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We consider the problem of calculating the vibronic absorption spectrum of a diatomic molecule
coupled to a condensed phase environment, where all nuclear degrees of freedom are taken in the
quadratic approximation, and where the two electronic states couple differently to the solvent. This
simple model is used to examine several commonly used semiclassical approximations. The method
of Kubo-Toyozawa is adapted to enable exact calculation of the real-time dipole autocorrelation
function for the quantum mechanical treatment. Alternatively, we derive an expression for this
correlation function in terms of a path-integral influence functional, which is not limited to a finite
number of bath modes and could be applied to treat anharmonic solutes in condensed matter. We
then obtain an analytical solution for the classical treatment of nuclear dynamics, and develop a
mixed quantum-classical approach, where the dynamics of the diatomic vibrational mode is treated
quantum mechanically and the bath is treated classically. It is shown that the mixed
quantum-classical treatment provides better agreement with the exact quantum treatment than the
other approximations for a wide range of parameters. Exact analytical results similar to the pure
dephasing theory of Skinner and Hsu are obtained for the asymptotic long time behavior of the
dipole autocorrelation functions. @998 American Institute of Physi¢$0021-960608)50303-0

I. INTRODUCTION bath interaction, and as such is not free of limitations either.
Another possibility is to restrict the quantum mechanical

A molecular system coupled to a bath serves as a protGreatment to a few selected “highly” quantum degrees of
type model for studying numerous physical and chemicaleeqom of the primary system, while adopting some kind of
processes in condensed phases. One particular example g qgjca) approximation in treating the bath dynamics. The

provided by the electronic spectroscopy of chromophores ir%implest approximation would be to retain the quantum na-
ture of the electronic degrees of freedom only, and to treat all

crystalline or liquid host$=2 The effect of nuclear dynamics
uclear degrees of freedofincluding those of the chro-

of the bath particles on the line shape reveals itself in thg1
mophore classically**~*® When the nuclear coordinates of

shift and broadening of individual spectral lines comprising
the gas phase electronic absorption spectrum of the Chr?ﬁe primary system are strongly perturbed by the electronic
?ransition, it would seem appropriate to extend the quantum

mophore. As such, the absorption spectrum of a molecul
embedded in a crystal or in a liquid provides valuable mfor‘methodology to these degrees of freedom, and to couple their

mation about the structure and dynamics of the host and the L . )
chromophore perturbed by the host. quantum dynamics in some way to the classical dynamics of

; 9,20 _ ; ;
Quantum mechanical calculations of electronic absorp:[he bath particles™*° A long-standing problem is how to

tion spectra in condensed phases are extremely difficult ir§imulate transitions betwgen .differe_nt electronic states in-
view of the large number of degrees of freedom involved.duced b;{_tzr;e nuclear motion in arbitrary condensed matter
For any realistic system this many-body problem can only pSystems. Of particular relevance for the present study is
solved approximately. One common approach is to use pat® Work of Thirumalai, Bruskin anclj Berr’fé,vvh_o extended
integral Monte Carlo techniqué$to obtain the imaginary- the Gaussian wave-packet metfitid'to determine the elec-
time dipole autocorrelation function and to analytically con-{ronic spectra of a diatomic molecule embedded in a rare gas
tinue it to real time, using maximum entropy methddor ~ Matrix.

singular value decompositidht® An alternative approach is All types of the mixed quantum-classical calculations
to use a time-dependent Hartree method, which assumes fagentioned above inevitably introduce uncontrolled approxi-
torization of the multi-dimensional wave function into a mations, and are not guaranteed to give accurate results for
product of one particle wave functioh5As such, this ap- the state-to-state transition probabilities. For example, it is
proach is limited to relatively weak system-bath coupling.now known for vibrational relaxatici® that if the solute
Evans and Coalsdf have adapted the cumulant expansionvibration is treated quantum mechanically and the bath is
based method due to Nitzan and Sild&yp obtain an ab- treated classically, very serious errors occur in the transition
sorption spectrum of a general system coupled to an arbitraate (up to 20 orders of magnitugieFor electronic transi-
bath. They compared this latter approach to the timetions, on the other hand, it may well be the case that a clas-
dependent Hartree method and found significant improvesical bath approximation is still valid under some circum-
ment. However, the method involves truncation of the timestances. In view of this, it would be important to assess the
evolution operator after the second order term in the systemaccuracy of the different mixed quantum-classical treat-
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ments; hence we consider a simple model for which a fullyA. Model Hamiltonian and spectral density
guantum mechanical as well as various semiclassical solu-

tlon:\;Nare :)%ta":ﬁd aral:/tlca_\lly. b i " t 4 di solved exactly. We consider a diatomic molecule coupled to
€ study the electronic absorption spectrum ot a di- a4 and focus on a particular pair of electronic states of

atomic mole_cule_ embedded in a condenseq phase ENVIrofke diatomic molecule, which give rise to the electronic tran-
ment. The vibrational mode of the molecule is treated in thesition when the diatomic molecule goes from its ground

harmonic approximation and the host is modeled by a harélectronic statédenoted by0)) to the excited electronic state

rnc;nLc ba:h.t')l' h?. couplti)ngt;hbgtvxtlﬁen th? dia}tomi%a.ndﬂt]hebbatt?denoted by|1)). We approximate the internal vibrational
IS taken 1o be linear both in the molecule and in the a.rHegree of freedom by a harmonic mode and fix the orienta-

V|tbragonal Icoolrdlfnatest.hThe elegtrtontlﬁ trans'ltmén (t)ftthg dl'tion of the molecule. The bath is modeled by an ensemble of
atomic moecuie from the ground to the excited stale 1S acp i monic oscillators. The coupling between the internal vi-

companied by a change in the equilibrium position of itSbrational mode of the diatomic molecule and the bath is bi-

vibrational mode, in the vibrational frequency of this mOOIe’Iinear, but the coupling coefficients are different for the two

and in the strength of its coupling to the bath. This model iSajectronic states. For simplicity, we neglect off-diagonal

general enough to capture the essential features of the eIetce'rms that couple the bath and the two electronic states, since
tronic absorption spectrum, yet as will be shown below it is '

imol hto b Wticall vable—both ¢ we are interested in the pure dephasing process, which is on
simple enough 1o be analytically solvable—both quantum, ., ., faster time scale than the electronic population relax-
mechanically and in the various semiclassical approxima

. ) A . - ation.
tions described in this work. In particular, for a finite number

. . . In the Born—Oppenheimer approximation, the total
of bath modes we obtain exact numerical results for the d'HamiItonian can be written as

The model described here is a simple one and can be

pole autocorrelation functions at all times, and concomi-
tantly, through its Fourier transform the vibronic absorption ~ H=H|0)(0|+H4|1)(1], )

spectra. A similar model has been extensively studied b¥vhereH : P
. 35 . ) o (H4) is the Hamiltonian for the nuclear degrees of
Skinner and Hst*in the context of the pure dephasing freedom of the system and the bath, corresponding to the

p_roblem, where the prir_nary interest is in.the asymptotic k_)ngmotion on the Born—Oppenheimer potential surface when
time behavior of the dipole autocorrelation function, whlch,[he diatomic molecule is in its grour(or excited electronic
determines the frequency shifts and the dephasing rates. W tes

adapt the theory developed by Skinner and ¥suto the
present problem and obtain exact analytic results for the fre-
quency shifts and the dephasing rates both for the case when Ho=ho(q)+H,(Q)+Vs(q,Q), 2
all nuclear dynamics are treated either quantum mechanicall

or classically. For a particular case of zero system-bath cou-

pling in the diatomic ground electronic state, but non-zero  H;=h;(q)+H,(Q)+V1(q,Q) + A w,. (©)]
couplings in the excited electronic state, we also obtain th

asymptotic .resu'.ts f_or t_he mixed quantu.m—classmal_ CaS%f the diatomic moleculéfor convenience we set it equal to
(quantum diatomic vibrational mode—classical bath this 0). ho(q) andhy(q) are the Hamiltonian for the vibrational

case we find that the mixed treatment represents a significag ordinate of the diatomic molecule when it is in its ground

improvement over the fully classical treatment of nuclear(|0>) or excited(|1)) electronic states, respectively
dynamics. ' ’

The outline of the paper is as follows. In Section Il we ho1(Q)= 2p2+ %w% (a—0o)?, (4)

define our model Hamiltonian and present the expression for ) ) i i o )
the electronic absorption spectrum in terms of the real-tim@vhered is the diatomic mass-weighted vibrational coordi-

dipole autocorrelation function. In Section |1l we obtain ana-Naté with a conjugate momentum frequencyw, and equi-
lytical expressions for the fully quantum mechanical and!iPrium positiongo for state|0) and frequency»; and equi-
various semiclassical approximations for this autocorrelatioiPrium positiong, for state|1). _ o
function. In Section IV we study its asymptotic long time ~ 1he bath Hamiltonian in the harmonic approximation
behavior, which allows us to obtain analytical results for thet@kes the form
dephasing rates and frequency shifts. The numerical results 1 No Np
for the dipole autocorrelation functions and for the spectra H,(Q)= > > P2+ 3 > w3Q?, (5)
are given in Section V along with the theoretical predictions « @
of the dephasing rates and the frequency shifts. Finally, ijyhere the summation indexlabels the bath mass weighted
Section VI we conclude. coordinatesQ,, with conjugate moment®,,, and frequen-

ciesw,; Ny is the number of bath modes.

As mentioned earlier, the system-bath coupling is taken

The ground and excited state Hamiltonians are:

fn Eq. (3) hw, is the gas phase electronic transition energy

Il. MODEL SYSTEM AND ABSORPTION SPECTRUM to be linear both in the system and in the bath coordinates
: , , . No
In this section we define the model system and outline V0,1(an):2 9%4q—0o Q.. 6)
the methodology to compute the absorption spectrum. @
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where g° (gl) are the coupling strengths for the ground Within the Condon approximatiop does not depend on
(excited electronic states, which we assume todigerent the nuclear coordinates. Hence we replace the transition-
for the two electronic states of the diatomic molecule. dipole operator with

The effect of the bath on the system is completely deter-

mined by the two spectral densities, one for the ground elec- = oy O)(1|+ 120 1)(0]. (12)
tronic state We will limit the discussion to temperatures much lower
Ny (g)?2 than the electronic energy gap &.>kT). Carrying out the
Jo(w):z 2:) Sw—w,), @) trace over the electronic states results in
@ a C(t):<eiH0t/ﬁe7iH1t/ﬁ>' (13)
and the other for the excited electronic state In the above(---)=Try(po---) denotes the trace only over
No (gi)2 the nuclear coordinates ame=(q,Q). The equilibrium den-
Jl(w)Zg 5y 0@ Wa). (8 sity operator is given by
po=e FIZ(p), (14)

The theory presented here can accommodate different func-
tional forms for the two spectral densities. However, for sim-whereZ(8) is the partition function
plicity we use the same functional form fdg(w) and for

J1(w). However, the two functions are normalized to differ- Z(ﬂ)=Trx[e*BHO]=f dx(x|e~#"o|x). (15)
ent valuedp, andp,, respectively which indicates the dif-
ference in the overall system-bath coupling strength. For future purposeén order to discuss the various semi-

The formulation below holds for an arbitrary choice of classical limits of the absorption spectrume present two
the functional form of the spectral density. However, here wealternative forms forC(t) in Eq. (13). The first form em-
will restrict ourselves to the treatment of monatomic hosts irploys a time-ordered exponenﬂi‘éfg
which case we will only consider acoustic phonons. The ex-

tension to optical phonons is straightforward. The conven- ¢ (¢)=( exp:| — '_ ftdt’A(t’) , (16)
tional choice of spectral density for acoustic phonons is the fi Jo

E\)Ebr){)?(imn;(t)ig?ilfs '(Fﬁiuspleiz\?eswal\trs] ;2'?rald§;(r)1;rirgat\li\c/Jr?ichp(i)stenrt(IfI whereT is the time ordering operator which plac&st) in
P ' 9 P y PTO" the order decreasing time from left to right. In the above

. 3 )
portional 10 w*, an_d has a sh_arp cutoff at the Debye _fre A(t) is the Heisenberg form of the operatdrgiven by
guency. For numerical convenience the model can be slightly

modified? by introducing a smooth exponential cutoff A(t)=eHo"i A THot/h (17)
o 3 andA is the difference between the excited and ground state
Joi(w) “Poig @ exp— yw). €) Hamiltonians

For liquid hosts, one has to consider a different functional ~A=H1—Ho. (18)

i 33,37
form for the spectral densmé o _ The second alternative form fag(t) is based on the
Having defined the Hamiltonian and the spectral densityemjciassical theory of Shemetulskis and Lortfgghich re-
we can proceed to the discussion of the calculation of thgites C(t) in terms of phase space integrals using the

absorption spectrum in the following subsection. Wigner distributior®® C(t) then takes the following form:

B. Vibronic absorption spectrum C(t):f dpr dxW(p,,X,t), (19

We calculate the electronic spectrum within the Fermi

golden rule and the electric dipole approximatiihe nor- whereW(py.x,t) satisfies

malized electronic absorptipn spectrum is given by the Fou-  w(p, ,x,t) = — LW(p,,X,t). (20)
rier transform of the real-time dipole autocorrelation func- o
tion: In the above, the operatdt is given by
1 (= [ N 2 o

(@)= 5 Lcdt expiot)C(1), (10 L=~ A costih2)+ 2 Hq sinhA2), (21)
where the real-time dipole autocorrelation function is givenWhere/A\ is the Poisson bracket operator
by A=V, -V =V,-V, (22)

Tr[e’BHeiH”h,ue*iH”h,u] x x
C(t)= (11 and where the right and left arrows on the differential opera-

Tre PHu?] ’ tor indi . ;

or indicate that the operator acts on functions which are on
B=1/kgT, Tr(---) denotes the trace over all nuclear andthe right or on the left with respect to the operator. The
electronic degrees of freedom, apds the transition-dipole operatorA is defined in Eq(18) andH,, is the arithmetic
operator. averaged Hamiltonian
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Ha=3(Ho+Hy). (23) A The fully quantum mechanical  C(?)

Both quantum mechanical forms of the real-time dipole ~ The Kubo—Toyozawd method is used to calculate the
autocorrelation function are essentially equivalent. Howeverfull time dependence of the quantum mechanical dipole au-
the semiclassical limitf—0) of these is not uniqu¥. This  tocorrelation functionwe have also used the algebraic op-
arises because the two electronic states are treated quant@fator approacd as a check of the resultsFor the sake of
mechanica”y, while the nuclear degrees of freedom ar@ompleteness we outline Kubo—Toyozawa derivation for the
treated classically. We will return to this point below when problem at hand. In the coordinate representation (E8)
we discuss the semiclassical limits®ft) and will make the takes the form
connection between the semiclassical limits of the two forms
given above. CFQM(t)=J dxdx’ Ko(X,x" YK (x,x")/Z(B), (24

whereKy(x,x") is the forward propagator
I1l. REAL-TIME DIPOLE AUTOCORRELATION , (p—i ,
FUNCTIONS Ko(x,x")=(x|e~#= M Ho|x"), (25)
Within the Fermi golden rule, the real-time dipole auto- andK(x,x") s the backward propagator
correlation functions for the harmonic model can be calcu- K, (x,x")=(x'|e”™H1/%|x). (26)
lated exactly. Here, we will obtain the analytical solution for
C(t) for three cases.

(a) The fully guantum mechanic@FQM) results are cal-
culated by employing the density matrix formalism of Kubo
and Toyozawd! which is based on Gaussian integrals.
(Equiv_alently we hgvg: als_o used the boson_algebra technique K (x,x")=[de( 27, Lsinh{( BA —it)Q}) ]~ 2
of Balian and Brezif? which allows evaluation of the ther- ) S
mal averages of exponentiated quadratic functions of phonon X exd — z(X+x"=2Xo) {h""Qp
operators. In either case, the calculation can be done only > ; '

- t h—it) Qo2 }(x+x" —2
for a finite number of bath modes. anf((fA =10 0e/2)}(x+ X" =2%)

The tensor expression for the off-diagonal element of the
density operator/propagator in the coordinate representation
for the collection of coupled harmonic oscillators is given by
Kubo and Toyozawa:

(b) A semiclassical approximation in which the dynam- —3(x=x"){a 10, coth((Bh—it)Qy/2)}
ics of all nuclear degrees of freeddiiatomic molecule and , 5
hos) are treated classically, while preserving the quantum X(x=x")]. 27)

mechanical nature of the electronic transition. Two alternain the aboveﬂg is the (square force constant matrix of rank
tive classical propagation schemes have been studied. The for the ground electronic state, whele=N,+1 is the
first assumes that all dynamical classical variables are propdotal number of vibrational modes. The nuclear potential en-

gated using the ground state Hamiltonian. We will refer toergy of the ground statel);) can be expressed in terms of
this approximation as the dynamical classical lifixCL). Qg as follows:
The second, which is derived from Ed.9), assumes that all
dynamical classical variables are propagated using the arith- 2 2 0
metic averaged Hamiltonian. We will refer to this approxi- UOZEwO(q_qO)ZJF 2 ; w“QaJr; 94(d~G0)Qu
mation as the averaged classical lifikCL). Both limits
have been extensively discussed by Mukafhir the sim-
pler case of an isolated molecular system, but as far as we
know, have never been carried out analytically for a molecu- : .
lar system coupled to a bath, where the coupling strength iIn what follows, we sex,=0 without loss of generality.
Yy p , pling 9
different in the two electronic statee. Jo(w) # J1(w)). As a
by-product, we also obtain the static classical lif8CL),
which vyields the well-known classical Franck—Condon

Ny Np

1
=§(X—XO)TQ(2,(X—XO). (28)

inalogously,Kl(x,x’) is expressed in terms of the force
constant matrix)? (NXN) for the excited electronic state
with the nuclear potential enerdy,,

spectrunf? 1 1 Mo Np
. . . . . : 2 2 22 1
(c) A mixed ensemble in which the primasgiatomio U1=§w1(q—q1) t3 > 02Q%+2 gi(q—a1)Q,
vibrational coordinate is treated quantum mechanically, “ “
while the bath is treated in the dynamical classical limit. We 1 -
will refer to this approach as the mixed quantum-classical =5 (X=X Q3(X=xy). (29

limit (MQC). The effect of the bath on the spectrum in this

approach is entirely given by the influence functional of  Using the results for the two propagatd{g(x,x’) and
Feynman and Vernoff,which is generalized for the present Ki(x,x’), the integration ovex andx’ in Eq. (24) can be
problem. As such, this method is not limited to a finite num-easily performed to yield the following result f@gqu(t):
ber of bath modes. In addition, it could be extended to the — a—Srom(t) a—Reom(D) a— i wet

study of anharmonic molecular systems bilinearly coupled to Crou(t)=e”SravlleFrauleed, (30
a harmonic bath. where Sequ(t) andRgqu(t) are given by
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= T [
Srou(t) =X1" SeqmXs » 3D CDCL(t):<exp{ _;L_ J'tdt,A(t,)]> ’ “o
0
cl

Reom(t)= 3 Tr{IN(Reqm)) — In(2 sink( 704 /2))]. where(- ), denotes a classical equilibrium ensemble aver-

(32 age over initial coordinates and momenta weighted by the
Boltzmann factor for the ground state nuclear Hamiltonian.
th contrast to Eq(16), there is no time ordering, anki(t) is

and

In the above expressions we have also used the followin

notation: no longer a Heisenberg operator, but rather a function of
Requ= Qo Sinh{( Bfi —it) Qo}h*(Ko+ K1) dynamicclassical variables, whose time dependence is gov-
1 erned by the ground state nuclear Hamiltonian, as is clear
X (Kg+K))Qq ™ sinh(itQy), B3  from Eq. (17).
gt N1yt The second propagation sche#eCL) can be obtained
= +K1) 7K, 34 e : -
Srou=KolKot K1) 7y 34 by expandingC in Eq.(21) in powers ofs and retaining only
o1 _ the terms of ordeti ~* and#°. For this approximationC(t)
Ko=1 Qo tanR(B—it/h)nQo/2}, (39 from Eq. (19 takes the simpler for
1 _ L A
Kg=7 Qo coth{(B—1t/A) 102}, (36) CACL(t)—<eXp{ 3 fodt Aadt )]>cl, (4D)
1 where A, (t) is the difference between the excited and
’Ci:ﬁﬂl tanKit(,/2}, (37 ground state Hamiltonians propagated under the arithmetic
average of the two Hamiltoniangnd averaged over the
, 1Q . ground state equilibrium distributior®
’Cl_ﬁ 1 cothlit,/2}. (38) A, (1) =i (Ho+ HOU(2h) A g i(Ho+HyU(2h), (42)

Note that when the “shift” in the equilibrium position in the Note that Eq.(41) can also be obtained from the time-
excited electronic statérelative to the ground statevan-  ordered exponential similarly to E¢40) by using the inter-
ishes, i.e., when; =0 (X, was already set to zekahe func-  action picture governed by the averaged Hamiltoni&n.

tion Sgqu(t) is identically equal to 0. Note also that when (42)) instead of the ground state one.

the coupling strength and the vibrational frequencies in the  |n order to obtain the time dependenceAdft) (A (t))

two electronic states are the same, i.e., wggr gy for all  for the two propagation schemes one needs to diagonalize
a, it can be showft that the functiorReqy(t) is identically  the ground state force constant matf}¢ (or the arithmetic
equal to 0. When the coupling strength in the two states igyverage Q2+ Q2)/2)) with the appropriate unitary transfor-
different, the two nuclear Hamiltoniat$, andH; are char-  mation. For the current problem, the remaining classical
acterized by different underlying sets of normal modes, i.e.equilibrium average in both cases can be performed analyti-
there is a “rotation” involved in going from one set to the cally to obtainC(t). However, we will present only the deri-
other. In view of the above, from now on we referSgyu(t)  vation of the DCL ofC(t), since the derivation of the ACL

as the “shift” term, and toRrqu(t) as the “rotation” term  follows exactly the same lines.

in the dipole autocorrelation function. In view of the above discussion, we start by diagonaliz-

To perform the calculation with the above equations, weing the ground state force constant matrix with the appropri-
have diagonalized the force constant matric@§ and 2%)  ate unitary transformatiob,
with the appropriate unitary transformations and evaluated _
functions of these matrices as follows: D3=U§Q Uy, (43
f(M)=Uf(U MUyt (39  where O3 is a diagonal matrix withN,+1 elementsw?
which are the squares of the frequencies of the ground state
normal modes. The excited state force constant matrix trans-
formed undei{, becomes

whereM is a matrix,f is an analytic function antf *M/ is
a diagonal matrix, so that the functidnof the latter can be
easily obtained.

Q2=130%,, (44)

and in general is not diagonal except for the case of the same

coupling strength for both electronic states. For future pur-
In this subsection we adopt a semiclassical approactposes we introduce a matrix

where the two electronic states are treated quantum mechani- ~

cally, while all nuclear degrees of freedom are treated clas- QZ:UE(Q’%_Q%)%' (49

sically (either dynamically or statically**1634434°For the For the present problem, the time integral in E4f) can

dynamic limit we use two propagation schemes. be performed analytically onak(t) is expressed in terms of
The first(DCL) is based on the time-ordered exponentialthe ground state normal modes, whose time dependence is

(Eq. (16)), which in the classical limit takes the form particularly simple

B. The dynamic and static classical limits of C(t)

J. Chem. Phys., Vol. 108, No. 4, 22 January 1998
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q;(t)=7;(0)cog wjt) + —=— sin(w;t), (46) Firnkin="=

— === = (59
j (I)J_(I)k)\/(l)J(l)k (a)J-I—a)k) (1)j(1)k

p;(0) sif(oj—wt]  sin(o;+wt]
Wi o
whereaj(O) andEJ(O) are the initial position and momen- In the caséf)j:?f)kthe appropriate limit of the above must be
tum of normal modg, respectively. The classical equilib- taken.
rium average then reduces to Gaussian integrals over initial The above derivatioalong with the extension to AQL
coordinates and momeni@ote thatA(t) depends on the is one of the central results in this paper, since the DCL is
initial positions as well as on the initial momenta through thewidely used to estimate the vibronic absorption spectrum in
time dependence of the normal mopeExpressingx in  systems where the FQM treatment is still not feastBfé
terms of the ground state normal modes and performing th&herefore, the above derivation of the absorption spectrum
integrals, yields the following result for the dynamical clas- provides a direct tool to investigate the validity of the DCL
sical limit of C(t): approximation for the present problem. At the same time, we
are also able to assess the accuracy of the average dynamical

— o~ SpcL() a—RpeL(h) a—iwet
CocL(t)=e "pere Toee e, (“7) limit, and below we will discuss the differences between the
where(recall thatx,=0) two semiclassical approximations.
1 Before we proceed to discuss the MQC case, we briefly
SpeL(t) = = (ETSpeL £+ X1 Q2Xqt), (4g)  outline the results for the SCL, which is of interest for inho-
ot 2h oet v mogeneously broadened spectra. One can obtai@ hgt)
and by freezing all nuclear degrees of freed8hi>*®in which
case Eq(16) takes the simpler form
Roci(t)=— 3Tr{IN(Rpcy)) — In(BA Q)] (49) it
SpcL and Rpc are square matrices of rankNz= 2Ny +2 Cscl(D)= < exp{ - %A] > o (60

and Spc=Rpe, - In what follows, the indiceg andk run o _ o
from 1 to N. The vectoré of length 2N has the following WhereA is given by Eq.(18). Performing the Gaussian inte-

elements: grals over coordinates and momenta yields the desired SCL
o result. However, a simpler way to obta@x (t) is to take

&=[x1Q5Up); Sin(wjt)/szlz, (50)  the short time limit ofSpc (t) andRpc, (t) in Eq. (47).

and

1T 2 -~ ~3/2

§n=[x1 QU] (1—cod wjt))/ . (51) . The mixed quantum-classical limit of  C(¢)

The matrix elements oRpc are in the form An alternative expression for the real-time dipole corre-

i lation function for the fully quantum mechanical system can

[Roculj k=5 Q4F; (O + Bliw; 8, (52)  be derived using path integrals. After integrating out the har-

monic bath degrees of freeddth?’ C(t) can be expressed in
i terms of the molecular system propagator and in terms of the
[RDCL]HN,k:E QJ-ZKFHN,k(t), (53) influence functional representing the environment:

i
I~ C(t)= | DqDq* Dq~ —Bh — *
[RDCL]j,k+N=I§szij,kJrN(t)a (54 (t) f qDq " Dq exp[ Bho(a)+ +(Sola’]

i~ ~ =S, Dl(q",q7,9,1)/Z(B), 61
[RDCL]j+N,k+N:§ QjZij+N,k+N(t)+Bﬁwj5jkl (59 il ])] (a7an.a0/z(p) v
. wherel(q*,q97,q,t) is the influence functional of the bath,
Where_ djx is the Kronecker delta symbql. In the _above e-andq*, q~ andq are the forward, backward and thermal
pressions we have also used the following notation: path, respectively. In the abovby(q) is the ground state
L~ o~ L~ o~ vibrational Hamiltonian(Eq. (4)) and Z(B) is the partition
(k= i{r{(fj w":)’t} + ‘jr{(f#wj)’t} , (56)  function (Eq. (15)). The classical action$,[q] andS,[q],
" (0w Vojor (0]t o)\ oo for the diatomic vibrational mode for sta{@), or state|l),
respectively, are given by

1—cog (w;— wy)t] . 1—cog (w;+ wy)t]

Fiank=—= = == ~ ~ =~ e
T @ aoae (@ Voo P [ atree- o} (a-a00 (62
5
- -~ _~ o~ A general expression for(q*,q7,q,t) for the present
F, k+N:1_COS{(“"<_“’J)t] 4 1-cog (it w))t] problem can be obtained after a straightforward but tedious

(Z)k—aj)\/f&jz)k (5k+51)\/23j5k ’ calculation; the result is given in the Appendix. For reasons
(58 which will become clear below, the MQC treatment will be
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applied to the case of zero diatomic-bath coupling in thelbath) commutators and replacing the trace over the bath
ground electronic state. In this case the influence functionainodes with the classical integral over phase space in Eg.

takes a simpler form (13).
1(9*.97.a,0)
IV. ASYMPTOTIC LONG TIME BEHAVIOR OF THE
1 [t ty B B DIPOLE AUTOCORRELATION FUNCTION
=ex _Pfdtlf dt,q (t1) g (ty) ) _ .
0 0 In this section we present the analytic results for the
N asymptotic long time behavior of the FQM, DCL, ACL and
% (11 2y (ti—to) |, (63 MQC of C(t). Our treatment is based on the non-
201: (92)"Xelt1 7t perturbative theory of Hsu and Skinn¥r®® who have ob-

tained the corresponding asymptotic results for a problem
involving two completely general harmonic potential energy
surfaces(i.e., including the possibility of equilibrium posi-
tion displacements, frequency shifts and mode mixingng

a cumulant expansion of the time-ordered exponential in Eq.

which depends only on the backwards path . In the
abovey,(t;— 1) =(Q.(t1) Q.(t,)) is the real-time bath po-
sition autocorrelation function

Xo(ti—1o)= 5% {coth Bhw,/2]cod w,(t;—15)) (16). As such, their results are directly applicable to the prob-
« lem at hand. Thefully quantum mechanicalderivation of
—i sin(w,(t1—t5))}. (64) Hsu and Skinner assumes the factorization of the initial den-

) 9 sity operator into a product of the electronic two-level sys-

~ Next we use the short time Trotter formfid® for the o density operator and the equilibrium bath density opera-
diatomic propagator that appears in £61) and replace the  (o; since we are concered here with the asymptotic long
g-dependent potential termigncluding the terms in the in-  ime pehavior of the dipole autocorrelation functions, the
fluence functional with a trapezoidal approximation. We 5p,4ve approximation should not affect the results; we will

then split the _time integrals in the_infl_uence functi(_)nal i_n assess its accuracy by comparing the analytic asymptotic re-
accordance with the Trotter factorization of the diatomicg,its optained below with the exact results for the time cor-

path. Next we perform the integration over the time variablegg|ation functions presented in the previous Section.

in the influence functional for each time slice, keeping the 5 ided by the work of Hsu and Skinner for a somewhat
value of the diatomic coordinate fixethis requires a suffi- gitterent Hamiltoniar?® it can be shown that for times much
ciently small time step This procedure is better than assum-|5nger than the characteristic decay time of the bath fluctua-

ing in addition a constant value for the autocorrelation func'tions the time dependence of tizoy(t) takes the follow-
tion itself, since the bath might have higher frequency mode§ng a7symptotic form: Q

than the diatomic vibration. The remaining integrals over the _

sliced diatomic path become simple Gaussian integrals, Crom(t)xe™ “ce™ ", (66)

which we perform analytically. This procedure is by no here

means unique, and can readily be improved by using more .

sophisticated factorization schem@sHowever, for the _ ! T2y A(0)(1—02A(0))-2UT02K

present purposes we found that a simple Trotter split is suf- 7T gp R0 %A

ficient, and can reproduce with good accuracy the FQM re- i 1 (e

sults obtained using Eg30). + X102+ — f do
In the present formulation, it is straightforward to take 2h 2m Jo

the dynamical classical limit for the bath modes, keeping the ~, )

quantum description of the diatomic vibrational coordinate. XIn(def E+iQ%(2n(w)+ 1) (@) +iA(w)}]).

In order to do this, one simply replaces the quantum bath (67)

correlation function by its classical analogue The second term in EG67) is absent from Eq(26) of Ref-
1 erence 35, since their nuclear Hamiltonian for the excited
X5 (=)= —— codw,(t; ). (65 electronic state differs from our definition bf; by the con-
Boa stant termix] Q2x, . In the aboven(w) = (exp(Bhw)—1)tis

Insertingx®'(t) in the influence functional and following the the phonon thermal occupation numbErjs a unity matrix
procedure outlined above yields the MQC limit for the dipoleof rank N, I'(w) is the weighted density of states matrix of
autocorrelation functiol©yoc(t). Unlike the fully quantum rankN defined according t
mechanical derivation, the present MQC approximation is - _
not limited to a finite number of bath modes. However, itis  [I'(0)]jx=—= 6(0— o) Sk, (68)
limited to shorter times than FQM, due to the time sliciag 20|
mentioned above, for the present problem this limitation ofand A(w) is the followingNx N matrix:
the MQC does not appear in the results for the absorption ,
;pectra We ha\{e glso gseq .and aIternativg approach Fo de- Alw)= E wadw’l“(w’)< 2w ,2>’ 69)
rive the MQC limit by judiciously neglecting appropriate T Jo 0w
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where P stands for the principal value of the integral. Forfrom the FQM results by setting the matriw) equal to 0.

future use, we note the following relatidh: In addition, one needs to replace the expression(d
2 (w +1) by its high temperature limit Bhw. Applying this
A(0)=—— J dol' (). (70) procedure to Eq(72) yields for the DCL dephasing rate
7 Jo
. . . - 1 1 (= ~
To. make connection With spectrciscopic quantities, we re- e f do In{def1+(2/8% )20 (w))2]},
write Eq.(66) in the following form: 2 0 78
CFQM(t)oce*i(AwFQM+we)te*t/T;QM, (71)

and using the same procedure in Ef) gives for the DCL
where 1T5%Y=R¢g7] is the dephasing rate anwrqm  frequency shift
=Im[ 5] is the frequency shift. Finding the real and imagi-

nary parts of yields the following expressions for the 11 1 (=
dephasing rate: ©pcL= 57 XXt 57 0 do

1 1 (= - ~

TFM = 2 fo do In{def(1— O%A(w))? X Tr{arctan(2/Bfw) 0T (w))]. (79
2
- Note thatAwpc contains a term which depends on the
+(2n(w)+ )X QT (0))%]}, (72)  “shift” in the equilibrium positionx, since the first term in

and for the frequency shift Eq. (73) (which served to cancel the above term in the FQM

case is proportional toA(0) and therefore vanishes in the
dynamical classical limit.

Thus, in the dynamic classical lim{tn contrast to the
FQM caseg the frequency shifd wp, depends both on the
n ix}ﬂixﬁ i fmdwTr[arctarq(Zn(w) relati\{e “shift” in the equilibrium positi0n>§1, and on thg

2h 27 Jo “rotation” of the normal modes in the excited state relative
- - to the ground state. In the long time limit, the slope of the
+1)(1-0%A(w)) " 10?)]. (73 imaginary part oSy, (t) can be identified with the first term

Using Eq.(70) one can easily show that the first two terms in N EQ- (79), and the imaginary part dRpc,(t) can be iden-

Eq. (73 exactly cancel each other, and the result for thelified with the second termCLm this equation. At thf same

frequency shift simplifies considerably time, the dephasing rate T depends only on the “rota-
tion” of the normal modes in the excited state relative to the

ground state. Therefore, in the long time limit one can iden-
tify the slope of the real part d®p¢ (t) with the dephasing
rate. Hence, in the long time limit we have

1 -
Awrqu=27X1Q{UoA (0)(1-O?A(0)) *Ug0ix,

1 )
Awrqu=5_ JO deTrarctar(2n(w)+1)

X (1—02A(w)) 10%T (w))]. (74)
. . Re[RocL(t)]=C/+ /T3, (80)
From the above it is clear that both the dephasing rate
1/T5% and the frequency shifh wgqy are independent of t
the relative “shift” in the equilibrium positiorx;, and de- IM[Rpc(t)]=c¢inttAwpeL— ﬁxlﬂfxl, (81

pend only on the “rotation” of the normal modes in the
excited state relative to the ground state, i.e., on the differyng
ence in the coupling strength. Therefore, in the long time
limit one can identify the slopes of the real and imaginary ; to

parts ofReqy(t) with the dephasing rate and frequency shift,  M[Soct(D)]=Cim+ 57X Q3% (82

respectively,
The derivation of the long time asymptotic behavior of
Re[RFQM(t)]:CreH/T;QM’ 79 Cac(t) is analogous to the DCL case. Analysis of the cu-
and mulant expansiotf of Eq. (41) shows that for the purpose of
calculating the long time asymptotic behavior Gf¢ (t),
IM[Reom(t) 1= Cim + tA wrqu, (76) the classical thermal averaging over t@undstate Hamil-
wherec,, andc;,, are two unknown constants. tonian in EQ.(41) can be replaced by the classical thermal
We now proceed to discuss the asymptotic long timeaveraging on theveragedHamiltonian (cf. Eq. (23)). Al-
behavior of Cpc (), which is qualitatively simila#**°to  though not entirely justified, it is often assumed that the be-
Crom(t), havior at long times should not depend on the initial prepa-
, beL ration of the system. We therefore replace the ground state
Cpcy(t)xe ! (AoncLtweltg= T2 ("D normal mode frequencieswf) with the averaged Hamil-
As pointed out by Skinner and Hsfithe dephasing rate and tonian normal mode frequencieEf(’). The weighted density
the frequency shift in the semiclassical limit can be obtainedf state in Eq.(68) then takes the form
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S(t)

an ~

[Ta @)1= =, 8= 0 3jc. (83
j

In addition, in calculating the matriQ? from Eq. (45), we

replace the unitary transformatidu, with the appropriate

unitary transformation if,,) which diagonalizes the aver-

aged Hamiltonian

Imaginary part

ﬁiv: u;v(ﬂi_ Q(2))1/{aw- (84)
This yields the following result for the ACL dephasing rate:

1 1 ®
—er=-— | do In{defl+ (2/8hw)?
TR~ 4 fo o In{def{1+(2/Bhw)

X(QZ4T ol @))?1}, (85)
and for the ACL frequency shift

Real part

1 102 02 1 [
AwACL:%Xl(Ql_QO)Xl—F Z 0 d(,()

X Tr[arctart (2/8% ) QAT o @))]. 86) VAN A
0 10 20 30 40

Note thatAwac contains a term which depends on the time (au)

“shift” in the equilibrium positionx; . However, this term is
different from the DCL term in Eq.79), and vanishes for the FIG. 1. Plots of the real and imaginary parts of the “shift” functigt) vs

case of the same vibrational frequencies in both eIectronigme for 8=1, po=0.0625 ancp, =0.025. The vibrational frequency of the
states iatomic molecule is set to unity and the “shift” in the equilibrium position

. . . . . of the diatomic isq; = 2. The squares, circles and triangles are the results of
The discussion of the asymptotic long time behavior ofthe FQM, DCL and SCL cases, respectively. Note the good agreement at

CMQC(t) will be limited to the case when the coupling short timeg between all three curves, while for intermediate times there are
strength in the ground electronic state is zepg=0). In  discrepancies.

this simpler case, the nuclear coordinates in the original

(“untransformed”) ground electronic state Hamiltonian

form a set of normal modes. Therefore fiéagonal matri-  path modes. In order to obtain the coupling coefficients
cesl'(w) andA(w) can be immediately expressed in terms of yhich would mimic the appropriate continuous spectral den-
N.b bath modes 'and the diatomic V|brat|onql coordinatesity, the following procedur® was utilized:Jo () was dis-
Since we would like to treat the former classically and thegretized evenly with an incremeid, and the coupling co-

latter quantum mechanically, we set all elementsA¢d)  efficients were calculated according to
which correspond to the bath modes equal to zero, and retain 012

only the element corresponding to the diatomic mode. Insert-  (9,)°=2wJo (@) dw. (87)

ing this “truncated” matrix A(w) into Egs.(72) and (73), The bath spectral density, 4(w,) is given by Eq(9). In all

and replacing (B(w) 1) by 2/6hw, yieId; fche resuits fqr . calculations shown below we choose the cutoff parameter
the dephasing rate and the frequency shift in the MQC I|m|t.(from now on we employ atomic unijts/=5. In performing

Since the form of the equations is identical to the FQM case,

. . tpe calculations, we have checked for the convergence with
we do not reproduce them here, but rather provide numencqespect to the number of modes by increashguntil no
results in the following section.

In th ¢ ’ test th f th N further change in the Fourier transforms of the calculated
r? e Texdsec lon \;ve les ) el accmaracy'o d € qua? URorrelation functiongi.e., absorption spectravas observed.
mechanical, dynamical. classical and mixed —quan um'TypicaIIy, N, =30 was found to be sufficient to achieve con-

classical results_ for the f_requency shift an_d the de.phas'ngergence, however, the results reported below were obtained
rate by calculating the dipole autocorrelation function ex-SettingN —100
b_ .

actly at. all .t|mes(usmg_the resglts of Seguon .]Iland by The first set of calculations is performed for the inverse
comparing its asymptotic long time behavior with the theo'temperatureﬁzl with the following values of the ground

retical predictions from the present Section. and excited state coupling parametegg=0, q;=2, wg
=w1=1, pp=0.0625 ancp;=0.025; we setv,=0. The re-
sults for real and imaginary parts of the “shift” functions
We perform exact calculations of the dipole autocorrela-S(t) for FQM, DCL and SCL(at short and intermediate
tion functions for the fully quantum mechanical treatmenttimes are shown in Fig. 1. In Fig 2 we plot the results for the
and for all its semiclassical limits. As mentioned earlier, thereal and imaginary parts of the “rotation” functioft) for
numerical calculations are limited to a finite numiéy of the three case@gain at short and intermediate times

V. RESULTS AND DISCUSSION
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FIG. 2. Plots of the real and imaginary parts of the “rotation” functi®ft)

vs time. The parameters are the same as in Fig. 1. The real and imagina":
parts ofR(t) for the FQM and DCL approach the linear regime at relatively
short times, while the SCL displays a non-linear dependence over the tim%j
range shown. t

G. 3. Plots of the asymptotic long time behavior of the “shift” function
(t) for the same set of parameters as in Fig. 1. The real parts of all three
nction tend to(differenf constant values at long times. The behavior of
e imaginary part is somewhat different: whBgy(t) tends to a constant
value at long timesSpc () increases linearly with time anBgq (t) in-
creases even faster. The solid line is the theoretical long time DCL feult
the first term of Eq(82)).

At very short times, all three results agree very closely
with each other. This is not surprising, since the classical
treatment of the dynamics is known to be accurate for shortonsistent with the results of the previous secfigs.(80),
times. Moreover, as mentioned above, in the short time limi{81) and (82)).
the DCL result reduces to the SCL. We have also calculated In Figs. 3 and 4 we show the asymptotic long time be-
the first two moments of the spectral line shape and obtainelavior of the “shift” and “rotation” functions (symbolg
excellent agreement between the three cases. This is cons@eng with the theoreticdlines) asymptotic long time results
tent with the result obtained by L&X.At longer times the (Eqgs.(75), (76), (80), (81) and(82)). We adjust the unknown
SCL result deviates markedly from the other t(ffQM and  intercepts of each linear functions to obtain an agreement at
DCL) cases. In particular the real part 8¢ (t) does not long time, however the slopes are taken directly from theory
have any oscillations which implies that the SCL spectrum isand are not adjusted. As is clearly seen in the figures the
structureless, as one would expect from thkassical present asymptotic long time theoretical results agree with
Franck—Condon treatment. the exact numerical calculations at long times.

We now turn to the asymptotic long time behavior of the ~ We would like to point out that, as expected, the long
“shift” and “rotation” functions. Regarding the FQM re- time behavior of the dipole autocorrelation function in the
sult, we observe that both real and imaginary parts of the&sCL is qualitatively different from the two cases discussed
“shift” function Sgqu(t) eventually tend to a constant value, above. In particular, at long times the real and imaginary
whereas both real and imaginary parts of the “rotation” parts ofRgc (t) andSgc (t) are not linear functions of time.
quantum functiorReqy(t) depend linearly on time at long In the frequency domain this implies a non-Lorentzian spec-
times. This is consistent with the results of the previous sectral line shape.
tion (Egs.(75) and(76)). Finally, we have performed the same calculations for

The long time behavior of the dynamical classical “ro- ACL (at all timeg, but do not present them here, since they
tation” function Rpc| (t) is qualitatively similar to its quan- are essentially indistinguishable from the FQM results, for
tum counterpart, albeit the slopes have different numericathe above parameters. We note that the ACL theoretical
values, as follows from the equations for frequency shiftasymptotic long time behavior given in Ed85) and(86) is
Awpe, (Eg. (79) and the dephasing rate'l’gCL (Eq. (79)). in excellent agreement with the exact numerical calculations
Regarding the “shift” functionSpc, (t), we observe that at at long time.
long times its real part tends to a constant, whereas the We have calculated the dipole autocorrelation functions
imaginary part displays a linear time dependence. This idor several other sets of parametés p, andp,), the results
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02 @ ®

0.1

Real part

0.0
-5 0 5 10 -5 0 5 10

o (au)

40 30 12‘0 160 FIG. 5. Plots of the electronic absorption spectrum of a diatomic molecule
. coupled to a harmonic bath for two different temperatu@s 0.5 and3
time (au) =1). The thin solid, thick solid and dashed lines are for FQM, DCL and
. . . . . SCL results, respectively. In order to have the same vertical scale for all
FIG. 4. Plots of the asymptotic long time behavior of the “rotation” func- 365 we normalized the high temperature spectra to unity, whereas the
tion R(t) for the same set of parameters as in Fig. 1. The expected lineagyer temperature spectra were normalized to half. The(tapand (b)),
long time behavior of th&Rpc (t) is qualitatively similar toRgqu(t), but middle ((c) and(d)), and bottom((e) and(f)) rows are for coupling strength

the slopes have different numerical values. The solid curves are the theorelg-0 andp, of 0.05 and 0.125, 0.0625 and 0.025, 0.125 and 0.05, respectively.
ical long time results based on Eqg5), (76), (80) and(81). The long time 11,6 yiprational frequencies, and w, are set equal to unity. The SCL

behavior of the “rotation” function in the static classical imRsc(t), IS apsorption spectrum is structureless, whereas both FQM and DCL results
quite different and does not change linearly with time. are characterized by a vibronic structure. As expected, the agreement be-
tween FQM and DCL is better at higher temperatures.

obtained are similar to the ones presented in Figs. 1-4, and
we do not show them here.

We now proceed to discuss the absorption spectra givelarger for the excited electronic state, the DCL does a some-
by the Fourier transforms of the dipole autocorrelation func-what better job in reproducing the spectrpanels(a) and
tions (Eq. (10)). We have calculatet{ w) for two values of  (b) in Fig. 5). Generally, the positions of the individual fea-
the inverse temperatug=0.5 andB=1), and for each of ture are also given incorrectly in the dynamical classical
these values of3-for three sets of coupling strengtlisee  limit. Here the major origin of the discrepancy should be in
figure caption. The results are plotted in Fig. 5, for vibra- the extra term iM wpc -
tional frequencies ofvy=w;=1. As already discussed ear- Regarding general trends which are common for quan-
lier, the SCL spectrunidashed lingis structureless, whereas tum mechanical and dynamical classical spectra, we observe
both the FQM and the DCL spectrig,w), are characterized that increasing the temperature results in a less pronounced
by fine vibronic structure superimposed on a wide absorptiowibronic structure, since the dephasing réded, hence, the
band. The SCL result reproduces well the center position andidth of the vibronic lineg increases with temperatufeee
the width of this wide band, since the first two moments areFig. 9 below. Analogously, increasing the difference be-
essentially exact in the classical limit. tweenp, and p,; makes the vibronic features broader.

While the DCL spectrum certainly represents an im-  We have also calculated the ACL results for the spectra
provement over the SCL result, it is not in quantitative agreepresented in Fig. 5, which are essentially indistinguishable
ment with the FQM spectrum. The widths of individual vi- from the FQM results, and therefore are not shdgee also
bronic features are overestimated in the dynamical classic#he discussion of Figs. 6 and 7 belpw
treatment. This discrepancy between the two is larger than We find (see Fig. 10 belowthat the worst disagreement
what would be expected on the basis of comparing thdetween the predictions of FQM and DCL occurs when the
dephasing rates. Presumably, additional broadening arises @oupling strength in the ground electronic statgis small
the DCL due to a faster decdgt intermediate timgsof the  compared tg; (one possible example would involve a non-
“shift” term in the dipole autocorrelation function. Con- polar (in the ground stajemolecule, which acquires a large
comitantly, the amplitudes of vibronic features are differentdipole moment upon the electronic excitatiofherefore it
in the two treatments, because both spectra are normalized would be of interest to test the other approaches to calculat-
the same way. It seems that when the coupling strength img the dipole autocorrelation functiofaveraged classical
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FIG. 6. The electronic absorption spectrum of a diatomic molecule coupled!G. 7. The electronic absorption spectrum of a diatomic molecule coupled
to a harmonic bath. The thin solid, thick solid, thin dashed and thick dashedo @ harmonic bath. The thin solid, thick solid, thin dashed and thick dashed
lines are for FQM, MQC, DCL and ACL results, respectively. The follow- lines are for FQM, MQC, DCL and ACL results, respectively. The follow-
ing parameters are usefl=1, wy=w;=1, py=0, p;=0.125 and we set the ing parameters are usefl=1, wo=w;=1, po=0, p;=0.125 and we set the
shifts in the equilibrium positions to 0. As discussed in the text, the DCLshifts in the equilibrium positions to 2. The DCL result reproduces the
spectrum is centered at=0 (no frequency shijt and its width is too small. envelope of the absorption spectrum, but fails to provide the vibronic struc-
The MQC and ACL spectra are in good agreement with the FQM spectrumture. The MQC and ACL calculation for the absorption spectrum are in good
The inset emphasizes the presence of the phonon sideband in the blue wiggreement with the FQM result.

of the absorption spectrum.

and mixed quantum-classical limjtprecisely in this situa- dratic terms, and the difference between the ground and ex-
tion. cited state Hamiltoniangcf. Eq.(18)) contains only bilinear

In Fig. 6 we plot the absorption spectra for FQM, DCL, terms in the primary oscillator and bath modes. However, the
ACL and MQC for the following set of parameter8=1, small discrepancy between the two spectra arises due to re-
wo=w1=1, pg=0, p;=0.125 and we also se;=0. In the  placing the quantum thermal averaging with its classical
absence of “shifts” in the equilibrium positions, the dipole counterpart. As expected, the DCL spectr(dashed lingis
autocorrelation function is entirely given by the exponentialcentered atw=0 (no frequency shijt and its width is too
of the “rotation” term (see Section Il for detaijs A tech-  small(no pure dephasing in the sense of exponential decay
nical issue must be addressed at this point: we observe that @Bhe MQC result is in good agreement with the FQM spec-
long times, both real and imaginary parts of the MQC “ro- trum both in terms of the shift and the widtthe latter is
tation” term depend linearly on time, which is in agreementslightly overestimated
with the asymptotic long time behavior obtained in the pre-  We draw the attention to the phonon sideband in the blue
vious section. Therefore, in order to obtain a converged speaving of the spectrum shown in the inset. Its shape and rela-
tra, we use a linear extrapolation of these functions for longive intensity is determined by the short time dependence of
times (the actual MQC calculation is limited by the number the dipole autocorrelation function, which is fairly similar in
of time slices. The time step in the MQC calculation was set all four cases. As such, this feature appears in all four spec-
to 0.035 a.u. which was found small enough to reproducdéra.
within a very good accuracy the FQM spectrum, when the In Fig. 7 we plot the absorption spectra for FQM, DCL,
bath position autocorrelation functiong,(t), in the influ- ACL and MQC for the same set of parameters as in Fig. 6,
ence functional(Eq. (61)), were taken quantum mechani- but now we have set the shift in the equilibrium position
cally. We therefore use the same time step in the MQC calg;=2. The DCL reproduces the envelope of the absorption
culation, which was done by replacing the quantum battband, but fails to capture any vibronic structure. The MQC
correlation functions with their classical counterpaffis}.  captures the vibronic structure but very slightly overesti-
(69)). mates the width of the individual lines. The ACL is essen-

The best agreement is observed between the FQM anthlly indistinguishable from the FQM results.
ACL results. This is to be expected on the grounds of Egs. In the case of different frequencies of the primary oscil-
(20) and (21). For the present problem, in the casg lator in the ground and excited electronic states, the trunca-
=wq, the expansion in powers &fof the propagator in Eq. tion of the expansion in powers df at the semiclassical
(21) contains only those terms which are retained in thdevel for ACL is no longer exact. Therefore, we have calcu-
semiclassical approximation. This is the case, since the aritHated the absorption spectra for FQM, DCL, ACL and MQC
metic averaged Hamiltoniafef. Eq.(23)) contains only qua- for the following set of parameterss,=1 and w;=1/2,
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FIG. 8. Plots of the electronic absorption spectrum of a diatomic molecule
coupled to a harmonic bath for two different temperatuy@s 0.5 andg3 0.0 ! ! L
=1). The thin solid, thick solid, thin dashed and thick dashed lines are for 0.0 0.5 1.0 1.5 2.0 2.5
FQM, MQC, DCL and ACL results respectively. In order to have the same B (au)

vertical scale for all panels, we normalized the high temperature spectra to

unity, whereas the lower temperature spectra were normalized to half. Thei 9. plots of temperature dependence of the dephasing(lateom
ground state coupling strengtipd) in all panels is set to 0. The top and pane) 1/T,, and the frequency shiftop panel Aw. Shown are the FQM
bottom panels are for coupling strength of 0.05 and 0.125, respectively. (solid ling), DCL (dashed ling and ACL (dotted ling results for a vibra-
The DCL absorption spectrum is structureless, whereas FQM, MQC anéonal frequencywo=w,=1, coupling strengtip,=0.125 andp,=0.05,
ACL results are characterized by a vibronic structure. The MQC and ACL4nd for a shift in the vibrational equilibrium position gf=2. A constant

calculation for the absorption spectrum are in good agreement with the FQ'\Galue is subtracted from the DCL results for frequency shift to have the
result. same vertical scale as the FQM frequency stéfte Eq.(79) for more
details.

for inverse temperature8=0.5 and8=1), and for each
value of B—for two values of coupling strength; (pp is  shift are in excellent agreement with FQM, since the di-
kept equal to zeno The results are plotted in Fig. 8. Once atomic vibrational frequencies are the same in the two elec-
again, DCL captures only the envelope, but not the vibronidronic states. The small discrepancy can be traced to the dif-
structure. Contrary to that ACL provides a good approximaference in the thermal probability used to perform the
tion to the absorption spectra, albeit somewhat misplaces theveraging.
positions of individual lines. However, the width is in excel- In order to study the dependence of the dephasing rate
lent agreement with FQM results. The best overall agreemerand the frequency shift on the coupling strength, we have
is obtained using the MQC approximation, which capturescalculatedAw and 17, as functions of coupling strength in
the position and slightly overestimates the width of the indi-the ground state for fixed values of temperatureB& 1)
vidual lines. and coupling strength in the excited stapg € 0.125); again

To study the long time asymptotic behavior@ft) asa we set the values ab, andw, equal to unity. The results are
function of the various parameters, we have calculated thehown in Fig. 10. We have again subtracted the term due to
frequency shifts and the dephasing rates for FQM, DCL andshifts” from Awpc (this term is independent gfy). As
ACL from the equations given in the previous section. Wesuch, the frequency shifts become zero whgrp,. For
first present the resultd=ig. 9) for the temperature depen- p,<p; the frequency shifts are negative, while fag>p;
dence for a particular set of coupling strengtpg=0.125 they are positive. Over a wide range @f there is a good
and p;=0.09 and diatomic vibrational frequenciesn¢  agreement betweed wrqy and Awpc . However, this
=w,=1). All dephasing rates increase monotonically with agreement breaks down for very low valuegpgf In fact for
temperature. As expected, the agreement between DCL ang=0 we haveA wpc =0, while the quantum mechanical
FQM gets better at higher temperatures. Regarding the freesult approaches a non-zero value. As expected, the ACL
guency shifts, all results display a non-monotonic behavioresults are again in excellent agreement with FQM. gor
as functions of temperature. Note that we have subtracte¢0 we have also calculated the MQC regd(illed circle in
from Awpc, the temperature independent term which arisesipper panel of Fig. 10 which turns out to be in excellent
due to the “shifts” in the equilibrium positiongthe first agreement with the FQM value.
term in Eq.(79)). For this particular set of parameters, the Similar to the frequency shifts, all the dephasing rates
ACL results for the dephasing rates and for the frequencyanish whenpy=p,, i.e., there is no pure dephasing when
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FIG. 10. Plots of the coupling strengtipg) dependence of the dephasing g, 11. Plots of the diatomic vibrational frequenay;) dependence of the
rate (bottom panel 1/'I_'2, and the frequency shiftop panel Aw. The sol|d,_ dephasing ratébottom panel 1/T,, and the frequency shiftop panel Aw.
dashed and dotted lines are the FQM, DCL and ACL results, respectivelyrpe thin solid, thin dashed, thick dashed and thick solid lines are the FQM,
and the fllleq cw_cle(.) is the MQC result fom0=9. The parameters used DCL, ACL and MQC results respectively. The parameters used/xet,

are: 8=1, vibrational frequencys=w,=1, coupling strengtlp;=0.125, \;prational frequencywo=1, coupling strengthp,=0 andp,=0.125, and
and fo_r a shift in the vibrational equilibrium position gf = 2. A constant  ¢or 4 shift in the vibrational equilibrium position af,=2. We have sub-
value is subtracted from the DCL results for frequency shift to have theyacted the first term in Eq79) from the DCL results for the frequency shift

same vertical scale as the FQM frequency stste Eq.(79) for more 5 haye the same vertical scale as the frequency shift for the other results
detailg. Note the sudden change in the dephasing rate and in the frequenr{gee Eq{(79) for more details

shift, for DCL at low values o (see text for more detajls

the coupling in the two electronic states is the same. As th -

absolute difference in the coupling strength increases, th etween the predk:cn?ns of D9L and fFQM' Note that we
dephasing rates increase. Overall, there is a reasonable agr@8Ve subtracted the first term in Eq9) from the DCL re-
ment between ]-,;QM and 17‘—2DCL except for very low values sults for the frequency shift to have the same vertical scale as

of po, Where the two results deviate significantly. Ag=0 the frequency shift for the other resulfsee Eq.(79) for

the quantum mechanical result approaches a non-zero valy@ore details Adding this term would make the results much
while the DCL dephasing rate vanishes, i.e., the DCL dipoleVOrse _

autocorrelation function does not decay exponentially. This " summary when the coupling strength for the ground
has serious consequences for the absorption spectrum, whiglfctronic state is weak, it is necessary to treat the primary
was illustrated above. The ACL result captures the dephasingscillator (diatomic vibrational mode quantum mechani-
rates for the whole range of coupling strengths. To completéally, while the bath modes can be treated in the dynamical
the picture we have also plottedilled circle) the MQC classical limit. This seem to contradict the conclusions

dephasing rate fop,=0, which is slightly larger than the reached by Bader and Berifeand by Egorov and Berfi
FQM value. according to which the fully classical treatment is superior to

Finally, in Fig. 11 we plot the frequency shifts and the mixed one in the context of vibrational relaxation. How-
dephasing rates as a function of the diatomic vibrational freever, for the present problem, the decay of the real-time di-
quency (1) in the excited electronic state. The following set pole autocorrelation function is completely dominated by the
of parameters are usedvy=1, B=1, py=0 and p; electronic dephasing process, and not by the vibrational re-
=0.125. By far the best performance is displayed by MQC Jaxation process. In cases where the vibrational relaxation
which provides a very good approximation to the FQM re-rate become comparable to the electronic dephasing rate, we
sults. As discussed above, the ACL is not expected to givanticipate that the MQC will break down. Presumably this
good results when the difference between the ground andould happen when the coupling strengths in both electronic
excited diatomic vibrational frequencies is large. This indeedstates are large, but the difference between the coupling
is case, as can be seen in Fig. 11. The worst agreement ssrengths is small.
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VI. CONCLUSIONS tional) quantum mechanically and restrict the classical treat-
ment to the bath modes only. Since the primary mode is
In this paper we have studied the vibronic absorptionhighly perturbed by the electronic transition, the superior
spectrum of a diatomic moleculgaken in the harmonic ap- performance of the MQC results in not unexpected.
proximation) bilinearly coupled to a harmonic batvith dif- (5) When the vibrational relaxation rates of both elec-
ferentequilibrium positions, coupling strengths, and molecu-tronic states becomes comparable to the electronic dephasing
lar vibrational frequencies for the two electronic statés  rate, we anticipat® that MQC will deviate from FQM. In
order to test some commonly used semiclassical approximgsractice this situation can occur, since the electronic dephas-
tions. We adapted the method of Kubo and Toyozawa tdng rate depends on the difference between the coupling
obtain the FQM result for the vibronic absorption spectrum strengths in the two electronic states, whereas the vibrational
and provided an alternative treatment based on the path imelaxation rates depend on the magnitude of the couplings.
tegrals, and present the corresponding influence functional This work aims to examine the validity of various ap-
for the problem at hand. The path integral formulation, un-proximations to obtain the vibronic absorption spectrum in
like the method of Kubo and Toyozawa, is not limited to acondensed phases. For this reason we have limited ourselves
finite number of bath modes and can be used to treat anhate the case of fully quadratic Hamiltonians; the study of an-
monic systems. harmonic systems will be the subject of future
We also derive analytical expression for the real-timeinvestigations? To summarize our results, we have illus-
dipole autocorrelation functions in the DCL, ACL, and MQC trated that for the pure classical treatment of the nuclear de-
approximations. Guided by the theory of Hsu and Skinneigrees of freedom, propagation on the arithmetic averaged
we obtain the long time behavior of the FQM, DCL and Hamiltonian is better than the ground state propagation.
MQC dipole autocorrelation functions, which determines theHowever, when non-adiabatic electronic transitions are im-
frequency shifts and the dephasing rates. Our results can fp@rtant, we anticipate that this averaged propagation scheme
summarized as follows. will fail when the two Hamiltonians differ significantfy®
(1) The DCL provides a realistic approximation for the We find that the overall best performance is given by the
dephasing rate, for a wide range of temperatures and colMQC approximation, which presumably would break down
pling strength. However, for low temperatures and for verywhen vibrational relaxation rates become comparable to the
small values of the coupling strength in the ground electroniglectronic dephasing rate.
state this approximation breaks dow#his situation would The treatment of realistic systems requires additional ap-
be observable for a molecule whose ground state is non-pol@roximations. The choice of the propagation scheme for the
and the excited state is polaiThe frequency shifts calcu- quantum part of the system and the choice of the method for
lated in the DCL fail to provide a reasonable approximationPropagating quantum and classical degrees of freedom to-
to the FQM results. gether are still open questions for future study.
(2) In most cases studied herein, the DCL provides a
gualitative description of the vibronic absorption spectrum ACKNOWLEDGMENTS
Howevgr, t_he positions of the individual vibronic features. This work was supported by a grant to B.J.B from the
:cr)]gatlhr?cI)rnV\gthosn:L?ia\:\llrg:r%bgr?gnttoir:rlﬁep:jiscear;cgfcg]:nd%i?INational Science Foundation. E.R. is a Rothschild and Ful-
autocorrelation function, the width of the vibronic featuresebrlght post-doctoral fellow.
are typically broader. As the system-bath coupling strength
in the ground electronic state decreases, the performance 'S‘PPENDIX: THE INFLUENCE FUNCTIONAL
the DCL deteriorates significantly. In this Appendix we provide the generalization of the
(3) In the case of pure classical nuclear dynamics weinfluence functional obtained by Feynman and Vefdar
found that ACL provides excellent results for the absorptionthe present problem. We adopt the notation of Wolynes and
spectra(for the same diatomic vibrational frequencies in collaborator’ and write the influence functional as a prod-
both electronic statésmuch better than the results obtained uct of three terms:
using DCL. This is not the case for the system studied by _ _ _
Shemetulskis and Lorin§, where the dynamical corrections l(a".a".a.=1(a"q ,t)lﬁ(q)lc(q+,q a0 (AL)
to the inhomogeneously broadened line shape are small, arfithe three terms arise because there are three types of influ-
the choice of the propagation scheme plays a minor role. lence functional bonds: those that connect two points in real
the case of different diatomic vibrational frequencies in thetime (l;), those that connect two points in imaginary time
two electronic states, as expected, we find discrepancy bgt;), and those which connect real-time points to imaginary-

tween ACL and FQM results. time points (c). Forl; we obtain

(4) For the cases of small coupling in the ground elec- 1 .
tronic state and for different frequencies of the primary os4 (q*.q-,t)=exp — f dt f 1dt *(t)q (ty)
cillator in the two electronic states, where the DCL does ' a-an 7% Jo o 24T (F2

poorly, and the ACL is not exact, we have obtained excellent Np
agreement between the MQC and the FQM results. This im- « 02, (t —t)—at(t)a(t
plies that one should treat the primary mad&tomic vibra- ; (92)Xelti=t2) = a7 (t)a (1)
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XE (929

DXE(t—t) = (t)g " (tp)

xE(g D Xa(ti—t2)+ 97 (1) ()

Np
X, (gi)zxi(tl—tz)}, (A2)

whereq® andq~ are the forward and backward path, re-
spectively (see also Section Il C for more detailsThe
imaginary time path is given by

1
|5(Q):exl{2ﬁzj dTlJ d7oq(71)q(72)

Np
X2 (90)°Xali(m1— w))] :
whereq is the thermal path. Finally, for the real-time points

to imaginary-time points we find

IC(qu!qilqvt)

i t Bt
ex _2Jdt1J drq ™ (ty)a(7)
e Jo 0

Np

X2 (902 xu(ty—i(Bh—7))—q (t1)q(7)

(A3)

XE gagaXa(tl_i(Bh_T))}- (Ad)

In the abovey,(t;—1,) =(Q.(t1)Q.(ty)) is the real-time
bath position autocorrelation function

Xo(ti—1)= —t3))

2w,

—i sin(w,( (A5)

—ty))}.
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