atom-based cutoff, rather than the usual molecule–or gro
based cutoffs. If a smooth separation is used, much m
stable MD simulations can be generated with logDE equal to
24.16,22.77,23.70, and23.27 for time steps of 2, 4, 8
and 12 fs, respectively. This shows that a very large ti

TABLE II. Energy conservation of protein ribonucleaseH in water ~8412
atoms!. The data are collected from a 1 ps MD run of thesystem for differ-
ent methods. In all cases, the FMM withL54, p56 was employed. See the
text for a discussion of the parameters used.

Method (n1 ,n2 ,n3) Dt ~fs! logDE CPU (103 s/ps)

V-Ewald ~1,1,1! 1 23.20 27.7
V-FMM ~1,1,1! 1 23.68 35.0
R-FMM ~2,2,1! 2 22.84 21.2

~2,2,1!a 2 24.16 32.3
~2,2,2! 4 22.52 19.5
~2,2,2!a 4 22.77 31.4
~4,4,1! 8 21.49 8.52
~4,4,1!a 8 23.70 13.0
~4,4,1! 12 20.89 6.80
~4,4,1!a 12 23.27 8.48

aUsing a smooth switching function.
No. 23, 15 June 1997
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9843Figueirido et al.: Large scale simulation of macromolecules in solution
step of up to 12 fs can be used in ther -RESPA/FMM algo-
rithm for the 2rn2/water system provided the force sepa
tion is done with a smooth switching function. Compared
the Verlet/Ewald method, ther -RESPA/FMM with time step
of 12 fs gives a factor of 3.3 in CPU time saving at comp
rable accuracy for this system~8412 atoms!.

Table III lists analogous results for the 8abp/water sys-
tem ~22 661 atoms!. For the Ewald method, we varied th
cutoffs between 15 and 22 Å andh between 8 and 15, an
report the best results that were obtained in this range.
parametersL54 andp57 were used in the FMM metho
for 8abp/water. Stable MD simulations are obtained by u
ing smooth cutoffs, similar to the 2rn2/water system. The
CPU saving is a factor of 11.4, which is reasonable beca
the r -RESPA/FMM @O(N)# becomes more favorable tha
the Verlet/Ewald method@O(N3/2)# as the system size in
creases.

Lysozyme in water~44 259 atoms! is the largest system
studied in this article. In Table IV, we also show the resu
using L54, p57, and differentr -RESPA integrators. Fo
the Ewald method, a cutoff of 18 Å andh512 is used in the
simulation. For the reciprocal space sum, we setkmax515.
Again we observe that a smooth force separation is neces
to obtain good energy conservation for time steps of 4 fs

TABLE III. Energy conservation of arabinose-binding protein in wa
~23 912 atoms!. The data are collected from 0.5 ps MD run of the system
different methods. In all cases, the FMM withL54, p56 was employed.
See the text for a discussion of the parameters used.

Method (n1 ,n2 ,n3) Dt ~fs! logDE CPU (103 s/ps)

V-Ewald ~1,1,1! 1 23.20 219
V-FMM ~1,1,1! 1 23.75 104
R-FMM ~2,2,1!a 2 23.91 67.9

~2,2,2!a 4 22.37 51.1
~4,4,1! 8 21.09 19.4
~4,4,1!a 8 23.76 24.3
~4,4,1! 12 20.64 13.2
~4,4,1!a 12 23.11 16.4

aUsing a smooth switching function.

TABLE IV. Energy conservation for differentr -RESPA integrators. The
entries marked ‘‘Verlet’’ were run with a 1 fs time step but only for 20
steps. The others were run for a full picosecond. In all cases, the time
picosecond is reported. Except when noted the FMM withL54, p57 was
employed. The system studied contained one molecule of lysozyme wit
titratable residues neutralized, plus 14 093 SPC water molecules. Se
text for a discussion of the parameters used.

Method (n1 ,n2 ,n3) Dt ~fs! logDE CPU (103 s/ps)

V-Ewald ~1,1,1! 1 22.18 562.2
V-FMM ~1,1,1! 1 24.27 185.7
R-FMM ~2,2,2! 4 22.30 41.7

~2,2,2!a 4 22.50 64.4
~4,4,1! 8 21.28 24.5
~4,4,1!a 8 24.00 35.4
~4,4,1! 12 20.84 16.8
~4,4,1!a 12 23.75 24.1

aUsing a smooth switching function.
J. Chem. Phys., Vol. 106,
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more. Similarly, we obtain a very stable simulation ev
using a time step up to 12 fs, which gives us a speedup
about 20 with respect to the Verlet/Ewald integrator.

The above simulation results imply that for the prote
water systems it is necessary to use a smooth cutoff w
performing the force separations inr -RESPA; however, as
was reported in a previous article,34 a very stable MD simu-
lation can be obtained without a switching function f
protein/vacuum systems. Here we use lysozyme/vacu
~1980 atoms! and lysozyme/water~44 259 atoms! systems as
an example to exhibit the effect of a smooth cutoff on t
energy conservation. Figure 2 shows the results for these
systems with and without smooth cutoffs. All energy cons
vation data are collected from 1 ps MD runs using differe
time steps. For the many possible combinations
(n1 ,n2 ,n3) for a fixed overall time step, only the best resu
is reported. It is clear that the smooth cutoff greatly improv
the energy conservation for the lysozyme/water syste
When the overall time step increases from 1 to 12
logDE increases from24.27 to 20.97 for sharp cutoffs,
while it only increases from24.27 to 23.75 for smooth
cutoffs. On the other hand, the effect of the smooth cutof
much smaller for the lysozyme/vacuum system, in agreem
with previous results.34 Apparently, the problem arises from
the water molecules. For rigid water molecules~SPC!, mo-
lecular cutoffs, not atomic cutoffs, are normally used
avoid splitting dipoles in electrostatic calculations. Howev
it is easier to use atomic cutoffs in FMM, because it is mo
natural to treat all atoms equally when assigning particles
cells on the tree. In our implementation, an atomic cutoff
used for the SPC water molecules. The fast translational
rotational motion of the small water molecules produc
large charge fluctuations at the cell boundaries, which m
induce large force fluctuations for those water molecu

r

er

all
the

FIG. 2. Effect of the smooth cutoff on the energy conservation for prot
lysozyme in vacuum~dashed lines! and in water~solid lines!. It is shown
that using smooth cutoff is necessary for the protein/water system, wh
has less effect on the protein/vacuum system.
No. 23, 15 June 1997
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9844 Figueirido et al.: Large scale simulation of macromolecules in solution
around the cell boundaries. Using a smooth cutoff redu
the abrupt force changes to some extent, thus significa
improving the energy conservation. The use of molecu
cutoffs for water will improve the energy conservation, a
lowing the use of a smallerp than thep57 now used for
protein/water, thus saving CPU time.

VII. COMPARISON OF FMM WITH EWALD
SUMMATION METHODS

A. Periodic FMM versus Ewald summation

Figure 3 shows a comparison of the CPU times per s
for the Ewald method~triangles! and the FMM~circles!. The
calculations were performed on a Hewlett–Packard HP
9000/735 runningA.09.01 at 100 MHz; the system studie
consisted of pure SPC water with a varying number of m
ecules. From left to right, the lines correspond to syste
with: 2175, 3104, 14 817, and 28 886 SPC molecules,
spectively; the data for the Ewald method withkmax510
~white triangles! was obtained with the 14 817 molecule sy
tem. The various data points on each line were obtaine
follows: for the FMM ~circles! the number of levels was
fixed ~L53 for the 2175 and 3104 molecule systems;L54
for the others! and the maximum number of multipoles,p,
was varied from 4 up to 19. For the Ewald method, t
maximum number ofk-space vectors (kmax) was fixed~at 5
for the black triangles and 10 for the white triangles, with t
convergence parametera modified accordingly! and the real-

FIG. 3. Maximum relative error in the force vs CPU time~per step!. The
filled triangles show the results using the Ewald summation method
kmax55; the empty triangles were obtained withkmax510 ~but only for the
14 817 molecule system!; the empty circles correspond to the use of t
FMM. From left to right, the data sets correspond to 2175, 3104, 14 8
and 28 886 SPC water molecules, respectively. From the top down,
Ewald results were obtained by varying the cutoff radius fromr c56 to r c
530 Å or less; the results for the FMM were obtained by varying t
number of multipoles fromp54 to p519. Note that the Ewald timings do
not include the CPU time needed to generate the Verlet list of nonbon
interactions.
J. Chem. Phys., Vol. 106,
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space cutoff radius,r c , was varied from 6 Å up in incre-
ments of 1 Å. For these runs, the time spent creating
Verlet list of nonbonded interactions was subtracted beca
the implementation we used was particularly slow; thus
Ewald timings represent a lower bound. In contrast, the t
ings for the FMM have not been corrected.

Several observations are worth making. The CPU ti
spent in the Ewald method~minus the generation of the Ver
let list! is the sum of:~a! the CPU time spent in the rea
space calculation, and~b! that spent in the reciprocal (k)
space part. The former increases with increasingr c ; the lat-
ter with increasingkmax.

57 For any given accuracy, there i
always a compromise between these two terms, since
can always decreaser c as long as both the convergence p
rametera andkmax are increased accordingly. As a compa
son between the two Ewald curves corresponding to
14 817 molecule system shows, increasingkmax anda makes
the curves steeper. Forkmax large enough, the time~and ac-
curacy! would be almost independent ofr c , since the real-
space sums would decay very rapidly. However, for a giv
r c , increasingkmax increases the CPU time, and that is r
flected in the fact that the white triangles are shifted to
right.

For largep ~number of multipoles!, the CPU time for the
FMM, for a fixed levelL, is dominated byp and not by the
number of particles in the system. This is clearly shown
the curves corresponding to 14 817 and 28 886 molecu
both haveL54 and they coalesce forp larger than about 13
At very high accuracy, the Ewald method with small cuto
r c and large convergence parametera is more efficient—at
least for the 14 817 molecule case. For the larger system
FMM will be faster.

As discussed in the preceding section, FMM withp57
is accurate enough for simulations of solvated proteins
measured by energy conservation. At this level~fourth circle
from the top!, the CPU time for the 14 817 molecule case
about 4.3 times faster than for the Ewald method with
same accuracy~note that thekmax55 and thekmax510 curves
cross at about this point!.

The combinedr -RESPA/FMM algorithm is much faste
than the standard Verlet/Ewald method for large solva
proteins with periodic boundary conditions. Comparati
CPU timings of the solvated protein systems are listed
Tables II–IV. The CPU times for the Verlet/Ewald metho
vary between 27 and 562 ks/ps as the system size va
between 8000 and 44 000 atoms. In contrast, the CPU ti
for ther -RESPA/FMM method vary between 8 and 24 ks/p
respectively, with similar levels of accuracy in energy co
servation. This gives a factor of 3 to 23 in CPU time savi
for systems with about 8000 to 44 000 atoms at the sa
accuracy. The CPU time savings will be even more prom
ing for even larger systems, such as solvated nucleic acid
summary, we observe thatr -RESPA/FMM provides a com-
putational advantage over standard Verlet/Ewald even for
smallest macromolecular system we have simulated, of ab
8000 atoms.
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B. Comment on FMM versus PME

Recently, the particle mesh Ewald method~PME!, and a
smooth variant~SPME!, developed by Dardenet al., have
been described in the literature.21,23–25 They are based on
Hockney and Eastwood’s58 idea of assigning charges to
mesh according to their real space positions; the CPU t
savings come from applying the fast Fourier transform~FFT!
to the particle mesh to accelerate the reciprocal-space ca
lations of the Ewald sum. The algorithms are found to be
orderO(N logN).

There are three different algorithms for the calculation
the electrostatic forces in systems with periodic bound
conditions:~a! the ~optimized! Ewald method, which scale
like O(N3/2), provided a fast pair list generation algorithm
used;~b! the PME, which scales likeO(N logN); and~c! the
periodic FMM, which scales likeO(N). For very large sys-
tems (N.105), it is expected that the FMM will be the bes
choice, given its linear algorithmic complexity. Howeve
what about systems of 10 000 to 100 000 atoms, which
currently feasible in computer simulation?

Table V gives CPU time comparisons between SPM25

and FMM for a 40 Å system composed of 2038 SPC wa
molecules. All the results were obtained using the Ve
integrator. The CPU time of a simple spherical cutoff w
r c510 Å is used as reference for comparison. The data
SPME is taken from the study of Essmanet al.25 The timing
studies show that the CPU times for SPME and the sphe
10 Å cutoff are comparable for an rms force accuracy
;531024. In contrast, FMM is about 3 times slower tha
the simple cutoff method at 10 Å, for a similar accura
~using multipoles up top56!. Thus, the FMM method is
approximately 3 times slower than SPME for a system
;6000 atoms.

Table VI gives a comparison of CPU times for SPM
and FMM for solvated proteins. The simple cutoff is aga
used as reference. The data for SPME is taken from Proc
et al.59 Two similar size protein systems are compared
Table VI. For the FMM, levelsL53 andL54 are used for
the 8412 atoms and 22 661 atoms systems, respectiv
multipole terms up top56 are used for both systems. Th

TABLE V. CPU timing comparison of FMM vs SPME for a 40 Å water bo
~2038 molecules! system. The CPU time of simple cutoff atr c510 Å is
used as reference. Both Coulombic and van der Walls interactions ar
cluded. The data for SPME is taken from Essmanet al.’s article @J. Chem.
Phys.103, 8577,~1995!#. The results were obtained using the Verlet int
grator.

Method D f CPU ~s/step! ratio

CUT (r c510 Å) — 7.24
SPMEa 531024 7.36 1.01

CUT (r c510 Å) — 9.07
FMM (p54)b 1.6831023 21.26 2.34
FMM (p56) 4.3231024 24.88 2.74
FMM (p58) 1.2531024 32.72 3.60

aTiming for SGI-R4400, a cutoff of 9 Å in direct sum~a cutoff larger than
9 Å is necessary for van der Waals forces! and 4th order interpolation with
36336336 grid used.
bTiming for IBM R6000 SP2, levelL53, multipole termsp as specified.
J. Chem. Phys., Vol. 106,
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bonding and van der Waals forces are also included in b
SPME and FMM when performing real MD simulations. Th
data for the FMM are collected from 1 ps MD simulation
The results show that the SPME is about 1.6 times slo
than the simple cutoff method atr c510 Å for systems with
between 7070 and 20 627 atoms. In contrast, the FMM
between 3.9 and 2.6 times slower than the simple cu
method for comparable system sizes~8412 and 22 661 at-
oms, respectively!. Thus the FMM is still slightly slower
than SPME for 22 000 atoms. Unfortunately, SPME data
larger systems is not available.

However, as shown in Table 6, after combining t
r -RESPA method with SPME59 and FMM ~this article!, the
particle-mesh Ewald and fast multipole methods have co
parable performance for systems with;20 000 atoms. They
are both about twice as fast as a simple spherical cutoffr c
510 Å). The SPME benefits most from the use of a ve
small real space part~as small asr c56 Å! so that fast Fou-
rier transforms, which speed up thek-space part, can be use
to maximum advantage. In contrast, in order to gain the m
from r -RESPA, it is desirable to use a large cutoff for th
real space sum. Thus, there is a trade off between the SP
andr -RESPA methods. While the two methods appear to
competitive for;20 000 atoms, we expect that the RESP
FMM will be faster than the RESPA/SPME method for ev
larger systems, because of their respective computati
complexities.

VIII. CONCLUSIONS

We have extended the FMM method to periodic sy
tems, with a full derivation of the local field transformatio
due to all distant multipoles in the periodic replicas. O
transformation, embodied in Eq.~29!, can be easily reduced

in-

TABLE VI. CPU timing comparison of FMM vs SPME for solvated prote
system. The CPU time of simple cutoff atr c510 Å is used as reference
The data for SPME is taken from Procacciet al.’s article ~preprint!. CPU
time for SPME refers to DEC-Alpha 3000/800 s workstations; and C
time for FMM refers to IBM R6000 SP2 workstations. A levelL53 for the
8412 atoms system andL54 for the 22 661 atoms system, and multipo
orderp56 for both are used in FMM.

Atoms Method Dt ~fs! r c ~Å! logDE
R5

DE

DKE
CPU

(103 s/ps) ratio

7070a CUT 1 10.0 0.018 6.06
SPME 1 10.0 0.018 9.65 1.59
R-SPME 12 10.0 0.036 2.59 0.43

8412b CUT 1 10.0 22.58 8.92
FMM 1 — 23.68 35.04 3.92
R-FMM 12 — 23.27 8.48 0.95

20 627c CUT 1 10.0 18.5
SPME 1 10.0 28.7 1.55
R-SPME 12 10.0 7.7 0.42

22 661d CUT 1 10.0 22.60 31.50
FMM 1 — 23.75 94.17 2.98
R-FMM 12 — 23.11 16.48 0.52

aC-Pycocyanin~3033 atoms! in 1335 water molecules.
bRibonuclease H~2466 atoms! in 1982 water molecules.
cRhodobacterial Sphaeroides~8321 atoms! in 4101 water molecules.
dArabinose-binding protein~4691 atoms! in 5990 water molecules.
No. 23, 15 June 1997
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9846 Figueirido et al.: Large scale simulation of macromolecules in solution
to the normal Ewald sum under proper limits~l50, r50,
and no self-energy!; however, we were unable to reduce t
corresponding transformation in Ref. 49 to the proper Ew
limit. After combining the periodic FMM withr -RESPA, we
devised a new molecular dynamics algorithm for charg
systems, such as solvated proteins, with periodic bound
conditions. This combination of a reversible multiple tim
step integrator and an efficient algorithm for calculati
long-range electrostatic interactions has been shown to
powerful method for such simulations. The speedup
r -RESPA/FMM over the standard Verlet integrator with t
Ewald sum is more than 20 for a protein water system w
44 000 atoms. As compared to the recently developed
ticle mesh Ewald~PME!, the r -RESPA/FMM method has a
break even point with ther -RESPA/PME method for sys
tems with approximately 20 000 atoms. It is expected t
the r -RESPA/FMM will be faster than ther -RESPA/PME
for larger systems, since the asymptotic computational c
plexity isO(N logN) for PME andO(N) for FMM.

In comparison with the results of a previous article,34 the
introduction of an aqueous solvent requires more accu
calculations than for isolated proteins in order to achieve
same level of energy conservation. This we attribute to
fast translational and rotational motions of the small wa
molecules which can produce large charge fluctuations w
crossing cell boundaries, and the use of an atom-based c
instead of molecule-based cutoff for water molecules
FMM cell separations andr -RESPA force breakups.

It has also been shown that the use of a smooth swi
ing function to effect the force separation for the direct
teractions allows the use of very long time steps. The cur
implementation of smooth switching is suboptimal and
sults in a method that is about twice as slow as the cell-ba
separation for a given time step. Several avenues for
provement are under investigation, such as: the use
Verlet-like lists of interactions, and use of cubic rather th
spherically symmetric switching functions.

The periodic r -RESPA/FMM described in this article
has been implemented inside the molecular mechanics p
ageIMPACT.38 The resultant speed up has made possible
us to carry out nanosecond time scale simulations of
dependent effects on protein stability~manuscript in prepa-
ration!.

Finally, it should be noted that the underlying electr
static model is a periodic form of the Coulomb potential~the
Wigner potential!. There are artifacts associated with the p
riodic models, as there are with any computer models
macroscopic systems. The nature of the artifacts assoc
with the Wigner potential is a topic of current interest.60–63
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APPENDIX A: RECIPROCAL-SPACE SUM

In this appendix we derive a reciprocal-space repres
tation for the sum

A5E
0

a2

dttl11/221(
nÞ0

ini lYl
m~ n̂!e2~s1t !ini2. ~49!

We first note that for anyl.0 the integral converges whe
n50 and vanishes identically. We then rewrite the sum us
the Jacobi identity

(
nÞ0

f ~n!5(
k

f̂ ~2pk! ~50!

where the Fourier transformf̂ is defined by

f̂ ~u!5E dxe2 i ^u,x& f ~x!. ~51!

Using this identity, we obtain the expression

A5(
k
E
0

a2

dttl11/221

3E dye22p i ^k,y&iyi lYl
m~ ŷ!e2~s1t !iyi2. ~52!

For kÞ0, the integrals are finite in the limits→0 as can
be easily seen by a dimensional argument and the fact
the spatial integral will decay exponentially foriki→`.

If l.0 andk50, the integral

E dyiyi lYl
m~ ŷ!e2~s1t !iyi2 ~53!

vanishes identically due to the spherical symmetry of
regularization function. Forl50, this is not true and it is
known51 that in this case there is a divergence whens→0
that cancels only if the system is electrically neutral. In o
treatment this cancelation is automatic since there is nl
50 ~monopole! term to worry about. If the regularization
function is not spherically symmetric, the above argum
does not hold and we must proceed with more care. It is
true that the limits→0 do not diverge forl.0, but there is
a finite contribution forl51. However, as discussed prev
ously, we do not need the sums for oddl . To compute the
Fourier coefficients forkÞ0, we make use of the expansio
~Ref. 64!

e22p i ^k,x&5(
l50

p

i l~2l11! j l~2pikiixi !

3 (
m52 l

l

Yl
m~ k̂!Yl

2m~ x̂!, ~54!

wherej l(u) is the spherical Bessel function of orderl , which
can be written as

j l~u!5A p

2u
Jl11/2~u!5~21! lul S 1u d

duD
l sin u

u
. ~55!

Using this expansion, we find the Fourier coefficients
No. 23, 15 June 1997
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9847Figueirido et al.: Large scale simulation of macromolecules in solution
4p i lYl
m~ k̂!E

0

`

r l12 j l~2pikir !e2tr2dr. ~56!

Thus, we obtain forl.1 and even~since for oddl the sum
vanishes identically!

A5(
k
4p i lYl

m~ k̂!i2pki l22E
0

a2/i2pki2
dttl11/221

3E
0

`

drr l12 j l~r !e2tr2. ~57!

To compute the first integral, we expand the Bessel fu
tion in a Taylor series and integrate term by term, obtain

E
0

`

e2tr2r l12 j l~r !dr

5Ap

2 E
0

`

e2tr2r l11/211Jl11/2~r !dr

5Ap

2 E
0

`

e2tr2r l11/211(
k>0

~21!kS r2D
l11/212k

k!GS k1 l1
1

2
11D

5Ap

2 (
k>0

~21!k

2l11/212kk!GS k1 l1
1

2
11D

3E
0

`

e2tr2r 2l12k12dr

5Ap

2 (
k>0

~21!kGS l1 1

2
1k11D

2l11/212kk!GS k1 l1
1

2
11D2t l11/21k11

5Ap

2

e21/4t

~2t ! l11/211 . ~58!

The integral overt becomes then

E
0

a2/i2pki2
dttl11/221Ap

2

e21/4t

~2t ! l11/211

5Ap

2

1

2l13/2 E
0

a2/i2pki2
dt

e21/4t

t2
5

Ape2p2iki2/a2

2l
.

~59!

Combining all the above expressions we arrive at the re

A5(
kÞ0

p l21/2i lYl
m~ k̂!iki l22e2p2iki2/a2. ~60!

APPENDIX B: IMPLEMENTATION DETAILS

In this appendix, we will briefly describe our impleme
tation of the FMM, with and without periodic boundary co
ditions, and its integration withr -RESPA.
J. Chem. Phys., Vol. 106,
-
g

lt

Our implementation of the FMM consists of two sets
routines:~a! the ‘‘core’’ routines, which are designed to b
independent of the way a particular simulation program r
resents the system; and~b! some ‘‘interface’’ routines that
provide the necessary glue to connect the core routines
the rest of the MD program. We have written this interfa
for the programIMPACT,38 an MD program developed at Ru
gers that is very well suited to the simulation of biomo
ecules in solution. Moreover, this interface was written
such a way that the FMM can be run in ‘‘serial mode’’ on
single workstation or in ‘‘parallel mode,’’ on either a cluste
of workstations or a massively parallel computer. For po
ability, the parallel mode is based on the parallel virtual m
chine ~PVM!65 message-passing library; a measure of
ease of portability is the fact that essentially the same c
runs on clusters of workstations, the IBM RS6000 SP2 a
the Cray T3D. Only the interface needs to know whether i
running in serial or parallel mode; the core routines are
dependent of the mode.

The core routines take care of such chores as: build
the tree structure; loading the particles onto the tree~only the
charges and positions need to be known!; computing the
multipole moments; computing the local expansion coe
cients. We also provide routines to compute the potential
field at an arbitrary point, but those computations are b
left to the interface routines since the core routines do
know about, for instance, the integration algorithm. There
another, perhaps more important, reason for making the
terface code responsible for the force computation. In b
molecular simulations, one needs to compute not just
electrostatic but also shorter range~Lennard-Jones, hydroge
bonds! forces. Typically these forces are handled by the u
of a so-called list of nonbonded interactions,1 which needs to
be updated every so often. In our code, however, we t
advantage of the fact that the particles have already b
spatially sorted at the time they were loaded on the tree a
since in any case we must compute the direct electros
interactions with particles in the first and second neigh
shells of each cluster~at the lowest level!, we can at the same
time compute the short-range forces. One important poin
the following: not all pairs of atoms participate in nonbond
interactions; some pairs are ‘‘excluded’’ because of chem
constraints~they are connected by one, two, or three bond!.
It is more efficient, however, to disregard this complicati
during the force computation and simply subtract the u
wanted components afterwards~this same approach was use
by Boardet al.!.15

To implement the Schmidt and Lee49 method, we only
need to add a function that computes the sums in Eq.~18!,
minus the contribution from first and second neighbors.
our current implementation, we are limited to constant v
ume simulations and therefore this computation needs to
done only once and so we can afford to do it very accura
~for each l ,m!. There is one further subtlety: when usin
periodic boundary conditions the contributions from the e
cluded atom pairs that must be subtracted are not pu
Coulombic, but are given by the Wigner potential. Sin
these atoms are very close to each other we approximate
No. 23, 15 June 1997
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potential by the first few terms in its expansion in powers
r :

fW~x!'
1

r
1
2p

3V
r 21

c

L
1O~r 4!. ~61!

The self-energies of the charges~given by the constant term
in the above equation times the square of the charge! are also
subtracted. The constantc is approximately equal to
2942.20 kcal Å/mol. Although this prescription might b
considered nonstandard, whether to subtract the full Wig
interaction or just the Coulombic term is a matter of para
etrization of the ‘‘effective’’ bonding potentials. The bond
ing potentials used in biomolecular simulations have tra
tionally been parametrized depending on cutoff-ba
simulations, so in principle either prescription needs to
reparametrized. In practice, the difference between the
models will be small.

As discussed in Sec. V, we have implemented sev
different force separations in the FMM. For efficiency, ea
case is handled by a separate function. These functions
erate at the level of single clusters, and to avoid unneces
repeated tests a pointer to the appropriate function is st
in a structure at each step before the force computati
This allows for a very general interface, where the m
driver routines are independent of details selected at run
and makes it easy to add new force evaluation routin
However, the maximum number of force separatio
~‘‘stages’’!, currently three not counting the topmost level,
hard coded into the program.

In our implementation, each cluster keeps a record of
total number of particles that it contains in all its subcluste
It is then possible to code a ‘‘poor man’s adaptive’’ versi
of the FMM, in which clusters with no particles in them a
skipped in some of the most computationally expens
steps.34 Our code allows the user to select at run tim
through the use of a keyword in the input script, whether
use this adaptive version. Since most periodic systems
simulate are rather dense and homogeneous, no saving
obtained by using the adaptive method in this case. Howe
for highly inhomogeneous systems, it can amount to a la
speed up factor.

The approach we have taken to the parallelization of
FMM is simpler than that of Boardet al.,15 but it is not fully
scalable. Partly because we use the code in our local netw
of workstations, it was decided to try to minimize the com
munication overhead. One way to do this is to broadcas
the processing nodes~nodes for short! the coordinates of al
atoms in the system and let them compute all the multip
expansions. This certainly involves multiplication of wor
but it is usually a very fast step and is not a bottlene
However, if every node were to compute all local expansio
that would result in almost no savings at all since this
typically one of the most expensive steps. Besides, altho
each node might need to know all the multipolar expansio
it only needs to know the local expansions for a subse
clusters, those which will contribute to the local expansion
the center of the cluster that has been assigned to the n
There is still some overlap since the same local expans
J. Chem. Phys., Vol. 106,
f

er
-

i-
d
e
o

al

p-
ry
ed
s.
n
e
s.
s

e
.

e
,
o
e
are
r,
e

e

rk
-
to

le

.
s
s
h
s,
f
t
de.
ns

will be computed by several nodes. If internode communi
tion is fast it might be preferable to avoid these multipliciti
of work, but for loosely connected networks of workstatio
this is probably not the case.
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