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We consider the problem of calculating the vibronic absorption spectrum of a diatomic molecule
coupled to a condensed phase environment, where all nuclear degrees of freedom are taken in the
quadratic approximation, and where the two electronic states couple differently to the solvent. This
simple model is used to examine several commonly used semiclassical approximations. The method
of Kubo–Toyozawa is adapted to enable exact calculation of the real-time dipole autocorrelation
function for the quantum mechanical treatment. Alternatively, we derive an expression for this
correlation function in terms of a path-integral influence functional, which is not limited to a finite
number of bath modes and could be applied to treat anharmonic solutes in condensed matter. We
then obtain an analytical solution for the classical treatment of nuclear dynamics, and develop a
mixed quantum-classical approach, where the dynamics of the diatomic vibrational mode is treated
quantum mechanically and the bath is treated classically. It is shown that the mixed
quantum-classical treatment provides better agreement with the exact quantum treatment than the
other approximations for a wide range of parameters. Exact analytical results similar to the pure
dephasing theory of Skinner and Hsu are obtained for the asymptotic long time behavior of the
dipole autocorrelation functions. ©1998 American Institute of Physics.@S0021-9606~98!50303-0#
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I. INTRODUCTION

A molecular system coupled to a bath serves as a pr
type model for studying numerous physical and chem
processes in condensed phases. One particular examp
provided by the electronic spectroscopy of chromophore
crystalline or liquid hosts.1–3 The effect of nuclear dynamic
of the bath particles on the line shape reveals itself in
shift and broadening of individual spectral lines comprisi
the gas phase electronic absorption spectrum of the c
mophore. As such, the absorption spectrum of a molec
embedded in a crystal or in a liquid provides valuable inf
mation about the structure and dynamics of the host and
chromophore perturbed by the host.

Quantum mechanical calculations of electronic abso
tion spectra in condensed phases are extremely difficu
view of the large number of degrees of freedom involve
For any realistic system this many-body problem can only
solved approximately. One common approach is to use p
integral Monte Carlo techniques4,5 to obtain the imaginary-
time dipole autocorrelation function and to analytically co
tinue it to real time, using maximum entropy methods6–8 or
singular value decomposition.9,10 An alternative approach is
to use a time-dependent Hartree method, which assumes
torization of the multi-dimensional wave function into
product of one particle wave functions.11 As such, this ap-
proach is limited to relatively weak system-bath couplin
Evans and Coalson12 have adapted the cumulant expansi
based method due to Nitzan and Silbey,13 to obtain an ab-
sorption spectrum of a general system coupled to an arbit
bath. They compared this latter approach to the tim
dependent Hartree method and found significant impro
ment. However, the method involves truncation of the ti
evolution operator after the second order term in the syst
J. Chem. Phys. 108 (4), 22 January 1998 0021-9606/98/108(4)/1
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bath interaction, and as such is not free of limitations eith
Another possibility is to restrict the quantum mechanic

treatment to a few selected ‘‘highly’’ quantum degrees
freedom of the primary system, while adopting some kind
classical approximation in treating the bath dynamics. T
simplest approximation would be to retain the quantum
ture of the electronic degrees of freedom only, and to trea
nuclear degrees of freedom~including those of the chro-
mophore! classically.14–18 When the nuclear coordinates o
the primary system are strongly perturbed by the electro
transition, it would seem appropriate to extend the quant
methodology to these degrees of freedom, and to couple t
quantum dynamics in some way to the classical dynamic
the bath particles.19,20 A long-standing problem is how to
simulate transitions between different electronic states
duced by the nuclear motion in arbitrary condensed ma
systems.21–27Of particular relevance for the present study
the work of Thirumalai, Bruskin and Berne,28 who extended
the Gaussian wave-packet method29–31to determine the elec
tronic spectra of a diatomic molecule embedded in a rare
matrix.

All types of the mixed quantum-classical calculatio
mentioned above inevitably introduce uncontrolled appro
mations, and are not guaranteed to give accurate result
the state-to-state transition probabilities. For example, i
now known for vibrational relaxation32,33 that if the solute
vibration is treated quantum mechanically and the bath
treated classically, very serious errors occur in the transi
rate ~up to 20 orders of magnitude!. For electronic transi-
tions, on the other hand, it may well be the case that a c
sical bath approximation is still valid under some circum
stances. In view of this, it would be important to assess
accuracy of the different mixed quantum-classical tre
1407407/16/$15.00 © 1998 American Institute of Physics
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1408 Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
ments; hence we consider a simple model for which a fu
quantum mechanical as well as various semiclassical s
tions are obtained analytically.

We study the electronic absorption spectrum of a
atomic molecule embedded in a condensed phase env
ment. The vibrational mode of the molecule is treated in
harmonic approximation and the host is modeled by a h
monic bath. The coupling between the diatomic and the b
is taken to be linear both in the molecule and in the b
vibrational coordinates. The electronic transition of the
atomic molecule from the ground to the excited state is
companied by a change in the equilibrium position of
vibrational mode, in the vibrational frequency of this mod
and in the strength of its coupling to the bath. This mode
general enough to capture the essential features of the
tronic absorption spectrum, yet as will be shown below it
simple enough to be analytically solvable—both quant
mechanically and in the various semiclassical approxim
tions described in this work. In particular, for a finite numb
of bath modes we obtain exact numerical results for the
pole autocorrelation functions at all times, and concom
tantly, through its Fourier transform the vibronic absorpti
spectra. A similar model has been extensively studied
Skinner and Hsu34,35 in the context of the pure dephasin
problem, where the primary interest is in the asymptotic lo
time behavior of the dipole autocorrelation function, whi
determines the frequency shifts and the dephasing rates
adapt the theory developed by Skinner and Hsu34,35 to the
present problem and obtain exact analytic results for the
quency shifts and the dephasing rates both for the case w
all nuclear dynamics are treated either quantum mechanic
or classically. For a particular case of zero system-bath c
pling in the diatomic ground electronic state, but non-ze
couplings in the excited electronic state, we also obtain
asymptotic results for the mixed quantum-classical c
~quantum diatomic vibrational mode–classical bath!. In this
case we find that the mixed treatment represents a signifi
improvement over the fully classical treatment of nucle
dynamics.

The outline of the paper is as follows. In Section II w
define our model Hamiltonian and present the expression
the electronic absorption spectrum in terms of the real-t
dipole autocorrelation function. In Section III we obtain an
lytical expressions for the fully quantum mechanical a
various semiclassical approximations for this autocorrela
function. In Section IV we study its asymptotic long tim
behavior, which allows us to obtain analytical results for t
dephasing rates and frequency shifts. The numerical res
for the dipole autocorrelation functions and for the spec
are given in Section V along with the theoretical predictio
of the dephasing rates and the frequency shifts. Finally
Section VI we conclude.

II. MODEL SYSTEM AND ABSORPTION SPECTRUM

In this section we define the model system and outl
the methodology to compute the absorption spectrum.
J. Chem. Phys., Vol. 108,
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A. Model Hamiltonian and spectral density

The model described here is a simple one and can
solved exactly. We consider a diatomic molecule coupled
a bath and focus on a particular pair of electronic states
the diatomic molecule, which give rise to the electronic tra
sition, when the diatomic molecule goes from its grou
electronic state~denoted byu0&! to the excited electronic stat
~denoted byu1&!. We approximate the internal vibrationa
degree of freedom by a harmonic mode and fix the orien
tion of the molecule. The bath is modeled by an ensemble
harmonic oscillators. The coupling between the internal
brational mode of the diatomic molecule and the bath is
linear, but the coupling coefficients are different for the tw
electronic states. For simplicity, we neglect off-diagon
terms that couple the bath and the two electronic states, s
we are interested in the pure dephasing process, which i
a much faster time scale than the electronic population re
ation.

In the Born–Oppenheimer approximation, the to
Hamiltonian can be written as

H5H0u0&^0u1H1u1&^1u, ~1!

whereH0 (H1) is the Hamiltonian for the nuclear degrees
freedom of the system and the bath, corresponding to
motion on the Born–Oppenheimer potential surface wh
the diatomic molecule is in its ground~or excited! electronic
states.

The ground and excited state Hamiltonians are:

H05h0~q!1Hb~Q!1V0~q,Q!, ~2!

and

H15h1~q!1Hb~Q!1V1~q,Q!1\ve . ~3!

In Eq. ~3! \ve is the gas phase electronic transition ener
of the diatomic molecule~for convenience we set it equal t
0!. h0(q) andh1(q) are the Hamiltonian for the vibrationa
coordinate of the diatomic molecule when it is in its grou
~u0&! or excited~u1&! electronic states, respectively,

h0,1~q!5 1
2 p21 1

2 v0,1
2 ~q2q0,1!

2, ~4!

where q is the diatomic mass-weighted vibrational coord
nate with a conjugate momentump, frequencyv0 and equi-
librium positionq0 for stateu0& and frequencyv1 and equi-
librium positionq1 for stateu1&.

The bath Hamiltonian in the harmonic approximatio
takes the form

Hb~Q!5
1

2 (
a

Nb

Pa
21

1

2 (
a

Nb

va
2Qa

2, ~5!

where the summation indexa labels the bath mass weighte
coordinatesQa with conjugate momentaPa , and frequen-
ciesva ; Nb is the number of bath modes.

As mentioned earlier, the system-bath coupling is tak
to be linear both in the system and in the bath coordinat

V0,1~q,Q!5(
a

Nb

ga
0,1~q2q0,1!Qa , ~6!
No. 4, 22 January 1998
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1409Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
where ga
0 (ga

1) are the coupling strengths for the groun
~excited! electronic states, which we assume to bedifferent
for the two electronic states of the diatomic molecule.

The effect of the bath on the system is completely de
mined by the two spectral densities, one for the ground e
tronic state

J0~v!5(
a

Nb ~ga
0 !2

2va
d~v2va!, ~7!

and the other for the excited electronic state

J1~v!5(
a

Nb ~ga
1 !2

2va
d~v2va!. ~8!

The theory presented here can accommodate different f
tional forms for the two spectral densities. However, for si
plicity we use the same functional form forJ0(v) and for
J1(v). However, the two functions are normalized to diffe
ent values~r0 andr1 , respectively! which indicates the dif-
ference in the overall system-bath coupling strength.

The formulation below holds for an arbitrary choice
the functional form of the spectral density. However, here
will restrict ourselves to the treatment of monatomic hosts
which case we will only consider acoustic phonons. The
tension to optical phonons is straightforward. The conv
tional choice of spectral density for acoustic phonons is
Debye model coupled with the deformation potent
approximation.36 This gives a spectral density which is pr
portional to v3, and has a sharp cutoff at the Debye fr
quency. For numerical convenience the model can be slig
modified12 by introducing a smooth exponential cutoff

J0,1~v!5r0,1

g4

6
v3 exp~2gv!. ~9!

For liquid hosts, one has to consider a different functio
form for the spectral densities.33,37

Having defined the Hamiltonian and the spectral den
we can proceed to the discussion of the calculation of
absorption spectrum in the following subsection.

B. Vibronic absorption spectrum

We calculate the electronic spectrum within the Fer
golden rule and the electric dipole approximation.38 The nor-
malized electronic absorption spectrum is given by the F
rier transform of the real-time dipole autocorrelation fun
tion:

I ~v!5
1

2p E
2`

`

dt exp~ ivt !C~ t !, ~10!

where the real-time dipole autocorrelation function is giv
by

C~ t !5
Tr@e2bHeiHt /\me2 iHt /\m#

Tr@e2bHm2#
, ~11!

b51/kBT, Tr(•••) denotes the trace over all nuclear a
electronic degrees of freedom, andm is the transition-dipole
operator.
J. Chem. Phys., Vol. 108,
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Within the Condon approximationm does not depend on
the nuclear coordinates. Hence we replace the transit
dipole operator with

m5m01u0&^1u1m10u1&^0u. ~12!

We will limit the discussion to temperatures much low
than the electronic energy gap (\ve@kT). Carrying out the
trace over the electronic states results in

C~ t !5^eiH 0t/\e2 iH 1t/\&, ~13!

In the abovê •••&5Trx(r0•••) denotes the trace only ove
the nuclear coordinates andx[(q,Q). The equilibrium den-
sity operator is given by

r05e2bH0/Z~b!, ~14!

whereZ(b) is the partition function

Z~b!5Trx@e2bH0#5E dx^xue2bH0ux&. ~15!

For future purposes~in order to discuss the various sem
classical limits of the absorption spectrum! we present two
alternative forms forC(t) in Eq. ~13!. The first form em-
ploys a time-ordered exponential14,39

C~ t !5K expTW H 2
i

\ E
0

t

dt8D~ t8!J L , ~16!

whereTW is the time ordering operator which placesD(t) in
the order decreasing time from left to right. In the abo
D(t) is the Heisenberg form of the operatorD given by

D~ t !5eiH 0t/\De2 iH 0t/\, ~17!

andD is the difference between the excited and ground s
Hamiltonians

D5H12H0 . ~18!

The second alternative form forC(t) is based on the
semiclassical theory of Shemetulskis and Loring,16 which re-
writes C(t) in terms of phase space integrals using t
Wigner distribution.40 C(t) then takes the following form:

C~ t !5E dpxE dxW~px ,x,t !, ~19!

whereW(px ,x,t) satisfies

Ẇ~px ,x,t !52LW~px ,x,t !. ~20!

In the above, the operatorL is given by

L52
i

\
D cos~\L̂/2!1

2

\
Hav sin~\L̂/2!, ~21!

whereL̂ is the Poisson bracket operator

L̂[¹Q px
•¹W x2¹Q x•¹W px

, ~22!

and where the right and left arrows on the differential ope
tor indicate that the operator acts on functions which are
the right or on the left with respect to the operator. T
operatorD is defined in Eq.~18! and Hav is the arithmetic
averaged Hamiltonian
No. 4, 22 January 1998
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1410 Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
Hav5
1
2 ~H01H1!. ~23!

Both quantum mechanical forms of the real-time dipo
autocorrelation function are essentially equivalent. Howev
the semiclassical limit (\→0) of these is not unique.14 This
arises because the two electronic states are treated qua
mechanically, while the nuclear degrees of freedom
treated classically. We will return to this point below whe
we discuss the semiclassical limits ofC(t) and will make the
connection between the semiclassical limits of the two for
given above.

III. REAL-TIME DIPOLE AUTOCORRELATION
FUNCTIONS

Within the Fermi golden rule, the real-time dipole aut
correlation functions for the harmonic model can be cal
lated exactly. Here, we will obtain the analytical solution f
C(t) for three cases.

~a! The fully quantum mechanical~FQM! results are cal-
culated by employing the density matrix formalism of Kub
and Toyozawa,41 which is based on Gaussian integra
~Equivalently we have also used the boson algebra techn
of Balian and Brezin,42 which allows evaluation of the ther
mal averages of exponentiated quadratic functions of pho
operators.! In either case, the calculation can be done o
for a finite number of bath modes.

~b! A semiclassical approximation in which the dynam
ics of all nuclear degrees of freedom~diatomic molecule and
host! are treated classically, while preserving the quant
mechanical nature of the electronic transition. Two alter
tive classical propagation schemes have been studied.
first assumes that all dynamical classical variables are pr
gated using the ground state Hamiltonian. We will refer
this approximation as the dynamical classical limit~DCL!.
The second, which is derived from Eq.~19!, assumes that al
dynamical classical variables are propagated using the a
metic averaged Hamiltonian. We will refer to this approx
mation as the averaged classical limit~ACL!. Both limits
have been extensively discussed by Mukamel14 for the sim-
pler case of an isolated molecular system, but as far as
know, have never been carried out analytically for a mole
lar system coupled to a bath, where the coupling strengt
different in the two electronic state~i.e. J0(v)ÞJ1(v)!. As a
by-product, we also obtain the static classical limit~SCL!,
which yields the well-known classical Franck–Cond
spectrum.43

~c! A mixed ensemble in which the primary~diatomic!
vibrational coordinate is treated quantum mechanica
while the bath is treated in the dynamical classical limit. W
will refer to this approach as the mixed quantum-class
limit ~MQC!. The effect of the bath on the spectrum in th
approach is entirely given by the influence functional
Feynman and Vernon,44 which is generalized for the prese
problem. As such, this method is not limited to a finite nu
ber of bath modes. In addition, it could be extended to
study of anharmonic molecular systems bilinearly coupled
a harmonic bath.
J. Chem. Phys., Vol. 108,
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A. The fully quantum mechanical C„t …

The Kubo–Toyozawa41 method is used to calculate th
full time dependence of the quantum mechanical dipole
tocorrelation function~we have also used the algebraic o
erator approach42 as a check of the results!. For the sake of
completeness we outline Kubo–Toyozawa derivation for
problem at hand. In the coordinate representation Eq.~13!
takes the form

CFQM~ t !5E dxdx8K0~x,x8!K1~x,x8!/Z~b!, ~24!

whereK0(x,x8) is the forward propagator

K0~x,x8!5^xue2~b2 i t /\!H0ux8&, ~25!

andK1(x,x8) is the backward propagator

K1~x,x8!5^x8ue2 i tH 1 /\ux&. ~26!

The tensor expression for the off-diagonal element of
density operator/propagator in the coordinate representa
for the collection of coupled harmonic oscillators is given
Kubo and Toyozawa:

K0~x,x8!5@det~2p\V0
21sinh$~b\2 i t !V0%!#21/2

3exp@2 1
4~x1x822x0!T$\21V0

3tanh~~b\2 i t !V0/2!%~x1x822x0!

2 1
4~x2x8!T$\21V0 coth~~b\2 i t !V0/2!%

3~x2x8!#. ~27!

In the aboveV0
2 is the~square! force constant matrix of rank

N for the ground electronic state, whereN5Nb11 is the
total number of vibrational modes. The nuclear potential
ergy of the ground state (U0) can be expressed in terms o
V0

2 as follows:

U05
1

2
v0

2~q2q0!21
1

2 (
a

Nb

va
2Qa

21(
a

Nb

ga
0~q2q0!Qa

5
1

2
~x2x0!TV0

2~x2x0!. ~28!

In what follows, we setx050 without loss of generality.
Analogously,K1(x,x8) is expressed in terms of the forc
constant matrixV1

2 (N3N) for the excited electronic stat
with the nuclear potential energyU1 ,

U15
1

2
v1

2~q2q1!21
1

2 (
a

Nb

va
2Qa

21(
a

Nb

ga
1~q2q1!Qa

5
1

2
~x2x1!TV1

2~x2x1!. ~29!

Using the results for the two propagatorsK0(x,x8) and
K1(x,x8), the integration overx and x8 in Eq. ~24! can be
easily performed to yield the following result forCFQM(t):

CFQM~ t !5e2SFQM~ t !e2RFQM~ t !e2 ivet, ~30!

whereSFQM(t) andRFQM(t) are given by
No. 4, 22 January 1998
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1411Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
SFQM~ t !5x1
TSFQMx1 , ~31!

and

RFQM~ t !5 1
2 Tr@ ln~RFQM!!2 ln~2 sinh~b\V0 /2!!].

~32!

In the above expressions we have also used the follow
notation:

RFQM5V0
21 sinh$~b\2 i t !V0%\

2~K081K18!

3~K091K19!V1
21 sinh~ i tV1!, ~33!

SFQM5K08~K081K18!21K18 , ~34!

K085
1

\
V0 tanh$~b2 i t /\!\V0/2%, ~35!

K095
1

\
V0 coth$~b2 i t /\!\V0/2%, ~36!

K185
1

\
V1 tanh$ i tV1/2%, ~37!

K195
1

\
V1 coth$ i tV1/2%. ~38!

Note that when the ‘‘shift’’ in the equilibrium position in th
excited electronic state~relative to the ground state! van-
ishes, i.e., whenx150 ~x0 was already set to zero!, the func-
tion SFQM(t) is identically equal to 0. Note also that whe
the coupling strength and the vibrational frequencies in
two electronic states are the same, i.e., whenga

05ga
1 for all

a, it can be shown41 that the functionRFQM(t) is identically
equal to 0. When the coupling strength in the two state
different, the two nuclear HamiltoniansH0 andH1 are char-
acterized by different underlying sets of normal modes, i
there is a ‘‘rotation’’ involved in going from one set to th
other. In view of the above, from now on we refer toSFQM(t)
as the ‘‘shift’’ term, and toRFQM(t) as the ‘‘rotation’’ term
in the dipole autocorrelation function.

To perform the calculation with the above equations,
have diagonalized the force constant matrices~V0

2 and V1
2!

with the appropriate unitary transformations and evalua
functions of these matrices as follows:

f ~M !5U@ f ~U21MU!#U21, ~39!

whereM is a matrix,f is an analytic function andU21MU is
a diagonal matrix, so that the functionf of the latter can be
easily obtained.

B. The dynamic and static classical limits of C„t …

In this subsection we adopt a semiclassical approa
where the two electronic states are treated quantum mech
cally, while all nuclear degrees of freedom are treated c
sically ~either dynamically or statically!.14,16,34,43,45For the
dynamic limit we use two propagation schemes.

The first~DCL! is based on the time-ordered exponent
~Eq. ~16!!, which in the classical limit takes the form
J. Chem. Phys., Vol. 108,
g

e

is

.,

e

d

h,
ni-
s-

l

CDCL~ t !5K expH 2
i

\ E
0

t

dt8D~ t8!J L
cl

, ~40!

where^•••&cl denotes a classical equilibrium ensemble av
age over initial coordinates and momenta weighted by
Boltzmann factor for the ground state nuclear Hamiltonia
In contrast to Eq.~16!, there is no time ordering, andD(t) is
no longer a Heisenberg operator, but rather a function
dynamicclassical variables, whose time dependence is g
erned by the ground state nuclear Hamiltonian, as is c
from Eq. ~17!.

The second propagation scheme~ACL! can be obtained
by expandingL in Eq. ~21! in powers of\ and retaining only
the terms of order\21 and\0. For this approximation,C(t)
from Eq. ~19! takes the simpler form16

CACL~ t !5K expH 2
i

\ E
0

t

dt8Dav~ t8!J L
cl

, ~41!

where Dav(t) is the difference between the excited a
ground state Hamiltonians propagated under the arithm
average of the two Hamiltonians~and averaged over th
ground state equilibrium distribution!:16

Dav~ t !5ei ~H01H1!t/~2\!De2 i ~H01H1!t/~2\!. ~42!

Note that Eq.~41! can also be obtained from the time
ordered exponential similarly to Eq.~40! by using the inter-
action picture governed by the averaged Hamiltonian~Eq.
~42!! instead of the ground state one.

In order to obtain the time dependence ofD(t) (Dav(t))
for the two propagation schemes one needs to diagona
the ground state force constant matrixV0

2 ~or the arithmetic
average (V0

21V1
2)/2!! with the appropriate unitary transfor

mation. For the current problem, the remaining classi
equilibrium average in both cases can be performed ana
cally to obtainC(t). However, we will present only the deri
vation of the DCL ofC(t), since the derivation of the ACL
follows exactly the same lines.

In view of the above discussion, we start by diagonal
ing the ground state force constant matrix with the appro
ate unitary transformationU0 ,

Ṽ0
25U0

TV0
2U0 , ~43!

where Ṽ0
2 is a diagonal matrix withNb11 elementsṽ j

2

which are the squares of the frequencies of the ground s
normal modes. The excited state force constant matrix tra
formed underU0 becomes

Ṽ1
25U0

TV1
2U0 , ~44!

and in general is not diagonal except for the case of the s
coupling strength for both electronic states. For future p
poses we introduce a matrix

Ṽ25U0
T~V1

22V0
2!U0 . ~45!

For the present problem, the time integral in Eq.~40! can
be performed analytically onceD(t) is expressed in terms o
the ground state normal modes, whose time dependenc
particularly simple
No. 4, 22 January 1998
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q̃ j~ t !5 q̃ j~0!cos~ṽ j t !1
p̃ j~0!

ṽ j

sin~ṽ j t !, ~46!

where q̃ j (0) and p̃ j (0) are the initial position and momen
tum of normal modej , respectively. The classical equilib
rium average then reduces to Gaussian integrals over in
coordinates and momenta~note thatD(t) depends on the
initial positions as well as on the initial momenta through t
time dependence of the normal modes!. Expressingx in
terms of the ground state normal modes and performing
integrals, yields the following result for the dynamical cla
sical limit of C(t):

CDCL~ t !5e2SDCL~ t !e2RDCL~ t !e2 ivet, ~47!

where~recall thatx050!

SDCL~ t !5
1

2\
~jTSDCLj1 ix1

TV1
2x1t !, ~48!

and

RDCL~ t !52 1
2Tr@ ln~RDCL!!2 ln~b\V0!]. ~49!

SDCL andRDCL are square matrices of rank 2N52Nb12
andSDCL5RDCL

21 . In what follows, the indicesj andk run
from 1 to N. The vectorj of length 2N has the following
elements:

j j5@x1
TV1

2U0# j sin~ṽ j t !/ṽ j
3/2, ~50!

and

j j 1N5@x1
TV1

2U0# j~12cos~ṽ j t !!/ṽ j
3/2. ~51!

The matrix elements ofRDCL are in the form

@RDCL# j ,k5
i

2
Ṽjk

2 F j ,k~ t !1b\ṽ jd jk , ~52!

@RDCL# j 1N,k5
i

2
Ṽjk

2 F j 1N,k~ t !, ~53!

@RDCL# j ,k1N5
i

2
Ṽjk

2 F j ,k1N~ t !, ~54!

@RDCL# j 1N,k1N5
i

2
Ṽjk

2 F j 1N,k1N~ t !1b\ṽ jd jk , ~55!

whered jk is the Kronecker delta symbol. In the above e
pressions we have also used the following notation:

F j ,k5
sin@~ṽ j2ṽk!t#

~ṽ j2ṽk!Aṽ j ṽk

1
sin@~ṽ j1ṽk!t#

~ṽ j1ṽk!Aṽ j ṽk

, ~56!

F j 1N,k5
12cos@~ṽ j2ṽk!t#

~ṽ j2ṽk!Aṽ j ṽk

1
12cos@~ṽ j1ṽk!t#

~ṽ j1ṽk!Aṽ j ṽk

,

~57!

F j ,k1N5
12cos@~ṽk2ṽ j !t#

~ṽk2ṽ j !Aṽ j ṽk

1
12cos@~ṽk1ṽ j !t#

~ṽk1ṽ j !Aṽ j ṽk

,

~58!
J. Chem. Phys., Vol. 108,
ial

e
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F j 1N,k1N5
sin@~ṽ j2ṽk!t#

~ṽ j2ṽk!Aṽ j ṽk

2
sin@~ṽ j1ṽk!t#

~ṽ j1ṽk!Aṽ j ṽk

. ~59!

In the caseṽ j5ṽk the appropriate limit of the above must b
taken.

The above derivation~along with the extension to ACL!
is one of the central results in this paper, since the DCL
widely used to estimate the vibronic absorption spectrum
systems where the FQM treatment is still not feasible.17,18

Therefore, the above derivation of the absorption spectr
provides a direct tool to investigate the validity of the DC
approximation for the present problem. At the same time,
are also able to assess the accuracy of the average dyna
limit, and below we will discuss the differences between t
two semiclassical approximations.

Before we proceed to discuss the MQC case, we brie
outline the results for the SCL, which is of interest for inh
mogeneously broadened spectra. One can obtain theCSCL(t)
by freezing all nuclear degrees of freedom,41,43,46 in which
case Eq.~16! takes the simpler form

CSCL~ t !5 K expH 2
i t

\
DJ L

cl

, ~60!

whereD is given by Eq.~18!. Performing the Gaussian inte
grals over coordinates and momenta yields the desired S
result. However, a simpler way to obtainCSCL(t) is to take
the short time limit ofSDCL(t) andRDCL(t) in Eq. ~47!.

C. The mixed quantum-classical limit of C„t …

An alternative expression for the real-time dipole cor
lation function for the fully quantum mechanical system c
be derived using path integrals. After integrating out the h
monic bath degrees of freedom,44,47C(t) can be expressed in
terms of the molecular system propagator and in terms of
influence functional representing the environment:

C~ t !5E DqDq1Dq2 expH 2bh0~q!1
i

\
~S0@q1#

2S1@q2# !J I ~q1,q2,q,t !/Z~b!, ~61!

where I (q1,q2,q,t) is the influence functional of the bath
and q1, q2 and q are the forward, backward and therm
path, respectively. In the above,h0(q) is the ground state
vibrational Hamiltonian~Eq. ~4!! and Z(b) is the partition
function ~Eq. ~15!!. The classical actions,S0@q# andS1@q#,
for the diatomic vibrational mode for stateu0&, or stateu1&,
respectively, are given by

S0,1@q#5
1

2 E
0

t

dt8@ q̇22v0,1
2 ~q2q0,1!

2#. ~62!

A general expression forI (q1,q2,q,t) for the present
problem can be obtained after a straightforward but tedi
calculation; the result is given in the Appendix. For reaso
which will become clear below, the MQC treatment will b
No. 4, 22 January 1998



th
n

-

e
in
ic
le
h

nc
de
th
al
o
o

su
re

ke
th
te
a

e
le

i
is

o
tio
d
e

ath
Eq.

he
d
n-

lem
gy
-

Eq.
b-

en-
s-
ra-
ng

he
ill
re-

or-

at
h
ua-

ted

of

1413Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
applied to the case of zero diatomic-bath coupling in
ground electronic state. In this case the influence functio
takes a simpler form

I ~q1,q2,q,t !

5expH 2
1

\2 E
0

t

dt1E
0

t1
dt2q2~ t1!q2~ t2!

3(
a

Nb

~ga
1 !2xa~ t12t2!J , ~63!

which depends only on the backwards path (q2). In the
abovexa(t12t2)5^Qa(t1)Qa(t2)& is the real-time bath po
sition autocorrelation function

xa~ t12t2!5
\

2va
$coth@b\va/2#cos~va~ t12t2!!

2 i sin~va~ t12t2!!%. ~64!

Next we use the short time Trotter formula48,49 for the
diatomic propagator that appears in Eq.~61! and replace the
q-dependent potential terms~including the terms in the in-
fluence functional! with a trapezoidal approximation. W
then split the time integrals in the influence functional
accordance with the Trotter factorization of the diatom
path. Next we perform the integration over the time variab
in the influence functional for each time slice, keeping t
value of the diatomic coordinate fixed~this requires a suffi-
ciently small time step!. This procedure is better than assum
ing in addition a constant value for the autocorrelation fu
tion itself, since the bath might have higher frequency mo
than the diatomic vibration. The remaining integrals over
sliced diatomic path become simple Gaussian integr
which we perform analytically. This procedure is by n
means unique, and can readily be improved by using m
sophisticated factorization schemes.50 However, for the
present purposes we found that a simple Trotter split is
ficient, and can reproduce with good accuracy the FQM
sults obtained using Eq.~30!.

In the present formulation, it is straightforward to ta
the dynamical classical limit for the bath modes, keeping
quantum description of the diatomic vibrational coordina
In order to do this, one simply replaces the quantum b
correlation function by its classical analogue

xa
cl~ t12t2!5

1

bva
2 cos~va~ t12t2!!. ~65!

Insertingxa
cl(t) in the influence functional and following th

procedure outlined above yields the MQC limit for the dipo
autocorrelation functionCMQC(t). Unlike the fully quantum
mechanical derivation, the present MQC approximation
not limited to a finite number of bath modes. However, it
limited to shorter times than FQM, due to the time slicing~as
mentioned above, for the present problem this limitation
the MQC does not appear in the results for the absorp
spectra!. We have also used and alternative approach to
rive the MQC limit by judiciously neglecting appropriat
J. Chem. Phys., Vol. 108,
e
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~bath! commutators and replacing the trace over the b
modes with the classical integral over phase space in
~13!.

IV. ASYMPTOTIC LONG TIME BEHAVIOR OF THE
DIPOLE AUTOCORRELATION FUNCTION

In this section we present the analytic results for t
asymptotic long time behavior of the FQM, DCL, ACL an
MQC of C(t). Our treatment is based on the no
perturbative theory of Hsu and Skinner,34,35 who have ob-
tained the corresponding asymptotic results for a prob
involving two completely general harmonic potential ener
surfaces~i.e., including the possibility of equilibrium posi
tion displacements, frequency shifts and mode mixing! using
a cumulant expansion of the time-ordered exponential in
~16!. As such, their results are directly applicable to the pro
lem at hand. The~fully quantum mechanical! derivation of
Hsu and Skinner assumes the factorization of the initial d
sity operator into a product of the electronic two-level sy
tem density operator and the equilibrium bath density ope
tor. Since we are concerned here with the asymptotic lo
time behavior of the dipole autocorrelation functions, t
above approximation should not affect the results; we w
assess its accuracy by comparing the analytic asymptotic
sults obtained below with the exact results for the time c
relation functions presented in the previous Section.

Guided by the work of Hsu and Skinner for a somewh
different Hamiltonian,35 it can be shown that for times muc
longer than the characteristic decay time of the bath fluct
tions, the time dependence of theCFQM(t) takes the follow-
ing asymptotic form:

CFQM~ t !}e2 ivete2ht, ~66!

where

h5
i

2\
x1

TV1
2U0L~0!~12Ṽ2L~0!!21U0

TV1
2x1

1
i

2\
x1

TV1
2x11

1

2p E
0

`

dv

3 ln~det@E1 i Ṽ2$~2n~v!11!G~v!1 iL~v!%#!.

~67!

The second term in Eq.~67! is absent from Eq.~26! of Ref-
erence 35, since their nuclear Hamiltonian for the exci
electronic state differs from our definition ofH1 by the con-
stant term1

2x1
TV1

2x1 . In the aboven(v)5(exp(b\v)21)21 is
the phonon thermal occupation number,E is a unity matrix
of rank N, G~v! is the weighted density of states matrix
rank N defined according to35

@G~v!# jk5
p

2ṽ j

d~v2ṽ j !d jk , ~68!

andL~v! is the followingN3N matrix:

L~v!5
2

p
PE

0

`

dv8G~v8!S v8

v22v82D , ~69!
No. 4, 22 January 1998



o

re

i-
e

in
th

a
f

e
fe
m
ry

ift

m

d
e

e

M
e

e
he

e

he
n-

of
u-
f

al

be-
pa-
tate

1414 Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
where P stands for the principal value of the integral. F
future use, we note the following relation:35

L~0!52
2

p E
0

`

dvG~v!/v. ~70!

To make connection with spectroscopic quantities, we
write Eq. ~66! in the following form:

CFQM~ t !}e2 i ~DvFQM1ve!te2t/T2
FQM

, ~71!

where 1/T2
FQM5Re@h# is the dephasing rate andDvFQM

5Im@h# is the frequency shift. Finding the real and imag
nary parts ofh yields the following expressions for th
dephasing rate:

1

T2
FQM 5

1

4p E
0

`

dv ln$det@~12Ṽ2L~v!!2

1~2n~v!11!2~Ṽ2G~v!!2#%, ~72!

and for the frequency shift

DvFQM5
1

2\
x1

TV1
2U0L~0!~12Ṽ2L~0!!21U0

TV1
2x1

1
1

2\
x1

TV1
2x1 1

1

2p E
0

`

dvTr@arctan~~2n~v!

11!~12Ṽ2L~v!!21Ṽ2!#. ~73!

Using Eq.~70! one can easily show that the first two terms
Eq. ~73! exactly cancel each other, and the result for
frequency shift simplifies considerably

DvFQM5
1

2p E
0

`

dvTr@arctan~~2n~v!11!

3~12Ṽ2L~v!!21Ṽ2G~v!!#. ~74!

From the above it is clear that both the dephasing r
1/T2

FQM and the frequency shiftDvFQM are independent o
the relative ‘‘shift’’ in the equilibrium positionx1 , and de-
pend only on the ‘‘rotation’’ of the normal modes in th
excited state relative to the ground state, i.e., on the dif
ence in the coupling strength. Therefore, in the long ti
limit one can identify the slopes of the real and imagina
parts ofRFQM(t) with the dephasing rate and frequency sh
respectively,

Re@RFQM~ t !#5cre1t/T2
FQM, ~75!

and

Im@RFQM~ t !#5cim1tDvFQM, ~76!

wherecre andcim are two unknown constants.
We now proceed to discuss the asymptotic long ti

behavior of CDCL(t), which is qualitatively similar34,45 to
CFQM(t),

CDCL~ t !}e2 i ~DvDCL1ve!te2t/T2
DCL

. ~77!

As pointed out by Skinner and Hsu,34 the dephasing rate an
the frequency shift in the semiclassical limit can be obtain
J. Chem. Phys., Vol. 108,
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from the FQM results by setting the matrixL~v! equal to 0.
In addition, one needs to replace the expression (2n(v)
11) by its high temperature limit 2/b\v. Applying this
procedure to Eq.~72! yields for the DCL dephasing rate

1

T2
DCL 5

1

4p E
0

`

dv ln$det@11~2/b\v!2~Ṽ2G~v!!2#%,

~78!

and using the same procedure in Eq.~73! gives for the DCL
frequency shift

DvDCL5
1

2\
x1

TV1
2x11

1

2p E
0

`

dv

3Tr@arctan~~2/b\v!Ṽ2G~v!!#. ~79!

Note that DvDCL contains a term which depends on th
‘‘shift’’ in the equilibrium position x1 since the first term in
Eq. ~73! ~which served to cancel the above term in the FQ
case! is proportional toL~0! and therefore vanishes in th
dynamical classical limit.

Thus, in the dynamic classical limit~in contrast to the
FQM case! the frequency shiftDvDCL depends both on the
relative ‘‘shift’’ in the equilibrium positionx1 , and on the
‘‘rotation’’ of the normal modes in the excited state relativ
to the ground state. In the long time limit, the slope of t
imaginary part ofSDCL(t) can be identified with the first term
in Eq. ~79!, and the imaginary part ofRDCL(t) can be iden-
tified with the second term in this equation. At the sam
time, the dephasing rate 1/T2

DCL depends only on the ‘‘rota-
tion’’ of the normal modes in the excited state relative to t
ground state. Therefore, in the long time limit one can ide
tify the slope of the real part ofRDCL(t) with the dephasing
rate. Hence, in the long time limit we have

Re@RDCL~ t !#5cre8 1t/T2
DCL , ~80!

Im@RDCL~ t !#5cim8 1tDvDCL2
t

2\
x1

TV1
2x1 , ~81!

and

Im@SDCL~ t !#5cim9 1
t

2\
x1

TV1
2x1 . ~82!

The derivation of the long time asymptotic behavior
CACL(t) is analogous to the DCL case. Analysis of the c
mulant expansion34 of Eq. ~41! shows that for the purpose o
calculating the long time asymptotic behavior ofCACL(t),
the classical thermal averaging over thegroundstate Hamil-
tonian in Eq.~41! can be replaced by the classical therm
averaging on theaveragedHamiltonian ~cf. Eq. ~23!!. Al-
though not entirely justified, it is often assumed that the
havior at long times should not depend on the initial pre
ration of the system. We therefore replace the ground s
normal mode frequencies (ṽ j ) with the averaged Hamil-
tonian normal mode frequencies (ṽj

av). The weighted density
of state in Eq.~68! then takes the form
No. 4, 22 January 1998



-

e:

he

n

o
g

in
n

o
te
he

ta
er

i
s
ic

tu
m
in
x

o

la
n
he

nts
en-

ter

ith

ted

n-
ined

se

s

e

n
s of
nt at

are

1415Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
@Gav~v!# jk5
p

2ṽ j
av

d~v2ṽj
av!d jk . ~83!

In addition, in calculating the matrixṼ2 from Eq. ~45!, we
replace the unitary transformationU0 with the appropriate
unitary transformation (Uav) which diagonalizes the aver
aged Hamiltonian

Ṽav
2 5Uav

T ~V1
22V0

2!Uav. ~84!

This yields the following result for the ACL dephasing rat

1

T2
ACL 5

1

4p E
0

`

dv ln$det@11~2/b\v!2

3~Ṽav
2 Gav~v!!2#%, ~85!

and for the ACL frequency shift

DvACL5
1

8\
x1

T~V1
22V0

2!x11
1

2p E
0

`

dv

3Tr@arctan~~2/b\v!Ṽav
2 Gav~v!!#. ~86!

Note that DvACL contains a term which depends on t
‘‘shift’’ in the equilibrium positionx1 . However, this term is
different from the DCL term in Eq.~79!, and vanishes for the
case of the same vibrational frequencies in both electro
states.

The discussion of the asymptotic long time behavior
CMQC(t) will be limited to the case when the couplin
strength in the ground electronic state is zero (r050). In
this simpler case, the nuclear coordinates in the orig
~‘‘untransformed’’! ground electronic state Hamiltonia
form a set of normal modes. Therefore the~diagonal! matri-
cesG~v! andL~v! can be immediately expressed in terms
Nb bath modes and the diatomic vibrational coordina
Since we would like to treat the former classically and t
latter quantum mechanically, we set all elements ofL~v!
which correspond to the bath modes equal to zero, and re
only the element corresponding to the diatomic mode. Ins
ing this ‘‘truncated’’ matrix L~v! into Eqs. ~72! and ~73!,
and replacing (2n(v)11) by 2/b\v, yields the results for
the dephasing rate and the frequency shift in the MQC lim
Since the form of the equations is identical to the FQM ca
we do not reproduce them here, but rather provide numer
results in the following section.

In the next section we test the accuracy of the quan
mechanical, dynamical classical and mixed quantu
classical results for the frequency shift and the dephas
rate by calculating the dipole autocorrelation function e
actly at all times~using the results of Section III! and by
comparing its asymptotic long time behavior with the the
retical predictions from the present Section.

V. RESULTS AND DISCUSSION

We perform exact calculations of the dipole autocorre
tion functions for the fully quantum mechanical treatme
and for all its semiclassical limits. As mentioned earlier, t
numerical calculations are limited to a finite numberNb of
J. Chem. Phys., Vol. 108,
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bath modes. In order to obtain the coupling coefficie
which would mimic the appropriate continuous spectral d
sity, the following procedure51 was utilized:J0,1(v) was dis-
cretized evenly with an incrementdv, and the coupling co-
efficients were calculated according to

~ga
0,1!252vaJ0,1~va!dv. ~87!

The bath spectral density,J0,1(va) is given by Eq.~9!. In all
calculations shown below we choose the cutoff parame
~from now on we employ atomic units! g55. In performing
the calculations, we have checked for the convergence w
respect to the number of modes by increasingNb until no
further change in the Fourier transforms of the calcula
correlation functions~i.e., absorption spectra! was observed.
Typically, Nb530 was found to be sufficient to achieve co
vergence, however, the results reported below were obta
settingNb5100.

The first set of calculations is performed for the inver
temperatureb51 with the following values of the ground
and excited state coupling parameters:q050, q152, v0

5v151, r050.0625 andr150.025; we setve50. The re-
sults for real and imaginary parts of the ‘‘shift’’ function
S(t) for FQM, DCL and SCL~at short and intermediate
times! are shown in Fig. 1. In Fig 2 we plot the results for th
real and imaginary parts of the ‘‘rotation’’ functionsR(t) for
the three cases~again at short and intermediate times!.

FIG. 1. Plots of the real and imaginary parts of the ‘‘shift’’ functionS(t) vs
time for b51, r050.0625 andr150.025. The vibrational frequency of the
diatomic molecule is set to unity and the ‘‘shift’’ in the equilibrium positio
of the diatomic isq152. The squares, circles and triangles are the result
the FQM, DCL and SCL cases, respectively. Note the good agreeme
short times between all three curves, while for intermediate times there
discrepancies.
No. 4, 22 January 1998
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1416 Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
At very short times, all three results agree very clos
with each other. This is not surprising, since the class
treatment of the dynamics is known to be accurate for sh
times. Moreover, as mentioned above, in the short time li
the DCL result reduces to the SCL. We have also calcula
the first two moments of the spectral line shape and obta
excellent agreement between the three cases. This is co
tent with the result obtained by Lax.43 At longer times the
SCL result deviates markedly from the other two~FQM and
DCL! cases. In particular the real part ofSSCL(t) does not
have any oscillations which implies that the SCL spectrum
structureless, as one would expect from theclassical
Franck–Condon treatment.

We now turn to the asymptotic long time behavior of t
‘‘shift’’ and ‘‘rotation’’ functions. Regarding the FQM re-
sult, we observe that both real and imaginary parts of
‘‘shift’’ function SFQM(t) eventually tend to a constant valu
whereas both real and imaginary parts of the ‘‘rotatio
quantum functionRFQM(t) depend linearly on time at long
times. This is consistent with the results of the previous s
tion ~Eqs.~75! and ~76!!.

The long time behavior of the dynamical classical ‘‘r
tation’’ function RDCL(t) is qualitatively similar to its quan-
tum counterpart, albeit the slopes have different numer
values, as follows from the equations for frequency sh
DvDCL ~Eq. ~79!! and the dephasing rate 1/T2

DCL ~Eq. ~78!!.
Regarding the ‘‘shift’’ functionSDCL(t), we observe that a
long times its real part tends to a constant, whereas
imaginary part displays a linear time dependence. This

FIG. 2. Plots of the real and imaginary parts of the ‘‘rotation’’ functionR(t)
vs time. The parameters are the same as in Fig. 1. The real and imag
parts ofR(t) for the FQM and DCL approach the linear regime at relative
short times, while the SCL displays a non-linear dependence over the
range shown.
J. Chem. Phys., Vol. 108,
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consistent with the results of the previous section~Eqs.~80!,
~81! and ~82!!.

In Figs. 3 and 4 we show the asymptotic long time b
havior of the ‘‘shift’’ and ‘‘rotation’’ functions ~symbols!
along with the theoretical~lines! asymptotic long time results
~Eqs.~75!, ~76!, ~80!, ~81! and~82!!. We adjust the unknown
intercepts of each linear functions to obtain an agreemen
long time, however the slopes are taken directly from the
and are not adjusted. As is clearly seen in the figures
present asymptotic long time theoretical results agree w
the exact numerical calculations at long times.

We would like to point out that, as expected, the lo
time behavior of the dipole autocorrelation function in t
SCL is qualitatively different from the two cases discuss
above. In particular, at long times the real and imagin
parts ofRSCL(t) andSSCL(t) are not linear functions of time
In the frequency domain this implies a non-Lorentzian sp
tral line shape.

Finally, we have performed the same calculations
ACL ~at all times!, but do not present them here, since th
are essentially indistinguishable from the FQM results,
the above parameters. We note that the ACL theoret
asymptotic long time behavior given in Eqs.~85! and~86! is
in excellent agreement with the exact numerical calculati
at long time.

We have calculated the dipole autocorrelation functio
for several other sets of parameters~b, r0 andr1!, the results

ary

e

FIG. 3. Plots of the asymptotic long time behavior of the ‘‘shift’’ functio
S(t) for the same set of parameters as in Fig. 1. The real parts of all t
function tend to~different! constant values at long times. The behavior
the imaginary part is somewhat different: whileSFQM(t) tends to a constant
value at long times,SDCL(t) increases linearly with time andSSCL(t) in-
creases even faster. The solid line is the theoretical long time DCL resul~cf.
the first term of Eq.~82!!.
No. 4, 22 January 1998
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1417Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
obtained are similar to the ones presented in Figs. 1–4,
we do not show them here.

We now proceed to discuss the absorption spectra g
by the Fourier transforms of the dipole autocorrelation fu
tions ~Eq. ~10!!. We have calculatedI (v) for two values of
the inverse temperature~b50.5 andb51!, and for each of
these values ofb-for three sets of coupling strengths~see
figure caption!. The results are plotted in Fig. 5, for vibra
tional frequencies ofv05v151. As already discussed ea
lier, the SCL spectrum~dashed line! is structureless, wherea
both the FQM and the DCL spectra,I (v), are characterized
by fine vibronic structure superimposed on a wide absorp
band. The SCL result reproduces well the center position
the width of this wide band, since the first two moments
essentially exact in the classical limit.

While the DCL spectrum certainly represents an i
provement over the SCL result, it is not in quantitative agr
ment with the FQM spectrum. The widths of individual v
bronic features are overestimated in the dynamical class
treatment. This discrepancy between the two is larger t
what would be expected on the basis of comparing
dephasing rates. Presumably, additional broadening aris
the DCL due to a faster decay~at intermediate times! of the
‘‘shift’’ term in the dipole autocorrelation function. Con
comitantly, the amplitudes of vibronic features are differe
in the two treatments, because both spectra are normaliz
the same way. It seems that when the coupling strengt

FIG. 4. Plots of the asymptotic long time behavior of the ‘‘rotation’’ fun
tion R(t) for the same set of parameters as in Fig. 1. The expected li
long time behavior of theRDCL(t) is qualitatively similar toRFQM(t), but
the slopes have different numerical values. The solid curves are the the
ical long time results based on Eqs.~75!, ~76!, ~80! and~81!. The long time
behavior of the ‘‘rotation’’ function in the static classical limit,RSCL(t), is
quite different and does not change linearly with time.
J. Chem. Phys., Vol. 108,
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larger for the excited electronic state, the DCL does a so
what better job in reproducing the spectrum~panels~a! and
~b! in Fig. 5!. Generally, the positions of the individual fea
ture are also given incorrectly in the dynamical classi
limit. Here the major origin of the discrepancy should be
the extra term inDvDCL .

Regarding general trends which are common for qu
tum mechanical and dynamical classical spectra, we obs
that increasing the temperature results in a less pronoun
vibronic structure, since the dephasing rate~and, hence, the
width of the vibronic lines! increases with temperature~see
Fig. 9 below!. Analogously, increasing the difference b
tweenr0 andr1 makes the vibronic features broader.

We have also calculated the ACL results for the spec
presented in Fig. 5, which are essentially indistinguisha
from the FQM results, and therefore are not shown~see also
the discussion of Figs. 6 and 7 below!.

We find ~see Fig. 10 below! that the worst disagreemen
between the predictions of FQM and DCL occurs when
coupling strength in the ground electronic stater0 is small
compared tor1 ~one possible example would involve a no
polar ~in the ground state! molecule, which acquires a larg
dipole moment upon the electronic excitation!. Therefore it
would be of interest to test the other approaches to calcu
ing the dipole autocorrelation function~averaged classica

ar

et-

FIG. 5. Plots of the electronic absorption spectrum of a diatomic molec
coupled to a harmonic bath for two different temperatures~b50.5 andb
51!. The thin solid, thick solid and dashed lines are for FQM, DCL a
SCL results, respectively. In order to have the same vertical scale fo
panels, we normalized the high temperature spectra to unity, wherea
lower temperature spectra were normalized to half. The top~~a! and ~b!!,
middle ~~c! and~d!!, and bottom~~e! and~f!! rows are for coupling strength
r0 andr1 of 0.05 and 0.125, 0.0625 and 0.025, 0.125 and 0.05, respectiv
The vibrational frequenciesv0 and v1 are set equal to unity. The SCL
absorption spectrum is structureless, whereas both FQM and DCL re
are characterized by a vibronic structure. As expected, the agreemen
tween FQM and DCL is better at higher temperatures.
No. 4, 22 January 1998
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1418 Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
and mixed quantum-classical limits! precisely in this situa-
tion.

In Fig. 6 we plot the absorption spectra for FQM, DC
ACL and MQC for the following set of parameters:b51,
v05v151, r050, r150.125 and we also setq150. In the
absence of ‘‘shifts’’ in the equilibrium positions, the dipo
autocorrelation function is entirely given by the exponen
of the ‘‘rotation’’ term ~see Section III for details!. A tech-
nical issue must be addressed at this point: we observe th
long times, both real and imaginary parts of the MQC ‘‘r
tation’’ term depend linearly on time, which is in agreeme
with the asymptotic long time behavior obtained in the p
vious section. Therefore, in order to obtain a converged sp
tra, we use a linear extrapolation of these functions for lo
times ~the actual MQC calculation is limited by the numb
of time slices!. The time step in the MQC calculation was s
to 0.035 a.u. which was found small enough to reprod
within a very good accuracy the FQM spectrum, when
bath position autocorrelation functions,xa(t), in the influ-
ence functional~Eq. ~61!!, were taken quantum mechan
cally. We therefore use the same time step in the MQC
culation, which was done by replacing the quantum b
correlation functions with their classical counterparts~Eq.
~65!!.

The best agreement is observed between the FQM
ACL results. This is to be expected on the grounds of E
~20! and ~21!. For the present problem, in the casev0

5v1 , the expansion in powers of\ of the propagator in Eq
~21! contains only those terms which are retained in
semiclassical approximation. This is the case, since the a
metic averaged Hamiltonian~cf. Eq. ~23!! contains only qua-

FIG. 6. The electronic absorption spectrum of a diatomic molecule cou
to a harmonic bath. The thin solid, thick solid, thin dashed and thick das
lines are for FQM, MQC, DCL and ACL results, respectively. The follo
ing parameters are used:b51, v05v151, r050, r150.125 and we set the
shifts in the equilibrium positions to 0. As discussed in the text, the D
spectrum is centered atv50 ~no frequency shift!, and its width is too small.
The MQC and ACL spectra are in good agreement with the FQM spectr
The inset emphasizes the presence of the phonon sideband in the blue
of the absorption spectrum.
J. Chem. Phys., Vol. 108,
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dratic terms, and the difference between the ground and
cited state Hamiltonians~~cf. Eq. ~18!! contains only bilinear
terms in the primary oscillator and bath modes. However,
small discrepancy between the two spectra arises due to
placing the quantum thermal averaging with its classi
counterpart. As expected, the DCL spectrum~dashed line! is
centered atv50 ~no frequency shift!, and its width is too
small ~no pure dephasing in the sense of exponential dec!.
The MQC result is in good agreement with the FQM spe
trum both in terms of the shift and the width~the latter is
slightly overestimated!.

We draw the attention to the phonon sideband in the b
wing of the spectrum shown in the inset. Its shape and r
tive intensity is determined by the short time dependence
the dipole autocorrelation function, which is fairly similar i
all four cases. As such, this feature appears in all four sp
tra.

In Fig. 7 we plot the absorption spectra for FQM, DC
ACL and MQC for the same set of parameters as in Fig
but now we have set the shift in the equilibrium positio
q152. The DCL reproduces the envelope of the absorpt
band, but fails to capture any vibronic structure. The MQ
captures the vibronic structure but very slightly overes
mates the width of the individual lines. The ACL is esse
tially indistinguishable from the FQM results.

In the case of different frequencies of the primary osc
lator in the ground and excited electronic states, the trun
tion of the expansion in powers of\ at the semiclassica
level for ACL is no longer exact. Therefore, we have calc
lated the absorption spectra for FQM, DCL, ACL and MQ
for the following set of parameters:v051 andv15A1/2,

d
d

.
ing

FIG. 7. The electronic absorption spectrum of a diatomic molecule coup
to a harmonic bath. The thin solid, thick solid, thin dashed and thick das
lines are for FQM, MQC, DCL and ACL results, respectively. The follow
ing parameters are used:b51, v05v151, r050, r150.125 and we set the
shifts in the equilibrium positions to 2. The DCL result reproduces
envelope of the absorption spectrum, but fails to provide the vibronic st
ture. The MQC and ACL calculation for the absorption spectrum are in g
agreement with the FQM result.
No. 4, 22 January 1998
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1419Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
for inverse temperaturesb50.5 andb51!, and for each
value of b—for two values of coupling strengthr1 ~r0 is
kept equal to zero!. The results are plotted in Fig. 8. Onc
again, DCL captures only the envelope, but not the vibro
structure. Contrary to that ACL provides a good approxim
tion to the absorption spectra, albeit somewhat misplaces
positions of individual lines. However, the width is in exce
lent agreement with FQM results. The best overall agreem
is obtained using the MQC approximation, which captu
the position and slightly overestimates the width of the in
vidual lines.

To study the long time asymptotic behavior ofC(t) as a
function of the various parameters, we have calculated
frequency shifts and the dephasing rates for FQM, DCL a
ACL from the equations given in the previous section. W
first present the results~Fig. 9! for the temperature depen
dence for a particular set of coupling strengths~r050.125
and r150.05! and diatomic vibrational frequencies (v0

5v151). All dephasing rates increase monotonically w
temperature. As expected, the agreement between DCL
FQM gets better at higher temperatures. Regarding the
quency shifts, all results display a non-monotonic behav
as functions of temperature. Note that we have subtra
from DvDCL the temperature independent term which ari
due to the ‘‘shifts’’ in the equilibrium positions~the first
term in Eq.~79!!. For this particular set of parameters, t
ACL results for the dephasing rates and for the freque

FIG. 8. Plots of the electronic absorption spectrum of a diatomic mole
coupled to a harmonic bath for two different temperatures~b50.5 andb
51!. The thin solid, thick solid, thin dashed and thick dashed lines are
FQM, MQC, DCL and ACL results respectively. In order to have the sa
vertical scale for all panels, we normalized the high temperature spect
unity, whereas the lower temperature spectra were normalized to half.
ground state coupling strength (r0) in all panels is set to 0. The top an
bottom panels are for coupling strengthr1 of 0.05 and 0.125, respectively
The DCL absorption spectrum is structureless, whereas FQM, MQC
ACL results are characterized by a vibronic structure. The MQC and A
calculation for the absorption spectrum are in good agreement with the F
result.
J. Chem. Phys., Vol. 108,
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shift are in excellent agreement with FQM, since the
atomic vibrational frequencies are the same in the two e
tronic states. The small discrepancy can be traced to the
ference in the thermal probability used to perform t
averaging.

In order to study the dependence of the dephasing
and the frequency shift on the coupling strength, we ha
calculatedDv and 1/T2 as functions of coupling strength i
the ground stater0 for fixed values of temperature (b51)
and coupling strength in the excited state (r150.125); again
we set the values ofv0 andv1 equal to unity. The results ar
shown in Fig. 10. We have again subtracted the term du
‘‘shifts’’ from DvDCL ~this term is independent ofr0!. As
such, the frequency shifts become zero whenr05r1 . For
r0,r1 the frequency shifts are negative, while forr0.r1

they are positive. Over a wide range ofr0 there is a good
agreement betweenDvFQM and DvDCL . However, this
agreement breaks down for very low values ofr0 . In fact for
r050 we haveDvDCL50, while the quantum mechanica
result approaches a non-zero value. As expected, the A
results are again in excellent agreement with FQM. Forr0

50 we have also calculated the MQC result~filled circle in
upper panel of Fig. 10!, which turns out to be in excellen
agreement with the FQM value.

Similar to the frequency shifts, all the dephasing ra
vanish whenr05r1 , i.e., there is no pure dephasing whe

le

r
e
to
he

d
L
M

FIG. 9. Plots of temperature dependence of the dephasing rate~bottom
panel! 1/T2 , and the frequency shift~top panel! Dv. Shown are the FQM
~solid line!, DCL ~dashed line! and ACL ~dotted line! results for a vibra-
tional frequencyv05v151, coupling strengthr050.125 andr150.05,
and for a shift in the vibrational equilibrium position ofq152. A constant
value is subtracted from the DCL results for frequency shift to have
same vertical scale as the FQM frequency shift~see Eq.~79! for more
details!.
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1420 Egorov, Rabani, and Berne: Vibronic spectra in condensed matter
the coupling in the two electronic states is the same. As
absolute difference in the coupling strength increases,
dephasing rates increase. Overall, there is a reasonable a
ment between 1/T2

FQM and 1/T2
DCL except for very low values

of r0 , where the two results deviate significantly. Atr050
the quantum mechanical result approaches a non-zero v
while the DCL dephasing rate vanishes, i.e., the DCL dip
autocorrelation function does not decay exponentially. T
has serious consequences for the absorption spectrum, w
was illustrated above. The ACL result captures the depha
rates for the whole range of coupling strengths. To comp
the picture we have also plotted~filled circle! the MQC
dephasing rate forr050, which is slightly larger than the
FQM value.

Finally, in Fig. 11 we plot the frequency shifts an
dephasing rates as a function of the diatomic vibrational
quency (v1) in the excited electronic state. The following s
of parameters are used:v051, b51, r050 and r1

50.125. By far the best performance is displayed by MQ
which provides a very good approximation to the FQM
sults. As discussed above, the ACL is not expected to g
good results when the difference between the ground
excited diatomic vibrational frequencies is large. This inde
is case, as can be seen in Fig. 11. The worst agreeme

FIG. 10. Plots of the coupling strength (r0) dependence of the dephasin
rate~bottom panel! 1/T2 , and the frequency shift~top panel! Dv. The solid,
dashed and dotted lines are the FQM, DCL and ACL results, respectiv
and the filled circle~d! is the MQC result forr050. The parameters use
are:b51, vibrational frequencyv05v151, coupling strengthr150.125,
and for a shift in the vibrational equilibrium position ofq152. A constant
value is subtracted from the DCL results for frequency shift to have
same vertical scale as the FQM frequency shift~see Eq.~79! for more
details!. Note the sudden change in the dephasing rate and in the frequ
shift, for DCL at low values ofr0 ~see text for more details!.
J. Chem. Phys., Vol. 108,
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between the predictions of DCL and FQM. Note that w
have subtracted the first term in Eq.~79! from the DCL re-
sults for the frequency shift to have the same vertical scal
the frequency shift for the other results~see Eq.~79! for
more details!. Adding this term would make the results muc
worse.

In summary when the coupling strength for the grou
electronic state is weak, it is necessary to treat the prim
oscillator ~diatomic vibrational mode! quantum mechani-
cally, while the bath modes can be treated in the dynam
classical limit. This seem to contradict the conclusio
reached by Bader and Berne,32 and by Egorov and Berne33

according to which the fully classical treatment is superior
the mixed one in the context of vibrational relaxation. Ho
ever, for the present problem, the decay of the real-time
pole autocorrelation function is completely dominated by
electronic dephasing process, and not by the vibrational
laxation process. In cases where the vibrational relaxa
rate become comparable to the electronic dephasing rate
anticipate that the MQC will break down. Presumably th
could happen when the coupling strengths in both electro
states are large, but the difference between the coup
strengths is small.

ly,

e

cy

FIG. 11. Plots of the diatomic vibrational frequency (v1) dependence of the
dephasing rate~bottom panel! 1/T2 , and the frequency shift~top panel! Dv.
The thin solid, thin dashed, thick dashed and thick solid lines are the FQ
DCL, ACL and MQC results respectively. The parameters used are:b51,
vibrational frequencyv051, coupling strengthsr050 andr150.125, and
for a shift in the vibrational equilibrium position ofq152. We have sub-
tracted the first term in Eq.~79! from the DCL results for the frequency shif
to have the same vertical scale as the frequency shift for the other re
~see Eq.~79! for more details!.
No. 4, 22 January 1998
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VI. CONCLUSIONS

In this paper we have studied the vibronic absorpt
spectrum of a diatomic molecule~taken in the harmonic ap
proximation! bilinearly coupled to a harmonic bath~with dif-
ferentequilibrium positions, coupling strengths, and molec
lar vibrational frequencies for the two electronic states!, in
order to test some commonly used semiclassical approx
tions. We adapted the method of Kubo and Toyozawa
obtain the FQM result for the vibronic absorption spectru
and provided an alternative treatment based on the path
tegrals, and present the corresponding influence functio
for the problem at hand. The path integral formulation, u
like the method of Kubo and Toyozawa, is not limited to
finite number of bath modes and can be used to treat an
monic systems.

We also derive analytical expression for the real-tim
dipole autocorrelation functions in the DCL, ACL, and MQ
approximations. Guided by the theory of Hsu and Skin
we obtain the long time behavior of the FQM, DCL an
MQC dipole autocorrelation functions, which determines
frequency shifts and the dephasing rates. Our results ca
summarized as follows.

~1! The DCL provides a realistic approximation for th
dephasing rate, for a wide range of temperatures and
pling strength. However, for low temperatures and for ve
small values of the coupling strength in the ground electro
state this approximation breaks down~this situation would
be observable for a molecule whose ground state is non-p
and the excited state is polar!. The frequency shifts calcu
lated in the DCL fail to provide a reasonable approximat
to the FQM results.

~2! In most cases studied herein, the DCL provides
qualitative description of the vibronic absorption spectru
However, the positions of the individual vibronic featur
and their widths are wrong. Due to the presence of an a
tional non-exponential component in the decay of the dip
autocorrelation function, the width of the vibronic featur
are typically broader. As the system-bath coupling stren
in the ground electronic state decreases, the performanc
the DCL deteriorates significantly.

~3! In the case of pure classical nuclear dynamics
found that ACL provides excellent results for the absorpt
spectra~for the same diatomic vibrational frequencies
both electronic states!, much better than the results obtain
using DCL. This is not the case for the system studied
Shemetulskis and Loring,16 where the dynamical correction
to the inhomogeneously broadened line shape are small,
the choice of the propagation scheme plays a minor role
the case of different diatomic vibrational frequencies in
two electronic states, as expected, we find discrepancy
tween ACL and FQM results.

~4! For the cases of small coupling in the ground ele
tronic state and for different frequencies of the primary
cillator in the two electronic states, where the DCL do
poorly, and the ACL is not exact, we have obtained excell
agreement between the MQC and the FQM results. This
plies that one should treat the primary mode~diatomic vibra-
J. Chem. Phys., Vol. 108,
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tional! quantum mechanically and restrict the classical tre
ment to the bath modes only. Since the primary mode
highly perturbed by the electronic transition, the super
performance of the MQC results in not unexpected.

~5! When the vibrational relaxation rates of both ele
tronic states becomes comparable to the electronic depha
rate, we anticipate32 that MQC will deviate from FQM. In
practice this situation can occur, since the electronic deph
ing rate depends on the difference between the coup
strengths in the two electronic states, whereas the vibratio
relaxation rates depend on the magnitude of the coupling

This work aims to examine the validity of various a
proximations to obtain the vibronic absorption spectrum
condensed phases. For this reason we have limited ourse
to the case of fully quadratic Hamiltonians; the study of a
harmonic systems will be the subject of futu
investigations.52 To summarize our results, we have illu
trated that for the pure classical treatment of the nuclear
grees of freedom, propagation on the arithmetic avera
Hamiltonian is better than the ground state propagati
However, when non-adiabatic electronic transitions are
portant, we anticipate that this averaged propagation sch
will fail when the two Hamiltonians differ significantly.53

We find that the overall best performance is given by
MQC approximation, which presumably would break dow
when vibrational relaxation rates become comparable to
electronic dephasing rate.

The treatment of realistic systems requires additional
proximations. The choice of the propagation scheme for
quantum part of the system and the choice of the method
propagating quantum and classical degrees of freedom
gether are still open questions for future study.

ACKNOWLEDGMENTS

This work was supported by a grant to B.J.B from t
National Science Foundation. E.R. is a Rothschild and F
bright post-doctoral fellow.

APPENDIX: THE INFLUENCE FUNCTIONAL

In this Appendix we provide the generalization of th
influence functional obtained by Feynman and Vernon44 for
the present problem. We adopt the notation of Wolynes
collaborators47 and write the influence functional as a pro
uct of three terms:

I ~q1,q2,q,t !5I t~q1,q2,t !I b~q!I C~q1,q2,q,t !. ~A1!

The three terms arise because there are three types of i
ence functional bonds: those that connect two points in
time (I t), those that connect two points in imaginary tim
(I b), and those which connect real-time points to imagina
time points (I C). For I t we obtain

I t~q1,q2,t !5expH 2
1

\2 E
0

t

dt1E
0

t1
dt2q1~ t1!q1~ t2!

3(
a

Nb

~ga
0 !2xa~ t12t2!2q1~ t1!q2~ t2!
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3(
a

Nb

~ga
0ga

1 !xa* ~ t12t2!2q2~ t1!q1~ t2!

3(
a

Nb

~ga
0ga

1 !xa~ t12t2!1q2~ t1!q2~ t2!

3(
a

Nb

~ga
1 !2xa* ~ t12t2!J , ~A2!

where q1 and q2 are the forward and backward path, r
spectively ~see also Section III C for more details!. The
imaginary time path is given by

I b~q!5expH 1

2\2 E
0

b\

dt1E
0

b\

dt2q~t1!q~t2!

3(
a

Nb

~ga
0 !2xa~ i ~t12t2!!J , ~A3!

whereq is the thermal path. Finally, for the real-time poin
to imaginary-time points we find

I C~q1,q2,q,t !

5expH i

\2 E
0

t

dt1E
0

b\

dtq1~ t1!q~t!

3(
a

Nb

~ga
0 !2xa~ t12 i ~b\2t!!2q2~ t1!q~t!

3(
a

Nb

ga
0ga

1xa~ t12 i ~b\2t!!J . ~A4!

In the abovexa(t12t2)5^Qa(t1)Qa(t2)& is the real-time
bath position autocorrelation function

xa~ t12t2!5
\

2va
$coth@b\va/2#cos~va~ t12t2!!

2 i sin~va~ t12t2!!%. ~A5!
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