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A new Monte Carlo algorithm is presented for the efficient sampling of protein conformation space
called the Smart-Walking~S-Walking! method. The method is implemented using a hybrid Monte
Carlo protocol. The S-Walking method is closely related to the J-Walking method proposed by
Frantzet al. ~J. Chem. Phys.93, 2769, 1990!. Like the J-Walking method, the S-Walking method
runs two walkers, one at the temperature of interest, the other at a higher temperature which more
efficiently generates ergodic distributions. Instead of sampling from the Boltzmann distribution of
the higher temperature walker as in J-Walking, S-Walking first approximately minimizes the
structures being jumped into, and then uses the relaxed structures as the trial moves at the low
temperature. By jumping into a relaxed structure, or a local minimum, the jump acceptance ratio
increases dramatically, which makes the protein system easily undergo barrier-crossing events from
one basin to another, thus greatly improving the ergodicity of the sampling. The method
approximately preserves detailed balance provided the time between jumps is large enough to allow
effective sampling of conformations in each local basin. ©1997 American Institute of Physics.
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I. INTRODUCTION

Computer simulations of protein structures and dyna
ics have been of great interest in the past decade. It is
widely believed that the complexity of the potential ener
landscape results in the rich dynamical behavior
proteins.1–4 The rugged energy surface arises from the h
erogeneous nature of proteins because of the presenc
many energy scales. For example, the barriers are due
least two classes of interactions: first, local barriers sepa
stable torsion angle states; second, barriers arise from c
encounters of atoms among the sidechains. The equilibr
and dynamical properties of proteins are thought to be de
mined by this temperature-independent multidimensional
tential energy hypersurface consisting of many local mini
and barriers.

When molecular dynamics~MD! or Monte Carlo~MC!
simulations are used to determine the conformational e
librium of proteins or other biomolecules, the underlying a
sumption is that the average over the simulation traject
~the trajectory or time average! is equal to the average ove
all possible states of the system~the statistical or phase spac
average!. This is often called the ‘‘ergodic hypothesis.
However, due to the finiteness of the simulation time,
trajectory average often differs from the phase space a
age; and the trajectory averages obtained from different s
ing configurations may have very different values. In th
case, the sampling scheme is said to be ‘‘non-ergodic’’
‘‘quasi-ergodic.’’

How to avoid this ‘‘quasi-ergodicity’’ problem in rea
protein systems still remains a great challenge in comp
simulations. Quasi-ergodicity appears whenever the t
scale of MD or MC simulations is shorter than an importa
relaxation time scale in proteins, or when the protein sys
J. Chem. Phys. 107 (21), 1 December 1997 0021-9606/97/107(21)
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is trapped in a local potential basin. Unfortunately, the tim
scales for functionally important motions, such as prot
folding, are often longer than accessible MD or MC runs
today’s computing resource.4,5 Therefore, enhanced sam
pling algorithms which improve the rate of barrier crossin
are required for the search of conformation space.

Enhanced sampling algorithms should be designed
such a way as to allow protein systems to have a signific
probability for making long-range moves or simply visitin
barrier regions. It is not practical for conventional MC met
ods to make nonlocal collective moves because of the p
hibitively low acceptance ratio. It is also not practical f
normal MD methods to efficiently sample barrier crossin
due to the very small time steps required by energy con
vation. One efficient method for generating collective mov
is the hybrid Monte Carlo~HMC! method invented by Duane
and Kennedy.6 In this method, one starts with a configuratio
of the system and samples the momenta of the particles f
a Maxwell distribution. Molecular dynamics is then used
move the whole system for a timeDt, and finally one ac-
cepts or rejects the move by a Metropolis criterion based
exp(2bH) whereH is the Hamiltonian of the whole system
A number of authors have further elaborated the HM
method, and have applied it to many systems, such as
glasses and polymers.7–11

The HMC method also gives rise to one practical pro
lem. Since the momenta are constantly refreshed, the acc
panying dynamics is similar to Smoluchowski dynamics a
thus gives a spatial diffusion process superimposed on
inertial dynamics. This added spatial diffusion can lead
smaller rates for barrier crossing.3 One way to improve this
is to couple it with the J-Walking method proposed
Frantz, Freeman and Doll.12 Unlike the conventional MC
9185/9185/12/$10.00 © 1997 American Institute of Physics
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9186 R. Zhou and B. J. Berne: Smart walking
method which samples a small move and accepts or re
the move based on Metropolis criterion, in the simplest
carnation, the J-Walking method runs two walkers, one at
temperature of interest, the other, called the J-Walker,
higher temperature. The lower temperature walker can o
sionally jump into the J-Walker’s configurations, and t
jump is then accepted or rejected based on a Metropolis
terion such that detailed balance is preserved for the lo
temperature walker. The occasional sampling from the
Walker’s Boltzmann distribution, which samples a larg
conformation space due to its higher temperature, allows
lower temperature walker to easily move form one basin
another and thus speeds up the conformation space samp
A similar method, called the exchange Monte Carlo meth
was introduced by Hukushimaet al.13 for spin glasses. In
practice, it has been found that the use of only a single h
temperature J-Walker~two-stage! is insufficient to treat
quasi-ergodicity in physically realistic systems~even small
clusters!.14 A multi-stage J-Walking must then be used. O
viously, the CPU and memory cost will increase linea
with the number of stages. The computational cost for sim
lating large protein systems may then be enormous.

There are many other methods proposed to enhance
conformation space sampling, such as anti-force-bias MC
Cao and Berne,15 multicanonical MC by Berg and
Neuhaus,16 the cluster move method by Swendsen a
Wang,17 the fluctuating potential method by Liu and Berne18

the Monte Carlo-minimization approach by Li an
Scheraga19,20 and the mixed Monte Carlo/stochastic dyna
ics method by Guarneri and Still.21,22 These methods hav
shown some success in model systems, small cluster
Lennard-Jones systems. The Monte Carlo-minimizat
method generates a MC move for a system, followed b
minimization of the structure, which then accepts or reje
the minimized structure by the Metropolis criterion.19,20 The
method is very successful in a global minimum search fo
pentpeptide, Met-enkephalin; however, the distribution
generated is no longer canonical and the system might
be trapped in a ‘‘deep’’ local minimum~not global mini-
mum! at low temperatures. The mixed MC/stochastic d
namics method,21,22 which alternates small moves generat
by stochastic dynamics with large MC moves of certain t
sion angles, has been quite successful for chain molecule
continuum solvent, but should face difficulties in explicit so
vents. Very recently, Andricioaei and Straub also propo
an enhanced sampling method based on the Tsallis statis
distribution23 and applied it to atomic clusters. However, t
problem of sampling protein conformation space efficien
still remains unsolved.

In this paper, we present a new Monte Carlo algorith
called the Smart-Walking~S-Walking! method for efficient
sampling of protein systems. The method is implemen
with a HMC protocol, although it could also be implement
with an ordinary Monte Carlo. The beauty of this ne
method is that it often requires only two stages for effect
sampling compared with J-Walking which often requir
multi-stages. Thus, S-Walking will often be computationa
much less costly than J-Walking. In the following, we com
J. Chem. Phys., Vol. 107, N
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pare S-Walking~which requires only two walkers! with two-
stage J-Walking and find S-Walking samples conformat
space much more efficiently. Since a multi-stage J-Walk
procedure will increase CPU cost linearly with the number
stages, we focus only on the comparison of two-stage
Walking with S-Walking.

This paper is organized as follows: several ergodic m
sures for measuring the ergodicity of the sampling are
scribed in Section II, followed by three sections on metho
ology, HMC ~Section III!, J-Walking ~Section IV! and S-
Walking ~Section V!. Section VI gives some applicatio
results on a one dimensional random potential surface
two protein systems, a pentpeptide Met-enkephalin an
protein melittin~PDB file 2mlt, 431 atoms!. Section VII con-
tains the conclusion. The basic approach introduced in
paper can easily be used in conjunction with other sche
to enhance the rate of conformation sampling.

II. GENERALIZED ERGODIC MEASURES

In order to compare the new S-Walking algorithm wi
other methods such as J-Walking, it is essential to defin
measure of the efficiency of a method and to determine
given sampling method is ergodic.

If the true normalized probability distribution
rexact(G)5Z21exp(2bV(G)), of the conformational states i
known, and ifr(G,t) is the normalized distribution found
from simulation after a timet, one can monitor the
quantity15

x2~ t !5E
2`

1`

dG@r~G,t !2rexact~G!#2 ~1!

as a function of run length. Here,G denotes the conforma
tional space, and the integral is over all conformation
states. The root mean square deviation should decay to
if the sampling method is ergodic and if the run length e
ceeds the mixing time of the sampling algorithm. Then t
rate of decay ofx(t) is a measure of how efficient a simu
lation method is. For one-dimensional energy landscap
one knowsrexact(x), so thatx(t) offers a simple measure o
sampling efficiency as was shown in Ref. 15. We usex(t)
on a simple one-dimensional random potential later in S
tion VI. For multi-dimensional systems with rugged ener
landscapes, however, the exact normalized distribution
usually not known. Then one must search for other meas
of sampling efficiency.

Thirumalai et al.24 have introduced an approximat
method for determining whether or not a sampling algorith
is ergodic that also produces a measure of the mixing ti
The underlying idea is that for any system in equilibrium
independent trajectories over an ergodic system must be
averaging. Take a property such as the pair distance betw
a particular pair of sites in a protein. If the protein syste
dynamics is ergodic, the average value of the pair dista
over two independent trajectoriesa and b must be equal.
This condition is of course not sufficient for ergodicy of th
system, but it is necessary.
o. 21, 1 December 1997
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9187R. Zhou and B. J. Berne: Smart walking
Several ergodic measures, such as a force mea
~based on vector force of an atom!, and an energy measur
~based on the non-bonded energy of an atom! among others,
have been proposed by Thirumalaiet al.24 and Straubet al.4

In general, for a quantityg of the j th atom or j th pair, the
average over timet for a particular trajectory is defined as

ḡ j
a~ t !5

1

t E0

t

ds gj
a~s!, ~2!

wherea indicates the average calculated overa trajectory.
For two independent trajectoriesa andb starting from inde-
pendent initial configurations, we define the mean-squ
difference between averages of trajectorya and b as the
metric

dg~ t !5
1

N(
j 51

N

u ḡ j
a~ t !2 ḡ j

b~ t !u2. ~3!

This metric dg(t) is often called the ergodic measure.24,4

There are many possible choices for the quantityg. Several
different measures will be discussed in this paper, such as
force magnitude metric, the potential energy metric, the
pair distance metric, and the all-pair distance metric. As
will see later, the force metric, energy metric and 1,4-p
distance metric will measure more about local sampli
however, the all-pair distance metric will give more inform
tion about the long-range sampling.

III. HYBRID MONTE CARLO METHOD

Conventional Monte Carlo simulations are generally c
ried out by means of single-particle moves. Updating m
than one particle at a time for large protein systems typic
results in prohibitively low average acceptance ratios. On
other hand, MD simulations can perform global moves, ho
ever, the MD scheme is prone to errors and instabilities
to finite time step sizes. Thus only very small time stepsdt
5 0.5 fs for proteins! can be used for normal MD simula
tions.

The hybrid Monte Carlo~HMC! method proposed by
Duaneet al.6 combines the ease of global update by MD a
the Metropolis criterion of MC. It is unlike conventional MC
methods, however, because it involves global updates of
sitions of all atoms based on an accept/reject decision for
whole configuration. It is also unlike the normal MD schem
because there are no discretization errors due to finite
step size. In general, the time step in HMC could be 2
times larger than the normal MD time step for proteins wh
keeping the method exact and with sufficiently high acc
tance ratio. The beauty of the HMC method is that it
actually anexactMC method with global updates.

In the HMC method, one starts with an initial state of t
system (r ,p), and resamples momentap from a Maxwell
distribution. Molecular dynamics is used to move the wh
system for a timeDt5nMDdt, wheredt is the time step of
the MD simulation, andnMD is the number of MD steps in
one MC cycle. BecauseDt is chosen sufficiently large tha
the total energy is not conserved, one then accepts or re
the move based on the Metropolis criterion,
J. Chem. Phys., Vol. 107, N
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p5min@1,exp~2bDH !#, ~4!

wherep is the acceptance probability, andH is the Hamil-
tonian of the system. This whole process is called one HM
cycle. The HMC cycle is repeated over and over until a lo
trajectory is generated. Thus, in summary, the HMC alg
rithm can be described as follows:

~1! Starting from an initial position in phase space (r ,p),
resample the momentap from a Maxwell distribution.

~2! PerformnMD steps of a constant energy MD simulatio
with a time stepdt, to generate a new configuratio
(rnew, pnew).

~3! Accept or reject this new configuration based on the M
tropolis criterion on the total Hamiltonian, Eq.~4!, then
go back to step~1!.

It can be shown that HMC leads to the canonical pro
ability distribution, provided that the MD algorithm is tim
reversible and symplectic.6 Since our multiple time step al
gorithm, the so-called reversible Reference System Prop
tor Algorithm ~r-RESPA!25–30 is time reversible and sym
plectic, it is very useful in combination with HMC for larg
protein systems.

In practice, the HMC method should be optimized f
different systems by fine tuning the time stepdt and number
of MD steps nMD used in one MC cycle. For man
systems,8–11,31 HMC can sample the phase space very e
ciently; however, it is still not efficient enough for large pro
tein systems, as we will see in the Results section. One
to improve it is to couple the HMC method with the Jum
Walking ~J-Walking! or Smart-Walking~S-Walking! tech-
niques discussed in the following sections. In the results s
tion, we will see that the combination of HMC with S
Walking greatly speeds up the conformational sampling
proteins over J-Walking and pure HMC.

IV. JUMP WALKING

The Jump-Walking~J-Walking! method was first pro-
posed by Frantz, Freeman and Doll12 in MC studies of
atomic clusters. It has been shown that J-Walking is v
powerful in reducing the quasi-ergodic behavior of mod
systems and small atomic clusters.12,32,14

The J-Walking technique can be described as follows
the usual MC method, one samples a small move and acc
or rejects the move according to the Metropolis criterion
the temperature of interest,

p5min@1,q~x8ux!#, ~5!

where

q~x8ux!5
T~xux8!r~x8!

T~x8ux!r~x!
, ~6!

r(x)5Z21exp@2bV(x)# is the Boltzmann distribution withZ
the partition function, andT(x8ux) is the trial sampling dis-
tribution. The trial sampling distribution adopted in M
methods is usually a uniform distribution over a step sizeD,
o. 21, 1 December 1997
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9188 R. Zhou and B. J. Berne: Smart walking
T~x8ux!5H 1

D
, ux82xu,

D

2

0, otherwise

. ~7!

This gives the well-known Metropolis probability functio
q(x8ux),

q~x8ux!5exp$2b@V~x8!2V~x!#%. ~8!

In the J-Walking method, this normal sampling is infr
quently punctuated by sampling from a higher temperat
distribution for the same system. Since a higher tempera
MC simulation can involve larger attempted moves and m
frequent barrier crossings, this allows the system to acc
more conformational states according to the high temp
ture Boltzmann distribution. Then, the lower temperatu
walker attempts occasional jumps to the conformation st
of the high temperature walker, thus enhancing the bar
crossing. The trial sampling distribution for these occasio
jumps is the Boltzmann distribution at the higher tempe
ture

TJ~x8ux!5Z21exp@2bJV~x8!#, ~9!

which, from Eq.~6!, gives the acceptance probability fun
tion q(x8ux) as

qJ~x8ux!5exp$2~b2bJ!@V~x8!2V~x!#%. ~10!

In the limit bJ→0, qJ(x8ux) reduces to the standard Me
tropolis acceptance probability in Eq.~8!. This is reasonable
because the high temperature distribution broadens asbJ de-
creases to zero, and the J-Walker method then essen
reduces to simple jumping with a large step sizeDJ in this
limit. In the limit of bJ→b, qJ(x8ux)→1 since the low tem-
perature walker is now effectively sampling from its ow
distribution.

It should be noted that the Hamiltonian is used in t
HMC method and the potential energy is used in the
Walking method~S-Walking too!. This is permissible since
both methods generate the same canonical Boltzmann d
bution.

The easiest way to implement the J-Walking method
to run two walkers in tandem. However, this will result
large correlations between two walkers and thus large
tematic errors. Another way to implement J-Walking meth
is to run the J-Walker first and generate an external file of
configurations at the high temperature, then run the low te
perature walker and infrequently sample from this exter
file randomly. Dollet al.12,32,14found that the second metho
is more efficient and generates less systematic error than
first method. However, the first method, running two walke
in tandem, is more convenient for parallel machines. Thu
might be appropriate to use tandem walkers in parallel m
chines and external files in serial machines. Since there a
huge number of conformations for real proteins, enorm
disk storage may be needed for the external file in the sec
method, thus the two methods are combined in our imp
mentation~we use serial machines here!. The modified J-
Walking algorithm based on a hybrid Monte Carlo~HMC!
protocol is then as follows:
J. Chem. Phys., Vol. 107, N
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~1! Starting from some initial configuration, run a J-Walk
at a high enough temperatureTJ using the HMC method
for N MC cycles, and generateM conformations uni-
formly ~one everyN/M HMC cycles!. Store theseM
conformations in an external file. Memorize the last co
figuration of the J-Walker for future use.

~2! Starting from the initial configuration, run the low tem
perature walker using the HMC method forN MC
cycles. During the HMC run, randomly jump to the
Walker conformations stored in the external file, when
randomly generated numberj,PJ (PJ is the jump prob-
ability!. The jump is accepted or rejected according
Eq. ~10!. At the end, store the last configuration of th
low temperature walker.

~3! Assign the last configurations of J-Walker and low te
perature walker as their new initial configurations, r
spectively, then go back to step~1! and repeat the pro
cess until the simulation converges or a predefin
number of steps is exceeded.

The starting configuration of the two walkers is the sa
in our implementation, but that is not necessary. This
Walking method preserves detailed balance for the low te
perature walker, and the occasional jumps to the J-Wa
configurations allow the low temperature walker to mo
from one potential energy basin to another, thus reducing
CPU time required to sample conformation space. This
proach appears to work very well for model systems a
small atomic clusters12,32,14 of great interest to determin
how well the J-Walking method works for large real prote
systems, which was the initial goal of this research proje
Unfortunately, the normal two-stage J-Walking method~only
two temperatures! has very limited success in protein sy
tems~see the Results section!.

V. SMART WALKING

As mentioned above, in order for the J-Walking meth
to work well for large protein systems, it might need a lar
number of stages of walkers and thus a large amoun
parallel processors. The reason is obvious because the a
sible temperature of the J-Walker needs to be very clos
that of the low temperature walker to have a reasonable ju
acceptance ratio. If too high a temperature is used for
J-Walker, configurations are generated in which some gro
may overlap and the van der Waals~vdW! interactions are
sufficiently large that most of these will be rejected by t
low temperature walker. In other words, if the differen
between the temperatures of the low temperature walker
J-Walker is large, the average potential energy of the
Walker will be much higher than that of the low temperatu
walker in terms ofkT, and the jump success ratio will b
extremely low. For example, the jump success ratio for
pent-peptide Met-enkaphalin jumping from 300 K to 400
is less than 5%. It will be even less for larger proteins.

Thus, a multi-stage jumping process instead of a tw
stage jumping scheme is necessary for real systems. Fo
ample, a three-stage jump walking scheme (T1.T2.T3)
can be described as follows: a low temperature walker
o. 21, 1 December 1997
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9189R. Zhou and B. J. Berne: Smart walking
temperatureT3 can occasionally jump to a intermediate tem
perature walker atT2 , and the intermediate walker atT2

occasionally jumps to the high temperature walker atT1 ,
providedT1 is higher enough for the MC simulation to b
ergodic. This process can be extended ton-stage jumping
processes. However, because CPU time and memory req
ment increases linearly with the number of stages, this m
stage process is very resource consuming. Matro, Free
and Topper14 proposed a parallel jump-walking schem
which uses as many as 90 processors in parallel for ato
clusters (NH4Cl)n , n53 – 10. Hukushima and Nemoto13

proposed a similar method called the exchange Monte C
Method, which used 32 stages in the jumping process
three-dimensional spin glass systems with lattice sizeL
56 – 16.

However, jumping directly into a high temperature stru
ture is not the only way to use the conformational spa
information from the J-Walker. Instead, the structure can
first relaxed before being jumped into. Approximate minim
zation with a steepest descent method~or conjugate gradien
method! will generate structures close to the local minimu

$x8% ⇒
relax

$x9%, ~11!

where$x8% is the configuration of the J-Walker before min
mization,$x9% is the configuration after minimization. Thes
relaxed configurations will significantly decrease the pot
tial energy, and thus increase the jump success ratio dram
cally. However, since the relaxation process is a non-ther
process, the minimized structures$x9% no longer satisfy the
Boltzmann distribution at high temperature. Fortunately,
high temperature Boltzmann distribution need not to be
isfied in order to use the minimized structures. Instead,
regard a minimized structure as one of the possible t
moves at low temperature and use the normal accept
probability function,

q~x9ux!5exp$2b@V~x9!2V~x!#%. ~12!

Unlike the J-Walking acceptance probability in Eq.~10!, this
scheme, which we call Smart-Walking, or S-Walking, w
dramatically increase the jump success ratio from one b
to another. It also enables the system to explore more p
space and undergo more efficient barrier crossings. Thi
walking method avoids the linear increase of CPU time a
memory usage required by the multiple-stage J-Walk
method, because it is not necessary to use multiple stage
most systems, even though it would be very easy to imp
ment a multi-stage S-Walking procedure. S-Walking p
serves detailed balance approximately provided the time
tween S-jumps is much longer than the time required by
low temperature walker to explore its local basin effective
~a further discussion follows in the section on Results!. This
new S-Walking algorithm only requires a simple modific
tion of the J-Walking algorithm.

~1! Starting from some initial configuration, run a J-Walk
at high enough temperature using the HMC method
N HMC cycles. GenerateM conformations uniformly
J. Chem. Phys., Vol. 107, N
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~one everyN/M HMC cycles!, and approximatelymini-
mizeeach of them to their corresponding local minim
using steepest descent method. Store these minimizeM
conformations in an external file. Memorize the last co
figuration of the J-Walker for future use.

~2! Starting from the initial configuration, run the low tem
perature walker using the HMC method forN MC
cycles. During the HMC run, randomly attempt a jum
to one of the minimized conformations stored in the e
ternal file, when a random numberj,PS (PS is the
jump probability in S-Walking!. The jump is accepted o
rejected according to Eq.~12!. Store the last configura
tion of the low temperature walker.

~3! Assign the last configurations of the J-Walker and t
low temperature walker as their new initial configur
tions, respectively, then go back to step~1! and repeat
the process until the simulation converges or a p
defined number of steps is exceeded.

VI. RESULTS AND DISCUSSION

We have applied the S-Walking algorithm to several s
tems and compared it with other methods, such as the H
and J-Walking algorithms. Constant energy MD and const
temperature MD, are also included for comparison. A o
dimensional rugged potential surface is tested first, for wh
the exact normalized probability distribution is known. The
two protein systems, a pentpeptide Met-enkephalin an
protein Melittin ~PDB file 2mlt!, are tested.

FIG. 1. Diagram of a one-dimensional random potential energy surf
from a sum of Fourier sine waves with periodic boundary condition.
o. 21, 1 December 1997
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9190 R. Zhou and B. J. Berne: Smart walking
A. One-dimensional random potential surface

We begin with a simple one-dimensional~1D! model
system. A Fourier sum of sine waves is used to genera
rugged potential surface,

V~x!5(
n

CnsinS npx

L D . ~13!

The potentialV(x) is periodic in thex direction withL the
size of the primary cell, andCn the coefficient of thenth
component. By changing the coefficientsCn and the number
of termsn, various 1D potential surfaces can be genera
In this study,L510, n520 and a randomly generated coe
ficient set$Cn% are used. The generated 1D potential surfa
as shown in Figure 1, has a global minimum atx59.7 and
various local minima betweenx50 andx510.

The units of the 1D potential energy are arbitrary, a
other parameters are set to be reduced units, such as the
m 51.0, and the Boltzmann constantk 51.0. Thus the re-
duced temperature,T* will be 2KE, where KE is the kinetic
energy of the particle with the same units as the poten
energy.

Five different methods are tested: constant energy
~CEMD!; constant temperature MD~CTMD!; hybrid Monte
Carlo ~HMC!; the Jump Walking method based on HM
~J-Walking! and the Smart-Walking method based on HM
~S-Walking!. In the CTMD method, a simple velocity sca
ing scheme proposed by Berendson is used.33

The time stepdt used in CEMD is determined by energ
conservation,DE, which is defined as27

DE5
1

N(
i 51

N UEinitial 2Ei

Einitial
U, ~14!

whereEi is the total energy at stepi , Einitial is the initial
energy, andN is the total number of time steps. A requir
ment of log(DE)<23.0 is used to determine the time step
CEMD for different temperatures. The CTMD metho
shares the same time stepdt as the CEMD for the same
temperature. In the HMC method, two parameters are u
the MD time stepdt and the number of MD stepsnMD in
each MC cycle. In general, the time step adopted in HM
can be much larger than that of CEMD. For the simple
random potential surface, the time step of HMC can be
large as 10 times that of CEMD with the resulting acce
tance ratio still higher than 50%. However, as we will s
later in the real protein systems discussed in this paper,
MD time step in HMC can be only a factor of 2–3 time
larger than that of the CEMD~the time step in HMC will
decrease as the size of protein systems increase!. For a rea-
sonable comparison, we used a factor of 4 in the time s
for this 1D system withnMD equal to 5. Both the J-Walking
and S-Walking methods are based on an HMC protocol, w
the same jumping probability ofPJ5PS53% ~the jumping
probability of J-WalkingPJ will be increased to 10% for
protein systems in order to increase the jump success r!.
In the J-Walking method, a high temperature walk is p
formed first using HMC atT* 53.0 ~high enough for HMC
to sample all states in a reasonable time!, and an external file
J. Chem. Phys., Vol. 107, N
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of these high temperature configurations is generated
formly ~every 20 MC cycles or 100 MD steps!. A low tem-
perature walk is then generated, which occasionally~3% of
the moves! jumps into the configurations stored in the exte
nal file. The S-Walking method follows the same procedu
as the J-Walking method, except that a relaxation proc
~implemented with the steepest descent method! is added
before storing the high temperature configurations to the
ternal file. Since the required disk storage of this 1D syst
is moderate, we can generate the high temperature walk
and store all resulting configurations~10 000 structures! in
one file.

Since we know the exact form of the 1D rugged pote
tial energy surface, it is easy to calculate theexactprobabil-
ity distribution function,rexact(x). Thus,x(t), as defined in
Eq. ~1! can be used as a criterion for ergodic measuremen
the sampling. If the sampling is ergodic,x(t) should decay
to zero. The rate of decay is a measure of the convergenc
sampling, which indicates how fast the walker accesses
possible states.

Figure 2 shows the decay ofx(t) as a function of the
number of MD steps for the various methods at tempera
T* 50.1, starting from an initial position ofx56.9 ~a local
minimum!. Here we used the number of MD steps, not t
MD real timet, as our time axis, because the time steps u

FIG. 2. A plot of x, as defined in Eq.~ 1!, versus the number of MD step
for the 1D rugged potential surface at temperatureT* 50.1 using various
methods. It is shown that constant energy MD~CEMD! and constant tem-
perature MD~CTMD! methods cannot cross barriers efficiently. The hyb
Monte Carlo~HMC! method improves the ergodic sampling to some ext
at this temperature. Both the J-Walking~J-Walk! and S-Walking~S-Walk!
methods work very well, with S-Walking working a little better. Howeve
as we will see later, the S-Walking method will be much more efficient th
the J-Walking method in real protein systems.
o. 21, 1 December 1997
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9191R. Zhou and B. J. Berne: Smart walking
in normal MD methods and HMC methods are differe
Another reason for using MD steps is because they reflec
CPU time. It should be noted that the CPU time for
Walking is about twice that of regular MD because there
two walkers; and the CPU cost of S-Walking is about 3 tim
that of regular MD because of the extra cost of minimizat
procedures. The CPU time of HMC is comparable with n
mal MD methods for the same number of MD steps. It
clear from the figure that for both CEMD and CTMD,x(t)
decays to large plateau values, which means that these
mal MD methods cannot cross barriers efficiently, result
in non-ergodic sampling. Thermal averages based on th
simulation methods depend on the initial conformatio
states. In order for the CEMD method to be ergodic in t
1D system, the temperature has to be raised to ab
T* 513.0 ~kinetic energy larger than;6.5). In contrast,
HMC is ergodic at any temperature, but at low temperatu
barrier crossings will be so infrequent that the conform
tional sampling is in a practical sense ‘‘non-ergodic.’’ In th
1D system, whenT* ,1.5, we observe this ‘‘non-ergodic’
behavior in less than 500 000 MD moves or equivalen
100 000 HMC moves (nMD55). For T* .1.5, HMC
samples the rugged landscape very efficiently. Thus, for v
low temperatures, likeT* 50.1, there is little difference be
tween HMC and CEMD/CTMD as shown in Figure 2, b
HMC is markably superior to CEMD/CTMD atT* .1.5,
well before CEMD/CTMD becomes ‘‘ergodic.’’ The reaso
why we select a very low temperature here is to clearly sh
the difference between HMC and the J-Walking method, a
also the difference between the J-Walking and S-Walk
methods. Both the J-Walking and S-Walking methods g
erate a significant decay forx(t) at T* 50.1, indicating that
both methods can access all possible states in this rugge
potential surface even at very low temperatures. Of cou
as we can see from the figure, the S-Walking method is
3–4 times faster in the initial decay than the J-Walki
method. Accounting for the fact that the S-Walking meth
requires 50% more CPU time, it is a factor of 2–3 tim
more efficient than the J-Walking method for this 1D syste
When the temperature is increased, the difference betw
HMC, J-Walking, and S-Walking methods for this 1D mod
systems becomes smaller, because HMC already crosse
riers efficiently at higher temperatures. However, as we w
see in the next section, the difference between these t
methods will become more significant in multi-dimension
systems. The HMC and the two-stage J-Walking meth
will then have very limited success in sampling protein s
tems, whereas the S-Walking method~two-stage! still works
very well.

As shown in Frantzet al.’s paper, the J-Walking metho
preserves detailed balance. The S-Walking method only
serves detailed balance approximately, and generates a
zmann distribution provided the time interval between jum
is much longer than the energy relaxation time. Figure
shows the spatial distribution function,r(x), calculated from
the S-Walking method~after 100 000 HMC steps, or 500 00
MD steps! and from exact numerical evaluation for two di
ferent temperatures,T* 50.1 andT* 51.0. The distribution
J. Chem. Phys., Vol. 107, N
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function calculated from the S-walking method agrees ve
well with the exactdistribution function for both tempera-
tures, indicating that the S-Walking method generates
Boltzmann distribution. However, it should be pointed o
that if very large jumping probabilityPS is used, the S-
Walking method will spend a lot of time just sampling th
local minima, not the thermal distribution of configuration
around each of these minima, resulting in an over-weight
in these local minima configurations. To reduce this possi
over-weighting of the local minima, the jump frequenc
should be low enough so that the time interval betwe
jumps will be much larger than the energy relaxation tim
Fortunately, the jump success ratio for each jump is ve
high, so the overall barrier crossing probability is still muc
higher than the two-stage J-Walking method.

Figure 4 shows the decay ofx(t) with time at tempera-
ture T* 50.1 using various S-Walking jumping probability
PS . As expected from the above discussion,x(t) does not
decay to zero forPS larger than 10% because of the ove
weighting of the local minima. Clearly, ifPS is made too
small, the relaxed structures will be chosen so rarely t
very long runs will be required to obtain effective samplin
of the correct distribution. This is shown in Figure 4 forPS

50.3%. Thus, it behooves the simulator to determine t
optimal value ofPS for various systems. We note that meth

FIG. 3. A comparison of the probability distribution function,r(x), ob-
tained from S-Walking simulation and from the exact evaluation, for tw
different temperatures:~a! T* 5 0.1,~b! T* 5 1.0. The results show that the
S-Walking method withPS53% generates correct Boltzmann distribution
for both temperatures.
o. 21, 1 December 1997
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9192 R. Zhou and B. J. Berne: Smart walking
ods based on the maximization of the rate of informat
entropy production might be useful for this optimization34

The optimal value ofPS is found to be 1–10% for this 1D
random potential surface. In this paper aPS53% is used for
both 1D random potential and protein systems. The opti
value of PS may depend on the relative curvature of t
barrier regions and local minima in potential hypersurfac

In some extreme cases, such as a broad potential
with a very sharp hole in the center~a ‘‘needle-point’’!, the
minimization process in S-Walking will locate the ‘‘need
point’’ as the trial move for the low temperature walke
resulting in a serious over-weighting of this point. Thus
very smallPS should be used for this kind of potential su
face. Alternatively, another approach can also be used
reduce this local minima over-weighting in which after t
energy minimization the system is thermalized at the l
temperature using HMC before Metropolis acceptance. T
alternative approach~which is not implemented in this pa
per! will have an additional CPU cost for the thermalizatio
around local minima at the low temperature, but may us
larger jumping probabilityPS . Which of the two methods
will be more efficient for various systems is currently und
investigation.

B. Application to two protein systems

As we have seen above, both the two-stage J-Walk
and S-Walking methods work very well for one-dimension
rugged potential surfaces. In fact, HMC also works well

FIG. 4. The decay ofx(t) with time, i.e., the number of MD steps in HMC
for the 1D rugged potential surface at temperatureT* 50.1 using various
jumping probabilityPS in S-Walking. The results show that the optim
S-Walking jump probability is about 1–10% for this 1D system.
J. Chem. Phys., Vol. 107, N
n

al

.
ell

to

is

a

r

g
l
r

not-too-low temperatures. Protein systems have mu
dimensional rugged conformational hyper surfaces. W
these methods still work for large protein systems?

Two protein systems are studied: one is an oligopept
Met-enkephalin ~residue sequence Tyr-Gly-Gly-Phe-Met!,
and the other is a protein melittin from honey bee~PDB file
2mlt, 26 residues and 431 atoms!. An all-atom model is used
for both protein systems, and the AMBER force field35 is
used in all calculations. All simulations are performed
incorporating the new methodologies into the biomolecu
simulation package, IMPACT.36

However, unlike the 1D model system, it is impossib
to calculate theexactspatial probability distribution function
rexact(G,t) for protein systems. Thus,x(t) is no longer a
useful measure of sampling for these real systems. We a
ergodic measures,d(t), introduced by Thirumalaiet al.,24,5

to measure the convergence of the conformational sp
sampling approximately. However, in order to make the
ergodic measures meaningful, one must run two~at least!
simulations starting from two independent initial conform
tions. It could be difficult in practice to determine whic
states are independent. If the two initial structuresa andb
are dependent on each other, or they are too close in p
space~for example, if they are separated by only a sm
barrier!, the results would be misleading. Here, we follo
Straubet al.’s4 method for preparing the two initial indepen
dent configurations,a andb. The configurationa is chosen
from a 50 ps MD equilibration at 300 K using velocity sca
ing. The configurationb is obtained by gradually heating u
the pentpeptide and melittin to 1000 K~25 ps MD!, then
quenching down to 300 K, followed by another 50 ps equ
bration at 300 K. All the simulations are then started fro
these two configurations,a and b. In the J-Walking and
S-Walking simulations, a total number ofM5500 structures
are generated~and stored in an external file! from the high
temperature walker everyN/M520 HMC cycles ~total
N52035005100 000 HMC cycles! with or without mini-
mization ~100 steps of minimization by steepest descen!.
The low temperature walker is then followed for the sam
number of HMC cycles~100 000 HMC cycles! with occa-
sional jumps to the structures in the external file. The ab
process is repeated until the simulation converges or a
defined number of steps is exceeded. The number of H
steps (N/M520) separating these stored structures sho
be large enough to eliminate the correlation between th
and the total number of structuresM should be as large a
possible consistent with the disk space available and sm
enough to guarantee reasonable direct access time.

Three ergodic measures are used in this study:~a! a force
metric d f(t) for the magnitude of force on each atom;~b! a
1,4-pair distance metricd14(t) for 1,4-pair distances; and~c!
a pair distance metricdi j (t) for all pairs~for large proteins,
we can pick a fixed number of pairs uniformly to save di
space!,
o. 21, 1 December 1997
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9193R. Zhou and B. J. Berne: Smart walking
d f~ t !5
1

N(
k51

N

u f̄ k
a~ t !2 f̄ k

b~ t !u2,

d14~ t !5
1

N8
(
k51

N8

ur14k
a~ t !2r14k

b~ t !u2, ~15!

di j ~ t !5
1

N9
(
k51

N9

uri j k
a~ t !2ri j k

b~ t !u2.

whereN,N8,N9 are number of atoms, number of 1,4 pai
and number of all pairs, respectively, andr14,rij are 1,4 and
i , j pair distances. The force metricd f(t) measures the mag
nitude of total force on each atom. However, the force
weighted by local interactions, thus it is often a measure
the local sampling. On the other hand, the pair distance m
ric di j (t) measures all pair distances, but its value is affec
more by long-range than short-range pair distances, s
weights the long-range overall similarities between t
structures. The 1,4-pair distance metric only measures l
sampling as is obvious from its definition. As we will se
later, the all-pair distance metricdi j (t) is a very sensitive
and demanding measure for the ergodic sampling. The ve
force metric,d fW(t), for vector forces on each atom, as us
by Thirumalai and Straubet al.,24,4 has also been tried fo
these protein systems. However, the time average of the
tor forces decays to zero very quickly due to the cancella
of forces pointing in different directions. Therefore, it b
comes difficult to discern the differences between vario
methods using the vector force metric. Meanwhile, the
ergy metric is similar to the force magnitude metric. So,
do not include the vector force metric or energy metric
this study.

Figures 5~a!–~c! shows these three ergodic measur
d f(t), d14(t) and di j (t), for the pentpeptide Met-
enkephalin obtained from various methods. As expec
both the CEMD and CTMD methods~time stepdt50.5 fs!
give a non-decaying plateau in the three ergodic measu
because normal MD methods do not generate barrier cr
ings efficiently. The two pentpeptide configurations a
trapped in two different local minima, and the time avera
of the pair distance or force magnitude for each configura
are not able to change with time after equilibrium at the lo
basin. The CTMD method is slightly better than the CEM
method in general, as shown in Figure 5, because the
tuation of the total energy in CTMD helps it access more
the conformation space. The HMC method improves
sampling to some extent because a larger time step ca
used. The optimal HMC parameters for this pentpeptide
found to bedt 5 1.0–1.5 fs~2–3 times larger than norma
MD! and nMD 5 5–10. In this study,dt 5 1.5 fs and
nMD55 are used. The results show that the HMC meth
does indeed enhance the ergodic sampling for this pent
tide. The force metricd f(t) decays to zero after 10 000 MD
steps, and the pair distance metricsd14(t) and di j (t) both
decay to a smaller value compared to normal MD metho
However,d14(t) and di j (t) do not decay to zero, instead
d14(t) shows a plateau around 0.46, anddi j (t) a plateau
J. Chem. Phys., Vol. 107, N
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around 0.65 even after 500 000 MD steps. This means
the pair distance metrics are much more sensitive and
demanding than the commonly used force or ene
metrics.24,4 Similar results are also found in the J-Walkin
and S-Walking methods, as well as in the larger protein s
tem, melittin. The reason for this is that different structur
may have the same forces or energies. However, requirin
pair distances to be self-averaging is a very demanding
quirement, thusdi j (t) is a very strong ergodic measur
even though it may still not be sufficient.

The J-Walking method uses the same optimized par
eters as HMC. As the J-Walker’s temperatureTJ increases,
the jump success ratio decreases dramatically. This is
cause the average potential energy of the pentpeptide
high temperature is much higher than the potential ener
acceptable at the lower temperature of 300 K. Thus, the ju
acceptance ratio, Eq.~10! decreases to almost zero whenTJ

is increased to about 500 K. To maintain a reasonable ju
acceptance ratio, for example 5–10%, we must choose
temperatureTJ to be about 350–400 K for this pentpeptid
However, the J-Walker at these temperatures~350–400 K!
cannot efficiently sample the conformational states within
reasonable CPU time, for example 500 000 MD steps~real
proteins will denature at these temperatures though!. To
make the high temperature walker efficiently sample state
a reasonable CPU time~500 000 MD steps!, the temperature
TJ must be raised above 1000 K. Thus, for the J-Walk
method to work properly, a multi-stage walker must be us
~for example, jumping from 300 to 350 K, and 350 to 450
etc.!. The temperature intervalDT between two consecutive
stages need not be taken equal, instead these intervals c
optimized by requiring the same jump success ratio betw
stages. In this study, only the normal two-stage J-Walk
scheme is used for comparison. A J-Walker at 400 K is u
with a higher jump trial probability ofPJ510% ~the jump
probability for S-Walking is still taken asPS53%. The re-
sults in Figures 5~a!–~c! show that in the J-Walking method
the decay rate of our ergodic measures improves comp
to HMC, but not as dramatically as in the 1D system. Als
shown in Figure 5~b!, the J-Walking method has a large
plateau value for thed14(t) measure than that of the HMC
method. This is one example where the ergodic measures
only approximate measures. Sometimes, such measures
be misleading~see the discussion at the end of this sectio!.

Unlike the J-Walking method, the S-Walking metho
allows the use of a much higher temperatureTS for the high-
temperature walker. Because the high temperature struct
are relaxed, the average potential energy of the relaxed s
ture is comparable or even lower than that of the low te
perature walker at 300 K. The results show that ergodic m
sures,d f(t), d14(t) and di j (t), all decay to zero much
faster than the J-Walking method. The most demanding m
ric di j (t) decays to zero after 400 000 MD steps, indicati
that the quasi-ergodic behavior in the other methods
greatly reduced in the S-Walking method.

A larger protein melittin, with 431 atoms and more tha
1200 degrees of freedom, is also tested. Similar results
shown in Figures 6~a!–~c!. For this system, a time step of 0.
o. 21, 1 December 1997
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9194 R. Zhou and B. J. Berne: Smart walking
FIG. 5. Decay of the three ergodic measures with the number of MD steps for the pentpeptide Met-enkephalin using various sampling methods~a! force
magnitude metricd f(t); ~b! 1,4-pair distance metricd14(t); ~c! all-pair distance metricdi j (t). It should be noted that the CPU time for J-Walking is abo
twice that of regular MD or HMC, and the CPU time for S-Walking is about three times that of regular MD or HMC. See the text for details.
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fs is also used in the CEMD and CTMD methods, and a ti
step of 1.0 fs andnMD55 is used in the HMC method. Th
J-Walker temperatureTJ is reduced further to 350 K to
achieve a reasonable jump success ratio. As can be seen
the figure, for this larger system, the difference in the res
J. Chem. Phys., Vol. 107, N
e

om
ts

obtained from HMC and J-Walking is smaller. Both th
HMC and J-Walking methods have limited success for t
larger protein system. On the other hand, the S-Walk
method~with TS 5 1000 K! still works very well. Of course,
we do not see the pair distance metrics decay to zero wi
o. 21, 1 December 1997
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FIG. 6. Decay of the three ergodic measures with the number of MD steps for the protein melittin~PDB file 2mlt! using various sampling methods:~a! force
magnitude metricd f(t); ~b! 1,4-pair distance metricd14(t), ~c! all-pair distance metricdi j (t). It should be noted that the CPU time for J-Walking is abo
twice that of regular MD or HMC, and the CPU time for S-Walking is about three times that of regular MD or HMC. See the text for details.
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500 000 MD steps, because it takes more time for
method to sample the much larger conformation space of
larger protein.

Finally, it should be noted that the requirement of havi
two initial independent structures is very crucial for the
ergodic measures to be meaningful. As mentioned abov
J. Chem. Phys., Vol. 107, N
e
is

if

the two structures are dependent or too close in phase sp
the less efficient methods might give better ergodic meas
because the two simulations are essentially sampling
same local basin. On the other hand, more efficient meth
may enable the system to cross barriers more easily, and
access other phase regions, which may result in a tempo
o. 21, 1 December 1997
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9196 R. Zhou and B. J. Berne: Smart walking
increase, not decrease, in ergodic measures with time. H
again, the rate of information entropy production might p
vide a useful measure.34

VII. CONCLUSION

In this paper, a new algorithm, the Smart-Walkin
method coupled with hybrid Monte Carlo, has been p
sented for efficient sampling of conformational phase spa
The S-Walking method is developed from the J-Walki
method proposed by Frantz, Freeman and Doll.12 It has been
shown that the S-Walking~two-stage! method will greatly
reduce the quasi-ergodic sampling for multi-dimensio
rugged potential systems, such as protein systems; while
J-Walking~two-stage! method faces difficulties in large pro
tein systems due to the enormous rejection rate in t
jumps.

Both the S-Walking and J-Walking method run tw
walkers ~or more in the parallel version! at two different
temperatures~or multi-level temperatures!; one is at the tem-
perature of interest and the other is at a higher tempera
which can generate ergodic distributions. Instead of jump
to a Boltzmann distribution of the higher temperature wal
as in J-Walking, S-Walking first minimizes the high tem
perature configurations, and then uses these relaxed s
tures as the trial moves for the low temperature. By jump
to relaxed structures, or local minima, the jump accepta
ratio increases dramatically, which makes it possible for p
teins to undergo barrier crossings from one basin to anot
thus greatly improving the ergodicity of the sampling. T
method approximately preserves detailed balance and ge
ates a Boltzmann distribution provided the time interval b
tween jumps is much longer than the energy relaxation ti

The S-Walking method has been applied to a o
dimensional rugged potential surface, and two protein s
tems, Met-enkephalin and melittin. It has been shown t
the S-Walking method can sample conformational ph
space more efficiently than other methods, including the
Walking method. In general, a normal two-stage J-Walk
method increases the CPU time by a factor of 2, and
S-Walking method increases the CPU cost by a factor o
However, for the J-Walking method to have a reasona
jump acceptance ratio for real protein systems, hierarch
multi-stage walkers are often required and thus result i
linear increase of the CPU time and memory requirem
with the number of stages. On the other hand, the S-Walk
method only requires two-stage walkers for most syste
because the relaxed structures have much lower potentia
ergy than those unrelaxed structures in J-Walking.

In the paper, we used HMC as the underlying sampl
technique for J-Walking and S-Walking. Of course, o
could also use single particle Monte Carlo moves instead
is also very convenient to couple the S-Walking method w
the sate-of-the-art algorithms RESPA/FMM27 and
RESPA/PFMM30 for even larger protein systems in vacuu
or in solvent.
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