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We develop a theory for relating quantum and classical time correlation functions in the context of
vibrational energy relaxation. The treatment is based on the assumption that both the quantum and
the classical systems are characterized by effective harmonic Hamiltonians with identical normal
modes; and the solute-solvent interaction is taken to be linear in the solute vibrational coordinate,
but nonlinear in the bath coordinates. We propose an approximate ‘‘quantum correction’’ which
allows the determination of the quantum energy relaxation rates from the classical force-force time
correlation functions in the limit of large solute’s vibrational frequency. We test the accuracy of this
approximate correction against exact numerical results for two forms of the solute-solvent
interaction ~exponential and power law!, and find it to be accurate for a wide range of solute
vibrational frequencies and for different solvent thermodynamic states. A simple form of the
‘‘quantum correction’’ is proposed for the models based on Lennard-Jones interactions. In all cases
it is found that the vibrational relaxation time in a fully quantum system is better approximated by
a fully classical theory~classical oscillator in classical bath! than by a mixed quantum-classical
theory ~quantum oscillator in classical bath!. © 1997 American Institute of Physics.
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I. INTRODUCTION

Numerous processes in condensed phases involve d
pation of energy from vibrationally excited modes. A pr
found understanding of this phenomenon is of major imp
tance for developing a theory of reaction dynamics. As su
vibrational energy relaxation~VER! has been actively stud
ied experimentally,1–30 and the results have been review
on several occasions.31–39

Experimental data on VER have been analyzed w
various theoretical approaches.5,40–80 Most of these48–80 are
based on the low-order perturbation theory, and involve p
titioning the total Hamiltonian into three terms: the vibr
tional Hamiltonian for the excited mode of the solute~guest,
impurity!, the Hamiltonian for all other degrees of freedo
~solvent, host, bath!, and the interaction between these tw
subsystems, which induces the transitions between the
ute’s vibrational states. Within this formalism, the state-
state transition rates, are determined by the Fourier transf
~at the vibrational frequency of the solute! of the time corre-
lation function~TCF! of the force exerted by the solvent o
the solute’s vibrational mode. When studying VER in low
temperature solids, this TCF can be evaluated quantum
chanically. At the same time, a full quantum treatment
dynamics in liquid hosts is not feasible, and a common
proach is to treat the translational degrees of freedom in
uids classically. However, for certain experimental con
tions ~e.g., vibrational relaxation of molecular oxygen
liquid mixtures with argon in the temperature range 60–
K3! a classical treatment of the solvent may be questiona
In order to account for the quantum nature of the bath,
needs to relate the classical TCF to its quantum analo
Once the potential energy in the Hamiltonian is specified,
classical and quantum TCFs~and their power spectra! are
6050 J. Chem. Phys. 107 (16), 22 October 1997 0021-9606/9
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uniquely defined. In general, however, it is not possible
find ~in a closed analytical form! the exact relationship be
tween the two, and various approximate prescriptions h
been proposed in the literature for obtaining the quant
results from the classical ones.31,81–88The first issue which
needs to be addressed is related to the fact that the clas
TCF is a real even function of time, while the one-sid
quantum TCF is a complex function. The direct conseque
of this is that the classical power spectrum is symmet
while its quantum analogue satisfies the detailed bala
condition, and is thus asymmetric. At the same time, one
relate the quantum power spectrum to the Fourier transf
of the symmetrized quantum TCF, which shares the prop
of being a real even function of time with the classical TC
This suggests comparing the classical TCF with the sym
trized quantum one in the time domain, which has been d
in Ref. 85 for the one-dimensional rigid rotor. The two fun
tions disagreed slightly at short times and very significan
at long times.85 Nevertheless, if one simply replaces the sy
metrized quantum TCF with the classical one, the result
power spectrum will at least satisfy the detailed balance c
dition. Such an approach has been widely used in the con
of vibrational energy relaxation,31,63,69although it has been
recognized that simply obtaining Boltzmann equilibrium
not a sufficient justification for the above replacement.68,80,89

A different approach to relating quantum and classi
TCFs was introduced by Schofield,81 and involves modifying
the classical TCF in the time domain. Schofield81 suggested
approximating the one-sided quantum mechanical T
evaluated at timet by the classical TCF evaluated att
2 ib\/2). The resulting power spectrum satisfies detai
balance, but does not satisfy any moment sum rules. For
latter reason Egelstaff82 proposed an alternative approxim
7/107(16)/6050/12/$10.00 © 1997 American Institute of Physics
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6051S. A. Egorov and B. J. Berne: Vibrational energy relaxation
tion, where the argumentt of the classical TCF is replace
by @ t(t2 ib\/2)#1/2. When the Egelstaff transformation
applied to the normalized classical TCF, the resulting fu
tion satisfies both the condition of detailed balance and
first few sum rules.83 The accuracy of the Egelstaff approx
mation was tested in Ref. 85 for the one-dimensional ri
rotor; it was found to agree well with the exact quantu
result at short times, but to disagree at longer times.85 Later
the Egelstaff transformation was modified in order to a
count for the change in the zero-time value of the~unnormal-
ized! TCF in going from classical to quantum case.88 Of
course, one can equally well apply the aforementioned tra
formations in the time domain to approximate the symm
trized quantum TCF instead of the one-sided function.68

To summarize, numerous prescriptions have been
posed for relating quantum and classical TCFs both in
time and in the frequency domains. However, due to
proximations involved in these treatments, two different p
scriptions may lead to two different predictions of the qua
tum power spectra, both of which satisfy the detailed bala
requirement, but differ greatly from each other, especially
the high-frequency region.86,88 Furthermore, it may well be
the case that neither of these spectra agrees with the
quantum result.

In view of that, it is of great importance to assess t
accuracy of various approximations by studying exac
solvable models.90,91 In the context of vibrational energy re
laxation, such a possibility is provided when the classi
and quantum solvents are described by effective harm
Hamiltonians with the same set of normal modes. If t
solute-bath coupling is taken to be linear both in the sol
and bath coordinates, one can obtain an exact relation
between the force-force TCF for a classical bath and
quantum counterpart.89 However, due to the assumption o
bilinear coupling, the applicability of this result is limited t
single-phonon relaxation processes. At the same time,
often the case that the excitation energy of the solute’s
brational mode is much larger than the typical energy as
ciated with the solvent’s thermal motion. In the absence
intra- and intermolecular vibration-vibration~excitonic! en-
ergy transfer, the nonradiative relaxation process is neces
ily multiphonon, i.e., the solute’s vibrational energy is dis
pated into many quanta of bath excitations. In order to all
for multiphonon processes, one can either treat the bilin
system-bath coupling within high-order perturbation theo
or introduce a coupling which is more realistically nonline
in the bath coordinates, while retaining the lowest-order F
mi’s golden rule formalism. It was recently shown,92 that the
latter mechanism generally gives the dominant contribut
to the relaxation rate. For an arbitrary nonlinear system-b
coupling, it is not possible to derive an exact relations
between the classical and quantum TCFs. However, for
ficiently large solute vibrational energies~relative to the bath
thermal energy scale! an approximate relation between th
two can be obtained. In addition to that, for a given spec
density of the effective harmonic bath~which is the same for
classical and quantum systems! one can obtain exact numer
cal results for both classical and quantum TCFs, which
J. Chem. Phys., Vol. 107, N
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lows us to assess the accuracy of this approximate relat
ship.

The purpose of this paper is to carry out the progr
outlined above. In Section II we consider a somewhat s
plified model where the system-bath coupling is mode
with an exponential function of a scalar collective bath c
ordinate. In the asymptotic case of large solute’s vibratio
energy gap, we derive an approximate relation between
power spectra of quantum and classical TCFs, which lead
a relation between the energy relaxation rates for a class
solute in a classical bath and for a quantum solute in a qu
tum bath. Assuming a particular model for the bath spec
density, we calculate these relaxation rates exactly and
the accuracy of our approximate result. In Section III w
perform similar calculations for a more realistic problem i
volving vibrational relaxation of a diatomic Lennard-Jon
solute in monatomic Lennard-Jones fluid. We again obt
an approximate ‘‘correction factor’’~which is somewhat dif-
ferent from the one obtained for the exponential interacti!
and assess its accuracy by performing exact numerical
culations. In both cases~exponential and Lennard-Jones i
teractions! our approximation gives a very accurate estim
of the ratio between quantum and classical energy relaxa
rates. We also test various prescriptions for relating quan
and classical TCFs which have been proposed earlier in
literature, and find that neither of these is robust enough
handle different functional forms of the system-bath co
pling. In Section IV we conclude.

II. MODEL HAMILTONIAN:L LINEAR AND
EXPONENTIAL COUPLING

A. Model Hamiltonian: Linear coupling

We consider the relaxation rate of a vibrationally excit
solute in a solvent. As discussed in the Introduction, we
sume that the total Hamiltonian can be written as follows

H5Hq1Hb1V. ~1!

In the above,Hq is the ~harmonic! Hamiltonian associated
with the solute’s vibrational coordinate,q, whose conjugate
momentum isp, reduced mass ism, and angular frequency is
v0

Hq5
p2

2m
1

mv0
2q2

2
. ~2!

The bath HamiltonianHb describes the solvent molecule
and all the remaining~apart fromq) degrees of freedom o
the solute. In what follows, we takeHb to be harmonic and
write it as a sum over normal modes with frequenciesvk and
Boson creation and annihilation operatorsbk

† andbk

Hb5(
k

\vk~bk
†bk11/2!. ~3!

Finally, the interaction termV, which couples the solute’s
vibrational mode to the bath, is taken to be linear inq: V5
2qgF, wheregF is the force exerted by the solvent on th
o. 16, 22 October 1997
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6052 S. A. Egorov and B. J. Berne: Vibrational energy relaxation
vibrational coordinate, the coupling constantg has units of
force, andF is a dimensionless function of the bath norm
coordinates.

Using the golden rule lowest-order perturbation theo
one can express89 the solute vibrational energy relaxatio
rate in terms of the Fourier transform of the symmetriz
quantum force-force time correlation function~TCF! evalu-
ated at the solute vibrational frequency

S 1

T1
D

qm

5
tanh~b\v0/2!

b\v0/2

z̃ qm8 ~v0!

m
~4!

with

z̃ qm8 ~v0!5bg2E
0

`

dt cos~v0t !

3K 1

2
@dF~ t !,dF~0!#1L

qm

, ~5!

where dF(t)5F(t)2^F&qm ,^•••&qm5Trb@•••rb# denotes
a trace over the quantum bath states,rb5e2bHb/
Trb@e2bHb# is the equilibrium bath density matrix, andb
51/kBT.

The calculation of the quantum TCF is feasible for lo
temperature solids, but is extremely difficult in liquids. In t
latter case, a common approach is to obtain the TCF fo
corresponding classical system — either from molecular
namics simulations or from analytical theories. One is th
faced with a problem of relating the classical TCF to
quantum counterpart, and various prescriptions have b
suggested for this procedure in the literature.31,81–88For the
Hamiltonian described above, this problem has been con
ered by Bader and Berne89 for the particular case of bilinea
solute-solvent coupling, i.e., the force exerted by the solv
on the solute vibrational coordinate was written as a lin
function of the bath dimensionless collective coordinateQ

F5Q5A\(
k

ck~bk
†1bk!, ~6!

whereck are real expansion coefficients. Provided the cl
sical and quantum systems are described by identical e
tive harmonic Hamiltonians, they are characterized by
same spectral density

J~v!5(
k

ck
2d~v2vk!. ~7!

From Eqs.~4!, ~5!, ~6! and ~7!, one obtains

S 1

T1
D

qm

5
pg2

mv0
J~v0!. ~8!

The above result does not depend on\, and therefore the
energy relaxation rate for a quantum solute in a quan
bath is identical to the relaxation rate for a classical solute
a classical solvent, as discussed in Ref. 89. This resu
valid for the bilinear system-bath coupling, which corr
sponds to single phonon relaxation processes. We next
sider the case when the coupling between the solute vi
J. Chem. Phys., Vol. 107, N
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tional coordinate and the solvent is nonlinear in the b
coordinates, i.e., allow for multiphonon processes.

B. Exponential coupling

We model the solute-solvent interaction with an exp
nential function of the bath collective coordinate:F
5exp(Q). With the above form of the system-bath couplin
the thermal averaging over the bath states in Eq.~5! can be
performed using standard boson algebra opera
identities,93,94 and the integral in Eq.~5! can be evaluated
approximately using saddle point method93 to yield

z̃ qm8 ~v0!5
bg2

2
exp~Cqm~0!!A 2p

v0vph
cosh

3~b\v0/2!expS 2
v0

vph
@ ln~2fqm!21# D ,

~9!

with

fqm5
v0

l\vph
sinh~b\vph/2!, ~10!

and

Cqm~0!5\E
0

`

dv J~v!~2n~v!11!, ~11!

wheren(v)5@exp(\v/kT)21#21 is the phonon thermal oc
cupation number. In the above we have defined an ‘‘av
age’’ phonon frequency according to the relation

vph5
1

lE0

`

dv vJ~v!; l5E
0

`

dv J~v!. ~12!

Taking the limit \→0 in Eq. ~9! gives the following
expression for the classical friction:

z̃ cl8 ~v0!5
bg2

2
exp~Ccl~0!!A 2p

v0vph

3expS 2
v0

vph
@ ln~2fcl!21# D , ~13!

with

fcl5
bv0

2l
, ~14!

and

Ccl~0!5
2

bE0

`

dv
J~v!

v
. ~15!

From Eqs. ~4!, ~9!, ~13! and the relation (T1
21)cl

5 z̃ cl8 (v0)/m it follows that energy relaxation rateT1
21 for a

quantum solute in a quantum bath is no longer equal to
classical counterpart; their ratio is given by
o. 16, 22 October 1997
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6053S. A. Egorov and B. J. Berne: Vibrational energy relaxation
R15
~T1

21!qm

~T1
21!cl

5
exp~Cqm~0!!

exp~Ccl~0!!

sinh~b\v0/2!

b\v0/2

3S b\vph

2 sinh~b\vph/2! D
v0 /vph

. ~16!

C. Numerical results for the exponential coupling

Certain approximations~mean value theorem, sadd
point method! have been involved in arriving at the Eq.~16!.
In order to assess their accuracy, we now assume a parti
functional form for the spectral densityJ(v) and evaluate
the quantum and classical energy relaxation rates exa
~numerically!. Although the main goal of the present work
to relate classical and quantum TCF in liquids, we defer
discussion of the form forJ(v) appropriate for liquid hosts
until the next section where we consider vibrational rela
ation of a Lennard-Jones solute in a Lennard-Jones fluid
the present section, for the purpose of testing the result in
~16!, we consider the following super-Ohmic spectral de
sity:

J~v!52la2v3 exp~2av2!, ~17!

which behaves as the Debye model coupled with the de
mation potential approximation~for numerical convenience
we have replaced a sharp cut-off at the Debye frequency
a smooth Gaussian cut-off!. This form for J(v) would be
appropriate in studying vibrational relaxation by acous
phonons in a crystalline host.

Anticipating the study of LJ fluid in the next section, w
define dimensionless time and frequency variables in te
of the LJ parameters of Ar and the mass of Ar atom:t*
5t(eAr /mArsAr

2 )1/2 and v* 5v(mArsAr
2 /eAr)

1/2. With the
values95 eAr /kB5119.8 K, sAr53.405 Å, andmAr56.634
310223 g, v* 51 corresponds tov/2pc 5 2.46 cm21.

In performing the calculations, we takea* 52.531023.
From Eq. ~12!, this gives the average phonon frequen
vph/2pc 5 65.4 cm21. The temperature is taken to beT575
K, i.e., comparable to a characteristic phonon frequency.
set the dimensionless normalization constantl\ equal to
unity, and takeg5eAr /sAr andm5mAr .

With the above parameters, we calculate the energy
laxation rateT1

21 for a quantum solute in a quantum bath a
for a classical solute in a classical bath as a function of
solute vibrational frequencyv0; the corresponding result
are shown in Fig. 1. One sees that in the contrast to the
of linear coupling, where the fully quantum and the ful
classical results are identical, in the case of exponen
solute-bath interaction, the fully classical treatment unde
timates the relaxation rate. Also shown in Fig. 1 is the ‘‘co
rected’’ classical approximation given by (T1

21)cl3R1 with
R1 calculated from Eq.~16!. This ‘‘corrected’’ classical ap-
proximation follows the quantum result quite closely for
wide range of the ‘‘energy gaps’’v0, thus confirming that
the approximations involved in arriving at Eq.~16! are rea-
sonable. Finally, we plot in Fig. 1 the energy relaxation r
for a quantum solute in a classical bath calculated by mu
plying the fully classical rate by the facto
J. Chem. Phys., Vol. 107, N
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tanh(b\v0/2)/(b\v0/2). This factor is less than unity fo
any frequencyv0, which suggests that the fully classic
treatment gives consistently better results for the rates t
the ‘‘mixed’’ one ~although the former rates still need to b
corrected to get agreement with the quantum rates!.

It would be of some interest to analyze the nature of
three factors inR1. The first factor is independent of th
energy gapv0, it depends only on the temperature and t
spectral density. ForkBT@\vph , Cqm(0)'Ccl(0) and the
first factor in R1 is close to unity. The second factor coin
cides with the Schofield transformation81 when the latter is
combined with the symmetrization of the quantum TCF. T
factor has the strongest dependence onv0 of all three; it
approaches 1 only forkBT@\v0. At the same time, a more
typical situation in high-order relaxation processes cor
sponds to\vph<kBT!\v0, in which case the second facto
in R1 is much greater than unity. Finally, the third factor
always less than 1, forkBT;\vph it displays a weak~albeit
exponential! decrease with the energy gap; forkBT@\vph it
remains on the order of 1 for all physically realistic values
v0.

It is also of interest to compare the results obtained w
the correction factorR1 @cf. Eq. ~16!# to other approxima-
tions suggested in the literature. For this purpose, we ap
the Schofield,81 the Egelstaff,82 and the ‘‘scaled’’ Egelstaff88

transformations to our classical results. The Schofield
proximation has been discussed above, it amounts to rep
ing R1 with sinh(b\v0/2)/(b\v0/2). The Egelstaff
procedure82 can be obtained as a product of tw
transformations:83 One first replaces the argumentt of the
classical TCF with@ t22(b\/2)2#1/2, and then performs the
Schofield transformation on the resulting function. T
‘‘scaled’’ Egelstaff transformation88 is the same as the Ege

FIG. 1. log10(1/T1* ) vs v* for the exponential solute-solvent interactio
The solid line~a! is the fully quantum result, the dashed line~b! is the fully
classical result, and the dotted line~c! is the classical result corrected ac
cording to the approximation from Eq.~16!. The dash-dotted line~d! is for
a quantum solute in a classical solvent.
o. 16, 22 October 1997
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6054 S. A. Egorov and B. J. Berne: Vibrational energy relaxation
staff transformation82 except for the rescaling of th
classical TCF by the following factor
^dF2&cl /^dF(b\/A2)dF(0)&cl .

The results of applying these three procedures to
classical VER rates are shown in Fig. 2 together with
quantum result; also plotted are the rates obtained with
approximate correctionR1. One sees that the Schofield tran
formation overestimates the quantum correction somew
~especially at the higher frequencies!, the Egelstaff approxi-
mation gives the rates which are too low, and the ‘‘scale
Egelstaff procedure is generally as accurate as the app
mate correction given by the factorR1. We defer the discus
sion of these results until the next section, where we perfo
a similar analysis for a force-force TCF with another fun
tional form of the force, namely, inverse power law ty
interaction.

We close this section by noting that similar calculatio
have been performed for a wide range of temperatures
parametersl\ anda* ; the ‘‘quantum correction’’ given by
R1 was found to be consistently accurate for all values
parameters tested.

III. VIBRATIONAL RELAXATION FOR LENNARD-
JONES COUPLING BETWEEN SOLUTE AND
SOLVENT

In this section, we discuss the relation between the qu
tum and the classical TCF for the problem of vibration
relaxation of a Lennard-Jones solute~a solute molecule
whose sites interact through the Lennard-Jones potential

FIG. 2. log10(1/T1* ) vs v* for the exponential solute-solvent interactio
The solid line ~a! is the fully quantum result, the dotted line~b! is the
classical result corrected according to the approximation from Eq.~16!. The
dashed line~c! is the Schofield approximation, the long-dashed line~d! is
the Egelstaff approximation, and the dash-dotted line~e! is the ‘‘scaled’’
Egelstaff approximation, as described in the text.
J. Chem. Phys., Vol. 107, N
e
e
e

-
at

’’
xi-

m
-

nd

f

n-
l

ith

the solvent atoms! in a Lennard-Jones host~a solvent whose
molecules interact through the Lennard-Jones potential!. Al-
though we focus on the Lennard-Jones potential here,
important to note that the same procedure can be used fo
arbitrary continuous form of the solute-solvent interactio
To simplify the analysis, we consider a single diatomic s
ute immersed in a monatomic solvent, and assume that
diatomic interacts with the solvent particles with a sphe
cally symmetric pair potential, and that its vibrational coo
dinate also has spherical symmetry. Such a ‘‘breath
sphere’’ model has been used to study vibrational relaxa
of diatomic molecules both in crystalline80 and liquid79

Lennard-Jones hosts. In crystalline hosts, the total mic
scopic Hamiltonian for the system can be easily reduced
the form of Eq.~1! by treating the crystalline lattice in th
harmonic approximation. In liquid hosts, on the other ha
the Hamiltonian for the translational degrees of freedom
the solvent and the solute is anharmonic. Thus, for liqu
one is usually confined to a classical treatment of the tra
lational degrees of freedom in calculating of the TCF. T
results obtained in this way have to be corrected by acco
ing for the quantum nature of the solvent.

The relation betweenz̃ qm8 (v0) and z̃ cl8 (v0) obtained in
the previous section was based on the assumption that
quantum and classical systems are described by identica
fective harmonic Hamiltonians. Thus, to obtain a similar
lation for a Lennard-Jones fluid, one needs to map this s
tem onto an effective harmonic bath. We achieve this
introducing an effective quantum harmonic Hamiltonian f
the translational degrees of freedom of the solute and
solvent, and by requiring that in the classical limit th
Hamiltonian reproduces the results for the LJ fluid obtain
from the classical MD simulations.

Starting from a microscopic Hamiltonian for a sing
diatomic in a monatomic fluid and assuming pairwise int
actions, we follow the procedure outlined in Ref. 80 to r
duce it to the following form:

H5Hq1Hb1V. ~18!

The solute vibrational HamiltonianHq is given by Eq.~2!.
Hb is the quantum-mechanical Hamiltonian for the trans
tional degrees of freedom of the solute and all solvent p
ticles ~the bath!

Hb5T1U0 , ~19!

with

T5
p0

2

2m0
1(

i

pi
2

2ms
, ~20!

U05(
i

f~r i !1(
i , j

fs~r i j !. ~21!

T is the total translational kinetic energy of the solute a
solvent atoms; the solute has momentump0 and massm0,
the summation indices refer to solvent atoms, and thei th
solvent atom has momentumpi and massms . The potential
energyU0 involves the solute-solvent pair potentialf(r ),
o. 16, 22 October 1997



-

a
s
th
e
o

n

al
ll
s-

-

ui-
n

or

6055S. A. Egorov and B. J. Berne: Vibrational energy relaxation
which is independent ofq, and the solvent-solvent pair po
tentialfs(r ); r i is the distance between thei th solvent atom
and the center of mass of the diatomic,r i j is the distance
between thei th and j th solvent atoms.

In the spirit of the lattice theories of liquids96,97 we rep-
resent the medium by a harmonic lattice, which amounts
replacingHb by an effective harmonic Hamiltonian. As
first approximation, we will assume that the diatomic’s ma
is sufficiently close to that of the solvent atoms, and that
solute-solvent interaction is sufficiently similar to th
solvent-solvent interactions. Therefore, as far as the phon
are concerned, we takem05ms andf(r )5fs(r ), and intro-
duce normal modes in the usual fashion98

Hb5(
kl

\vkl S bkl
† bkl1

1

2D , ~22!

wherebkl and bkl
† are the phonon annihilation and creatio

operators, the sum over wave vectork is restricted to the first
Brillouin zone, the summation indexl runs over the three
acoustic phonon polarization branches, andvkl is the phonon
frequency.
l
tu

te
m

su

o
le
y

th

J. Chem. Phys., Vol. 107, N
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As before, the coupling term has the formV52qgF,
but in contrast to the previous Section, the total~dimension-
less! forceF exerted by the solvent on the solute vibration
coordinateq is explicitly written as a sum of forces from a
solvent atoms, thus avoiding the ‘‘collective coordinate’’ a
sumption:

F5(
i

f ~r i !. ~23!

We now writer i5ur i̊1ui0u, where the vectorr i̊ is the equi-
librium position of thei th host atom in the effective har
monic lattice relative to the diatomic, andui05ui2u0 is the
difference of the displacements of the two atoms from eq
librium due to the lattice vibrations. Expanding the functio
f (r i) in a Taylor series aroundr i̊ and following the proce-
dure outlined in Ref. 79, one obtains the following result f
the symmetrized quantum force-force TCF:
Gqm~ t !5K 1

2
@dF~ t !,dF~0!#1L

qm

5
1

2(i j (
k51

`

(
l 50

`

(
m50

`
~r i̊!

2l 1k~r j̊!
2m1k~Cqm~ t !k1Cqm* ~ t !k!

k! l !m! FC~0!

2 G l 1m

3~ r̂ i̊• r̂ j̊ !kF dk

dri
k

1

r i

d2l

dr i
2l

r i f ~r i !GU
r i5r i

˚

F dk

dr j
k

1

r j

d2m

dr j
2m

r j f ~r j !GU
r j 5r j̊

, ~24!
d

-

st
with

Cqm~ t !5\E
0

`

dv J~v!$~n~v!11!exp~2 ivt !

1n~v!exp~1 ivt !%, ~25!

and Cqm(0) given by Eq.~11!. For the reasons that wil
become clear below, we focus on the normalized quan
TCF given by

Ḡqm~ t !5
Gqm~ t !

Gqm~0!
. ~26!

In the case of Lennard-Jones potentials the solu
solvent interaction is sufficiently short-ranged, and the su
mation over the solvent atoms in Eq.~24! can be restricted to
nearest neighbors only. In lattice theories of liquids one u
ally allows for a possibility of vacant lattice sites, and em
ploys some kind of a smearing procedure in order to smo
out the details of the arrangement of the solvent partic
around the solute.99 We account for both these effects b
introducing an ‘‘average’’ number of nearest neighborsZ̄
and by keeping only diagonal terms in the sum over
solvent atoms. We assume~see below! an inverse power law
for the force on the solute vibrational coordinate
m

-
-

-
-
th
s

e

f ~r !5Fr 2p. ~27!

In this case the derivatives in Eq.~24! can be evaluated, an
we find that

Ḡqm~ t !5S 1

2(
k51

kmax

~Cqm~ t !k1Cqm* ~ t !k!
Sqm~k,p!

k! D Y
S (

k51

kmax

Cqm~0!k
Sqm~k,p!

k! D , ~28!

with

Sqm~k,p!

5F(
l 50

l max S Cqm~0!

2 D l G~p12l 1k!

G~ l 11!G~p21!~p12l 21!G2

, ~29!

whereG(n)5(n21)!. Note that this result for the normal
ized TCF does not depend on the parametersr ° ~the nearest
neighbor separation! and Z̄ ~average number of neare
neighbors!. As discussed in Ref. 79, the upper limits on thek
and l summations have been set tokmax and l max, respec-
tively. In fact, if these were taken to bè, both sums would
diverge no matter how smallCqm(0) is, which ultimately
results from the singularity off (r ) at the origin. In practice,
o. 16, 22 October 1997
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however, forCqm(0)!1 the summand decreases with i
creasingk and l , and becomes essentially zero over a w
range ofk and l . At this point one can simply truncate th
sums, obtaining a well-defined result for the TCF~and avoid-
ing the unphysical divergence!.

From Eqs.~5!, ~24! and~28!, the quantum friction can be
written as

z̃ qm8 ~v0!5bg2Gqm~0!E
0

`

dt cos~v0t !Ḡqm~ t !

5 (
k51

kmax

Wk
qm~v0!, ~30!

with

Wk
qm~v0!5bg2Z̄F2

Sqm~k,p!

2k! ~r ° !2pE0

`

dt cos~v0t !@Cqm~ t !k

1Cqm* ~ t !k#. ~31!

As shown in Ref. 94, for a given~and sufficiently large! v0

the dominant contribution toz̃ qm8 (v0) comes from the term
Wk̄

qm with k̄'v0 /vph , and to a good approximation i
given by

z̃ qm8 ~v0!.bg2Z̄F2
Sqm~ k̄ ,p!\ k̄

2 k̄ ! ~r ° !2p
@~n~v0 / k̄ !11! k̄

1n~v0 / k̄ ! k̄ #E
0

`

dt cos~v0t !

3F E
0

`

dvJ~v!exp~2 ivt !G k̄

. ~32!

We now consider a classical harmonic lattice charac
ized by the same spectral densityJ(v) as its quantum ana
logue introduced above. The corresponding normalized c
sical force-force TCF is given by

Ḡcl~ t !5
Gcl~ t !

Gcl~0!
5

^dF~ t !dF~0!&cl

^dF2&cl

5S (
k51

kmax

Ccl~ t !k
Scl~k,p!

k! D Y
S (

k51

kmax

Ccl~0!k
Scl~k,p!

k! D , ~33!

with

Scl~k,p!5F(
l 50

l max S Ccl~0!

2 D l

3
G~p12l 1k!

G~ l 11!G~p21!~p12l 21!G2

, ~34!

Ccl~ t !5
2

bE0

`

dv
J~v!

v
cos~vt !, ~35!
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andCcl(0) given by Eq.~15!. The classical friction is given
by

z̃ cl8 ~v0!5bg2Gcl~0!E
0

`

dt cos~v0t !Ḡcl~ t !, ~36!

which is equivalent to the classical limit of Eq.~30!. Hence,
to obtain the corresponding approximate result, we take
classical limit directly in Eq.~32! to get

z̃ cl8 ~v0!.bg2Z̄F
Scl~ k̄ ,p!

k̄ ! ~r ° !2p
S k̄

bv0
D k̄E

0

`

dt cos~v0t !

3F E
0

`

dvJ~v!e2 ivtG k̄

. ~37!

In Eqs.~32! and~37! k̄ has the meaning of the integer num
ber closest to the ratiov0 /vph . In fact, to a good
approximation,92 one can simply replacek̄ by this ratio. This
yields the following result for the ratioR2 of the quantum
and classical energy relaxation rates:

R25
~T1

21!qm

~T1
21!cl

5
Sqm~v0 /vph ,p!

Scl~v0 /vph ,p!

sinh~b\v0/2!

b\v0/2

3S b\vph

2 sinh~b\vph/2! D
v0 /vph

. ~38!

Note that the second and the third factors in the above
pression are identical with those in the formula forR1 @Eq.
~16!#. However, the first factor is no longer independent
the solute’s vibrational frequency; in fact, we find belo
from the model calculations that it increases withv0. Thus,
our approximate result for the quantum correction in the c
of the power law solute-solvent interaction has a differe
overall dependence on the ‘‘energy gap’’ as compared to
case of the exponential interaction.

In order to test the above result, we need to specify
spectral densityJ(v). As discussed earlier, we choose a ph
nomenological form forJ(v), and adjust its parameters t
obtain the best possible agreement betweenḠcl(t) calculated
from Eq.~33! and the exact one obtained from the MD sim
lations. In fact, since we are mostly interested in the hig
frequency Fourier components of the TCF, which determ
the relaxation rates for high-order processes, we will perfo
the fit in the frequency domain, i.e., we fitĜcl(v0)
5*0

`dt cos(v0t)Ḡcl(t). We take the following simple two-
parameter form forJ(v):

J~v!5lav expS 2
av2

2 D . ~39!

A similar ~but slightly more complicated! form has been
used by Singwi100 to fit the spectrum of the velocity time
autocorrelation function for Ar fluid.

The above form for the spectral density gives the follo
ing result for the Fourier transform of the normalized clas
cal force-force TCF:
o. 16, 22 October 1997
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Ĝcl~v0!5Apa

2

( k51
kmax

Ccl~0!k

Akk!
expS 2

av0
2

2k DScl~k,p!

(k51
kmax

Ccl~0!k

k!
Scl~k,p!

,

~40!

with

Ccl~0!5
l

b
A2pa. ~41!

We now determine the parametersl and a by fitting
Ĝcl(v0) given by Eq.~40! to the corresponding simulatio
results. The classical force-force TCFs and their Fou
transforms have been calculated from MD simulations
Ref. 80 for the model of a ‘‘breathing sphere’’ LJ solute
LJ fluid for a variety of thermodynamic conditions. Th
solute-solvent and solvent-solvent LJ potentials were ta
to be the same

f~r !5fs~r !54eF S s

r D 12

2S s

r D 6G , ~42!

and the solute mass was set equal to the solvent massm0

5ms . Note that the same assumptions have been use
constructing the effective harmonic bath Hamiltonian in E
~22!.

The ‘‘breathing sphere’’ model80 gives the following ex-
pression for the force on the solute vibrational coordinate

f ~r !5212F2S s

r D 12

2S s

r D 6G ~43!

~we set the coupling constantg equal toe/s). The high-
frequency Fourier components of the force-force TCF
dominated by ther 212 term in f (r ), which gives a power law
force of the form of Eq.~27!, where F5224s12 and p
512. It is worth emphasizing that the MD simulations ha
been performed with the full form off (r ) given by Eq.~43!.
However, in constructing the effective harmonic Ham
tonian @i.e., in choosing the parameters forJ(v)], we are
only interested in reproducing the simulation results
Ĝcl(v0), for which purpose it is sufficient to keep the sim
plified form of f (r ) from Eq. ~27!.

We now proceed to construct the spectral density
fitting the simulation data. We consider three points on
LJ phase diagram, for which the simulations have been
formed in Ref. 80. The corresponding sets of thermodyna
parameters are listed in Table I, with dimensionless den
and temperature defined according tor* 5rs3 and T*

TABLE I. Solvent thermodynamic parameters and zero-time values
TCFs.

r* T* a* l\ Gcl(0) from sim.

0.50 1.41 0.303 1022 0.12 3 1022 144 6 2
0.85 1.41 0.263 1022 0.13 3 1022 382 6 2
0.85 0.80 0.423 1022 0.99 3 1023 173 6 1
J. Chem. Phys., Vol. 107, N
r
n

n

in
.

e

r

y
e
r-
ic
ty

5kBT/e. Due to the anharmonic nature of the LJ potenti
the spectral density for an effective harmonic bath depe
on the density and temperature of the solvent, and we
form a separate fit for each thermodynamic point. The val
of the parametersa* andl\ obtained by fitting the simula-
tion results forĜcl(v0) are listed in Table I. To illustrate the
quality of the fit, we plot in Fig. 3 theĜcl(v0) obtained from
the simulation and calculated from Eq.~40! for the first ther-
modynamic point listed in Table I. The quality of the fit
satisfactory except for the low-frequency region. Thus,
spectral density given by Eq.~39! is suitable for reproducing
the exact results for the TCFs in LJ fluid.

In addition toJ(v), the calculation of quantum and clas
sical relaxation rates requires the knowledge of the zero-t
values of the corresponding TCFs@see Eqs.~30! and ~36!#.
For the harmonic lattice model, these are given by

Gqm~0!5
Z̄F2

~r ° !2p(k51

kmax Cqm~0!k

k!
Sqm~k,p!, ~44!

and

Gcl~0!5
Z̄F2

~r ° !2p(k51

kmax Ccl~0!k

k!
Scl~k,p!. ~45!

The above expressions contain two unknown parametersr °
and Z̄. At the same time,Gcl(0) can be calculated directly
from the MD simulations; the corresponding values are lis
in Table I. In calculating the relaxation rates, we will use t
simulation results forGcl(0), andcalculateGqm(0) accord-
ing to

FIG. 3. log10(Ĝcl* (v* )) vs v* . The solid line~a! is the simulation result,
and the dashed line~b! is obtained from Eq.~40! with the best-fit parameters
a* and l\ listed in Table I. The solvent density and temperature arer*
50.5 andT* 51.41.

f
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Gqm~0!5Gcl~0!

(k51
kmax

Cqm~0!k

k!
Sqm~k,p!

(k51
kmax

Ccl~0!k

k!
Scl~k,p!

, ~46!

thus avoiding the necessity to determiner ° and Z̄.
For each thermodynamic point listed in Table I, we c

culate the fully quantum energy relaxation rates and the f
classical ones. All the integrations and summations are
formed numerically, without involving any approximation
except for truncating the summations in order to avoid
physical divergences, as discussed above. In performing
calculations we takem5mAr/4. The results are shown i
Figs. 4, 5, and 6. As in the case of the exponential inter
tion, the fully classical treatment underestimates the re
ation rates. Also shown are the ‘‘corrected’’ classical resu
given by (T1

21)cl3R2 with R2 calculated from Eq.~38!; they
are in good agreement with the quantum rates. Finally,
plot the results of the ‘‘mixed’’ treatment~quantum solute in
a classical bath! which, as expected, deviate more from t
fully quantum rates than do the fully classical results.

As in the previous section, we now compare the res
obtained with the correction factorR2 to other transforma-
tions proposed in the literature, namely, the Schofield,81 the
Egelstaff,82 and the ‘‘scaled’’ Egelstaff88 procedures. The
general trends are the same for all three thermodyna
points, and for the purpose of presenting the results
choose the first point listed in Table I. In Fig. 7 we plot t
results of applying the three transformations listed above

FIG. 4. log10(1/T1* ) vs v* for LJ solute in LJ solvent. The solid line~a! is
the fully quantum result, the dashed line~b! is the fully classical result, and
the dotted line~c! is the classical result corrected according to the appro
mation from Eq.~38!. The dash-dotted line~d! is for a quantum solute in a
classical solvent. The solvent density and temperature arer* 50.5 andT*
51.41.
J. Chem. Phys., Vol. 107, N
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gether with the fully quantum result and the classical res
corrected by the factorR2. In contrast to the case of the
exponential interaction, the Schofield approximation
clearly the best of the three, and is nearly as good as
presently proposed procedure~involving R2). Both original
and ‘‘scaled’’ Egelstaff transformations give incorrect exp
nents in the~apparently! exponential dependence of the rate
on the energy gapv0; in the energy range considered, th

-

FIG. 5. Same as Fig. 4 but forr* 50.85 andT* 51.41.

FIG. 6. Same as for Fig. 4 but forr* 50.85 andT* 50.8.
o. 16, 22 October 1997
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6059S. A. Egorov and B. J. Berne: Vibrational energy relaxation
former underestimates, and the latter overestimates the q
tum correction.

From the above results one can draw the following c
clusions. For the present problem of relating the quant
force-force TCF to its classical analogue, the correction f
tor depends on the functional form of the solute-solvent
teraction: The first factor in the expression forR1 is different
from the first factor in the expression forR2. Both correc-
tions perform nearly equally well in their respective cas
~although for the LJ interaction the agreement with the fu
quantum result is somewhat better than in the case of
exponential interaction!. At the same time, the approxima
transformations previously proposed in the literature do
depend on the quantity for which the TCF is calculated, a
thus cannot perform equally well for two different types
interactions. This is indeed observed: while for the expon
tial interaction the ‘‘scaled’’ Egelstaff approximation give
the best results of the three procedures, for the LJ interac
it happens to be the Schofield transformation which is
best of the three.

It is worth emphasizing that there is nothing profound
the fact that the Schofield approximation works so well
the LJ interaction, it is simply a consequence of fortuito
cancellation of the first and the third factors in the express
for R2. However, since this correction has a particula
simple form ~it depends only on the temperature and t
solute’s vibrational frequency, but does not depend on
spectral density of the bath!, and performs well over a wide
range of the solvent’s densities and temperatures, it woul
reasonable to use this simple transformation in treating

FIG. 7. log10(1/T1* ) vs v* for LJ solute in LJ solvent. The solid line~a! is
the fully quantum result, the dotted line~b! is the classical result correcte
according to the approximation from Eq.~38!. The dashed line~c! is the
Schofield approximation, the long-dashed line~d! is the Egelstaff approxi-
mation, and the dash-dotted line~e! is the ‘‘scaled’’ Egelstaff approxima-
tion, as described in the text. The solvent density and temperature arr*
50.5 andT* 51.41.
J. Chem. Phys., Vol. 107, N
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models based on LJ potentials. Strictly speaking, our re
for R2 from Eq. ~38! has been obtained for a ‘‘breathin
sphere’’ model of LJ diatomic. Its generalization to mo
realistic systems will be the subject of future investigatio
At the same time, a microscopic theory of VER for
‘‘breathing sphere’’ LJ diatomic in LJ monatomic solve
has been developed in Ref. 80; it was applied to analyze
experimental data13 on VER of molecular iodine in liquid
xenon for a wide range of densities and temperatures
view of this, it would be appropriate to check how the the
retical results obtained in Ref. 80 are affected by incorpo
ing the approximate ‘‘quantum correction.’’ In the spirit o
the above discussion, we use the simplified form of the c
rection factor ~i.e., the one originally due to Schofield!,
which depends only on the solute vibrational frequency a
on the solvent temperature, and does not depend on the
vent density. The theoretical results for VER rates of I2 in Xe
presented in Ref. 80 were obtained for a quantum solute
classical solvent~see, however, Notes added in proof in Re
80!. Therefore, the correction factor which has to be appl
is equal to cosh(b\v0/2). The vibrational frequency of mo
lecular iodine isv0/2pc5214.6 cm21,101 and at the tem-
peratureT5280 K ~for which the density dependence o
VER rates was measured! the correction factor is equal to
1.16. At the lowest experimental temperature~T5253 K! it
is equal to 1.27, and at the highest temperature~T5323 K! it
is equal to 1.12. Thus, applying the quantum correction a
performing a new fit to the experimental data would result
a slightly smaller value of the adjustable parameter, wh
accounts for the non-spherical nature of molecular I2 ~see
Ref. 80!. It would also lead to a slightly less steep tempe
ture dependence of the calculated rates. However,
changes will not be significant enough to noticeably aff
the level of agreement with the experimental results, and
not change any conclusions reached in Ref. 80.

IV. CONCLUSION

In this paper we have considered the problem of relat
quantum and classical time correlation functions in the c
text of vibrational energy relaxation in condensed phas
The treatment was based on the assumption that both q
tum and classical systems are characterized by effective
monic Hamiltonians with identical set of normal modes. T
solute-solvent interaction was taken to be linear in the so
vibrational coordinate, but nonlinear in the bath coordinat
thereby allowing for high-order multiphonon relaxation pr
cesses. Thus, the present work extends the previous t
ment of the same problem by Bader and Berne,89 which was
limited to the bilinear system-bath coupling, i.e., sing
phonon processes. In that case,89 an exact relationship be
tween quantum and classical TCFs was obtained, and it
shown that the VER rates for a classical solute in a class
solvent and for a quantum solute in a quantum solvent
identical.

The situation is considerably different in the case of no
linear system-bath coupling. First, it is only possible to o
tain an approximate relationship between quantum and c
o. 16, 22 October 1997
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6060 S. A. Egorov and B. J. Berne: Vibrational energy relaxation
sical TCFs, which is valid in the limit of large solute’
vibrational energy gap. Second, the fully quantum and fu
classical VER rates are no longer identical, but can be rela
using the above approximate relationship. Having chose
functional form for the bath spectral density, we have p
formed exact numerical calculations of the quantum a
classical rates, and found that the accuracy of the appr
mate ‘‘quantum correction’’ is satisfactory. The calculatio
were performed for two forms of system-bath coupling:
exponential repulsion and a power law form. The latter c
is applicable to studying vibrational relaxation of a ‘‘breat
ing sphere’’ LJ solute in LJ solvent. The accuracy of vario
‘‘quantum corrections’’ previously proposed in the literatu
has also been tested; it was found that for the model base
Lennard-Jones interactions, a simple approximation due
Schofield provides an accurate estimate of the ‘‘quant
correction.’’

In all cases studied it was found that the fully classi
VER rates, while being lower than the fully quantum on
are higher than the ‘‘mixed’’ rates for a quantum solute in
classical solvent. Thus, in the absence of results for m
realistic systems~i.e., beyond ‘‘breathing sphere’’! it would
be more accurate to treat both the solute and the sol
classically, instead of employing a ‘‘mixed’’ model of
quantum solute in a classical bath.
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