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A major problem still confronting molecular simulations is how to determine time-correlation
functions of many-body quantum systems. In this paper the results of the maximum e{\6py

and singular value decompositi@8VD) analytic continuation methods for calculating real time
quantum dynamics from path integral Monte Carlo calculations of imaginary time time-correlation
functions are compared with analytical results for quantum mechanical vibrational relaxation
processes. This system studied is an exactly solvable system: a harmonic oscillator bilinearly
coupled to a harmonic bath. The ME and SVD methods are applied to exact imaginary-time
correlation functions with various level of added random noise, and also to imaginary-time data
from path integral Monte CarlgPIMC) simulations. The information gathered in the present
benchmark study is valuable for the application of the analytic continuation of PIMC data to
complex systems. €1998 American Institute of Physids0021-96068)51340-2

I. INTRODUCTION In other studies, the calculation of dynamical quantities
) ) o is attempted through brute-force calculation of real-time path

The simulation of quantum dynamics in condensediniegrals. This direct approach is riddled with difficulties due

phases is one of the major goals and one of the most chafy the highly oscillating behavior of the integrand that intro-
lenging problems in computational statistical mechanics. Iy cas the so-called sign problem. Early attempts to use this

principle, the density ma.t.rix'formalism. provides all the tools approach has focused on low-dimensional problems by con-
necessary to study equilibrium and time-dependent prOperditioning the integrand by working in complex tiffeor by

ties of any physical system. In practice, however, only a fewmtroducing a filter function to preferentially sample paths

systems can be treated analytically. close to the stationary path$?° Similar ideas have been

Semiclassical surface-hopping technigiiésare often successfully applied to the study of vibrational relaxatton
based on the assumption that only a small part of the system LT oo . .
d reactivity? in a nonadiabatic bath.

. . n
needs to be treated quantum mechanically. This methodoﬁ An approximate method, the centroid molecular dynam-

ogy has been applied to a variety of problems ranging from 3 . . .
spectroscopy in condensed pha$ésproton transfer in ics method;? has been applied to a large variety of dynami-

liquids > and diffusion and relaxation of excess electrons inCal systems ranging from electron and proton transfer in lig-

liquids.”® The semiclassical surface-hopping techniques aré"dsd to 2olehcular <:)|ﬁu§|on a_nd a‘]jt"’a‘l?g_d (:]ynamms 'E
limited by the assumption that the dynamics of most of the"ONUENSEd phases, ut its regime of vall |ty. as yet to be
fined as it cannot handle quantum mechanical coherences

degrees of freedom in the system can be approximated
fccurately.

classical mechanics. When applied to the study of quantu X o
mechanical vibrational relaxation and vibronic transitions N this paper, quantum dynamics is simulated by per-

this assumption has been shown to produce large etrbys, forming a numerical analytic continuation of imaginary-
In these semiclassical methods, thermal averaging is alséme-correlation functions. Baym and Merrfifrshowed that
problematic because it may require the calculation of a larg@ time-ordered quantum mechanical equilibrium correlation
number of trajectories. function is an analytic function of the time variable in the
In an alternative approach, the total system is also dicomplex plane. As such, the time-correlation function calcu-
vided into a subsystem and a bath that is treated implicitly byated along the imaginary time axialso called the Euclid-
preaveraging over the bath degrees of freedom. This trea@an time axiscan be uniquely analytically continued to the
ment leads to a reduced density matrix formaliérithe ef-  real-time axis. This mathematical transformation, although
fect of the bath on the system is treated perturbativelyvell defined, is known to be numerically unstable and ca-
through bath time-correlation functions. The equation of moJable of enormously amplifying the unavoidable statistical
tion for the reduced density matrix is the Redfield equatfon. and systematic errors of the imaginary-time correlation
Some of the applications to dynamical systems of interest ifunction®
chemical physics range from the spin-boson problem to long  The purpose of the present study is to examine the per-
range electron transférand vibrational relaxatio®™’In  formance of the maximum entrogiE) and singular value
the applications the bath is still treated classically, and thuslecomposition(SVD) analytic continuation methods to the
these calculations involve the same problems as discussgaoblem of quantum mechanical vibrational relaxation. The
above. ME method has been successfully applied to the study of the
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equilibrium dynamics of solvated electrof?s?® The SVD  wherex, is the coordinate of theth oscillator,p,, its con-
method has been shown to be superior to maximum entropjpgate momentumg, its equilibrium frequency, anch,, its
method in reproducing the optical spectrum of chromophoreeduced mass. The coupling between the oscillator and the

coupled to a condensed phase environm@nt. bath is taken to be

A dynamical model that has been used in many contexts
ranging from tunneling in Josephson junctions to activated ;. = —XZ 9.X (4
barrier crossing, vibrational relaxatidh,and vibronic ab- " a

sorption is that of a one-dimensional system bilinearly
coupled to a harmonic bath. It has been shown that when thv?:
system is itself harmonic, the power spectra of the positioﬁ

and velocity, as well as the vibrational relaxation tiffie external radiation through its dipole(x) = qox that varies
D L . ! =0
and the vibrational dephasing timig, are identical for fully linearly with the displacement coordinate The bath is as-

classical and fully quantum mechanical treatments. This sys- ) : .
tem thus provides one of the few analytically tractable tesPumed not to be directly affected by the field. We are inter-

cases for ME and SVD methods of analytical continuation. ested in the equilibrium dynamics of the oscillator, and in

The one-dimensional oscillator coupled to a harmonicparticm"Jlr the quantum time _autocorrelation. function
bath is a prototype model for studying vibrational relaxation<x(t)x(0)> that ultimately determines the absorption of ra-

in condensed phases, a problem that has been studied extéjli{ation by the system. The dipole absorption cross section
O

sively classically’! with mixed quantum classical w) is, in fact, given by

ensembl&~1"and fully quantum mechanicalf#:**°These A

studies point out that complicated atomic and molecular sys- (@)= 72— w(l-e A)(w), )
tems can be approximated very well by harmonic baths. The

harmonic approximation for the bath degrees of freedom alwhere the dipole spectral densltfw) is defined as the Fou-
lows the use of the formalism of the generalized Langevirrier transform of the dipole time autocorrelation function
equation in classical mechanics and of the influence funcg3(x(t)x(0))

tional in the quantum mechanical path integral formalism. In s

this study we W|II_ make thg addl_tlonal assu_mpt_|0n that the I(w)=q3f dteix(t)x(0)). (6)
tagged oscillator is harmonic. This assumption is not neces- —o

sary and most of the formalism developed can be applied to

an anharmonic oscillator. It allows us, however, to solve theThus the decay time of the envelope of the position correla-

problem analyticall{ at the quantum mechanical level. t!on fl_mCt'Fn’ (tjhe wﬁragona(ljde_phas]lcngrj{ or snergy rella;\xagonf
The availability of analytical solutions allow to check time is related to the broadening of the absorption band o

the quality of the analytic continuation results at each stagéhe ﬁcnlator. iviall les b he dipol
of the calculation. This work, therefore, represents a bench- € parameleq, trivially scales by constant the dipole

mark study and paves the way for tackling more Comple){:orrglat.lon functllon and t_he gpectral func_t|on. In the follow-
ing it will be omitted to simplify the notation.

here the parameters, measure the degree of coupling of
e oscillator with thenth normal mode of the bath.
Let us assume also that the oscillator is coupled to an

systems.
A. Classical treatment: the generalized Langevin
equation
II. MODEL SYSTEM In a classical treatment of an oscillator embedded in a

. ) ] bath of harmonic oscillators, the dipole absorption cross sec-
Let us consider an oscillator linearly coupled to a bath ofijoy that describes the rate of energy absorption by the oscil-

harmonic oscillators. The Hamiltonian of the system is lator from an external oscillating radiation field is

H=H ysc+ Hpa+ Vint. - (1) 4

osc. bath int. O'(w)C|'= CB wzcﬂ;u(w), (7)
whereH 4 is the Hamiltonian of the free oscillator
where
H :p—2+V(x) @ T e
% 2m ’ Cll(w)= f_ dte(u(t)u(0))q,

wherem is the reduced mass of the oscillator, andndp b
are, respectively, the displacement of the oscillator from its —f dte' “Y{x(t)x(0))y. . €5)]

equilibrium position and its conjugate momentum. The re-
storing force of the free oscillator is described by the poten-
tial V(x). The Hamiltonian of the harmonic bath is the sum
of the Hamiltonians of the component harmonic oscillators

The autocorrelation function of the displacement of the
oscillator can be obtained by solving the generalized Lange-
vin equatiori>3®

2 mu? ) IW[X(t) t .
Hbathzg (%ﬂL Zw xi) 3 mx(t)z—%Jrg(t)—fodt'é«(t—t')x(tr), (9)
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where the time-dependent friction kerngt) is related to  (x(z)x(0)), where z is a complex parameter, evaluated

the spectral density of the bath modes along the positive real time axis. On the same footing,
g2 the imaginary-time displacement correlation function
Jo(w)=> a s [S(otw,)+8o-0,)], (100 (x(—i7)x(0)), BA>7>0, is interpreted as the complex-

a 2myw;, time displacement correlation function evaluated along the

through a cosine transform negative imaginary-time axis. The imaginary-time and real-

time correlation functions are, thus, two equivalent represen-

{(t)= dew.]b(w)cos{at). (11) tations of the same analytic function. One can be converted

—w into the other by means of the analytic continuation opera-

. . tion
W(x) is the potential of mean force. In the case of an har-

. In performing the analyti ntinuation, it i ful
monic bath it is given by perfo g the analytic continuation, it is useful to

consider the spectral densitfw) of (x(t)x(0)). By invert-
£(0) ing Eqg. (8) and by performing the replacemetts—ir
W) =V(X)— —— X2, (12)  (wheret,7>0), we obtain

and¢(t) is a Gaussian random force whose time autocorre- . 1 [+= —wr
lation function, by virtue of the fluctuation-dissipation theo- (x(=im)x(0))= 27 f,w dwe™ "l (w), (16)
rem, is proportional to the friction kernel
The imaginary-time correlation functiofx(—i7)x(0)) is,

B(EE0))=£(1). 13 thus, the Fourier—Laplace transform ofw). Assuming

The generalized Langevin equation, E®), can be (X(—i7)x(0)) is known for 0<7<p#, the inversion of the
solved numericall$* by producing a set of realizations of the integral equatiori16) effectively completes the analytic con-
random forcet(t) compatible with Eq(13) and integrating tinuation becauséx(t)x(0)) is obtainable for real and posi-
Eq. (9) for each realization of the random force to obtain ative t by a straightforward back Fourier transformation of
set of trajectoriex(t). By averaging over the trajectories, ()
the time autocorrelatiofix(t)x(0)). is finally recovered. 1 (=

For the particular case in which the potentiglx) of the (X(t)x(0))= z— f dwe™ ' (w). (17
oscillator is also quadratid/(x)zmngzlz, a closed form 27 ]

for the absorption cross section can be derfed It is convenient to perform the analytic continuation

87 0y () starting from the displacement imaginary-time correlation
Py — ; 5, (14 function of the positionR?*(—i7)=(|x(—i7)—x(0)[?). In
[0"~ 0™+ wy (o) "+ oy (0)] terms of R%(—i7) and the dipole absorption cross section
where®?= w3—£(0)/m, and[my’ ()] and[my"(w)] are,  o(w), Eq.(16) becomes
respectively, the real and imaginary parts of the complex oo
Laplace transform of the friction kernel, namely RZ(—iT)=<|X(—i7')—X(O)|2>=f dowo(w)K(w,7),
0

(18)

o(w)=

i 1 (=
Y=y (o) iy == (a9
0 where the kernel functioK(w,7) is
It can be showhthat for a harmonic system the quantum

: . : . o Pho 1 7
mechanical and classical absorption cross sections coincide cosr{— —cosr{ ﬁﬁw(—— _)
so that Eq(14) is also valid when the oscillator and the bath K(w,7)= ne 2 2 ph
modes are treated quantum mechanically. It follows, in par- ’ 4772 [Pl '
ticular, that the values vibrational dephasing and energy re- @ S'”*(T)
laxation times are the same in either a classical or quantum (19

mechanical treatment. and the detailed balance relatiof— w)=e #"“|(w) has

been used. The corresponding equation{fait) —x(0)|?)

ll. QUANTUM TREATMENT: ANALYTIC can be easily derived by expressing E4$) and(19) in real
CONTINUATION time

Itis extr_emely diffic_ult to set up a diregt num_er_ical study R2(t) = (|x(t)—x(0)|?)
of the real-time dynamics of an oscillator in a frictional bath
in a quantum mechanical regime. In this paper we attempt to hc [+ 1—cog wt)
infer dynamical properties of the system through the analytic = o doo(w) W- (20
continuation of imaginary-time correlation functions. The le-
gitimacy of such approach is ensured by the analyticity ofBy differentiating twice Eq(20) a relation between the real
quantum correlation functiorfé. part of (x(t)x(0))=(v(t)-v) and o(w) is obtained

In particular, the real-time displacement correlation_ ,
function (x(t)x(0)), t>0, in Eq. (8) can be interpreted as 87°q Re[(v(t)-v)]thdwwo(w)
the complex-time displacement correlation function #cC 0

w COS wt

tanh Bhw/2’ 21
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The imaginary-time correlation functions are readily Because of the unavoidable uncertainty on the data, it is
available from path integral Monte Carl@IMC) simula- not advisable to seek a perfect fit to the data by minimizing
tions. The analytic continuation approach, therefore, has thg?(A). The maximum entropy method, instead, introduces a
clear advantage of avoiding the difficult task of following the regularizing function, called the entropy, and inverts &@&)
dynamics of the system in real time. It suffers, howeverby maximizing the function
from the fact that numerical analytic continuation is an ill- _ 2
conditioned problem. In general, changes in the model sys- QUA)=aS(A) =X (A)f2. (25
tem parameters produce small variations in the imaginaryThe entropy functior5(A) is defined as
time correlation functions but much larger variations in the N A
real-time correlation functions. This means that by inverting 5= |A. —m.— A In =
Eq. (18) even extremely small statistical noise present in the = b i

imaginary-time correlation function can be amplified to SUChwheremj’s are positive parameters derived in analogy with

an extent that little can be said about the real-time dynamicgq_ (22) from the so-callediefaultmap m(w). The uncon-

of the system. By correctly har)dllng of the statistical NOIS€gy~ined maximum of the entropy occursiat= m; for which
we can, at least, successfully identify those features of th

: ; : NS=0. The default mam(w) is chosen to be consistent with
absorption spectrum and of the real-time correlation function - . . X
S : any prior information about the map that is available. A de-
that are less affected by the statistical noise. . .
fault map for the present study has been derived using
known sum rules of the dipole absorption spectrum as pre-
viously reported”’ The form (26) for the entropy has been
IV. MAXIMUM ENTROPY shown to be the most general form consistent with the axi-
oms of the MEM formalisni®

The arbitrary parametar in Eq. (25) is interpreted as

: (26)

The maximum entropy methoMEM) ensures proper

_kllﬁndlmgzhogthe sktatlsucal fno.'se. II? thel |rc11ver5|gn c:fﬂlftﬁ)' the inverse Lagrange multiplier in the constrained maximi-
€ method makes use aipriorl knowledge aboutthe Sys- ;4iqn ofSwith a fixed value ofy?. It basically weighs the

tem t_o determine those fea’Fures of the re_al-t_|me (.:Orrelat'oﬂnportance of the entropy function over thé function in
function that are not constrained by the noisy imaginary-tim

lation function. F le. th thod aut . ”edetermining the outcome of the maximum entropy inversion.
correfation function. For example, Ine method automatically, ;g paper this Lagrange multiplier is selected according to
incorporates the property of positiveness of the absorptlola1e classic maximum entrof}® scheme in which the

spectrum. La L . .
L . - . grange multiplier is determined self-consistently. The
The following is a brief description of the implementa- method, thus, has no adjustable parameters.

tion of the maximum entropy inversion method. The
justification of the method®® and the details of our
implementatio””?® have been previously reported. V. SINGULAR VALUE DECOMPOSITION METHOD

To numerically invert Eq.(25), the frequency axis is
discretized on a gridw;, j=1,...N}. A N-dimensional vec-
tor A, called themap is then defined having elements

As an alternative to the maximum entropy analytic con-
tinuation method, we consider the approach based on the
singular value decompositiaiBVD).2%4° The application of
Aj=0(w)Awj, j=1,.N, (22)  the SVD method for inverting the imaginary-time data has
been discussed in some detail in Ref. 29; here we present a

which represent the integrated values of the, still unknown,
brief summary.

absorption spectrum in each grid spacjngf size A, . Introducing the transpos& ", of the kernel matrixkK

The input of the inversion procedure is the set of khe ) ; : . ]
. : . : Eq. (23) can be inverted in the following matrix form:
calculated values of the displacement imaginary-time corre-

lation function D;=(|x(—i7)—x(0)|?) at the imaginary A=(KTK)"KD. (27
times{r,, i=1,.M}.

With the frequency and imaginary-time discretizations
given above, Eq(18) assumes the form

In view of the ill-posed nature of the analytic continuation
problem, the matriX< K is nearly singular, and in order to
compute its inverse one has to resort to the SVD meffod.
D=KA, (23)  The smallest eigenvalues of this matrix will greatly amplify
any statistical noise inherent ID. Therefore we introduce a
cutoff by setting to zero all eigenvalues, for which the
ratio\ . /\ maxiS smaller than the statistical errorn(A 5 iS
the largest eigenvalue &'K).

An additional problem in applying the SVD method to
the inversion of the imaginary time data stems from the fact
that the SVD by itselfunlike the maximum entropy methpd

Y [Dj—(KA)]? does not guarantee the positivity of the calculated

A= —————, (24 spectrunt®*°In Ref. 29, this problem was circumvented by

' 7i reconstructing thelifferencebetween the quantum mechani-
where theo;’s are the uncertainties associated with the cal-cal and theknown) classical spectrum, rather than the quan-
culated imaginary-time dat; . tum spectrum itself. This difference can alternate in sign,

where A and D are vectors with componeni; and D;,
respectively, and the kernel matriK, defined asKj
=K(7,0;) [see Eq(19)], describes a linear transformation
from the N-dimensional map space to thd-dimensional
data space. Given a trial map we define a measure of the
fit betweenK A andD
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which makes it possible to apply the SVD method withoutHereJ,(w) is the spectral density of the bath modes defined
imposing the “positivity constraint.” However, in the in Eq. (10), and is a property depending on the frequencies
present problem the quantum and classical spectra are ideand coupling strengths of the bath and not on whether or not
tical, and the above approach has no meaning. Moreover, the bath is classical or quantum mechanidg(w) will be
classical result is not always known. We have employed ahe same for the the classical and quantum mechanical
“triangular window” 2 which ensures the positivity of the calculations’
solution (at least in the absence of noisbut concomitantly The total action is obtained by adding the influence func-
reduces the resolution, as indeed we will see below. Speciftional (31) to the frictionless action in Eq30)
cally, the application of triangular window amounts to re-
placing the eigenvalua; with \;/(1—(i—1)/ky,), where Bh
the indexk,, corresponds to the smallest eigenvalue whichS[X(-)]=J dr
remained after introducing the cutoff based on the statistical 0
error inD.

We close this section by noting that for anharmonic sysEquilibrium averages are given by expressions similar to Eq.
tems the SVD method can be applied in the same form as if29)-
Ref. 29 by reconstructing the difference between the quan- For numerical computations the path integral is

tum mechanical spectrum and the one obtained from centroiéliscretized® The functional integral is replaced by a multi-
molecular dynamics. dimensional integral on the discrete set of varialflgs |

=1,...p} that describe the discretized path in imaginary time.
In the primitive form?® the action from Eq(33) assumes the
V1. PIMC discretized form

m|.
7 [X(7) 2HVIX(D]|+SIx()]. (33

For a system composed of a single particle of mmass
interacting with a potentia¥/(r), the quantum average of an S=
position dependent observable is expressed in the path inte-
gral representatidii

_$r(1)O[r(-)]e ST
C $or(-)e SrCn

where the symbolf &r(-), the functional path integral
represents the sum over all possible closed paihg,

Of[r(-)] is the functional representing the space-depende
guantum observabl®

(rlOr")y=0(r)8(r—r") (29)

and the Euclidean-time actidiis the functional of the path S{Xn}]=—Bh
r(-) parameterized by the imaginary-timfer Euclidean-
time) parameterr, 0<7<B#,

p

mp

_2ﬂﬁ jgl (Xj_xj+1)2
ph Bh <

+ — V(X;)— XX, 34
p le (]) szj,jZ:l |l el R ( )

(0) ; (28)

WhereFj_jr:F(Tj_Tjr).

In the particular case whet‘é(x)zmwélez, the exact
nz%ction (33) can be diagonalized by working in the Fourier
representation. The result is

1 ~L
E(mwg—l“())xg
+n§1 (MO2+mwd—T7)|%:)2], (35)

r(m)|2+V[r(n]|. (30)

Bh m
st [ a3
0
o . whereQ,=2mn/Bh,
For the Hamiltonian defined by Eq$l) to (4) the
Euclidean-time path integral is performed over all possible
L . . . ~ B2 dr
paths in imaginary time of the displacement of the tagged rrf]zzf — T'(7)cogQ,7), (36)
oscillator and of all the bath modes. The integrals over the o Bh
paths of the harmonic modes of the bath, involving a qua-
dratic action, can be evaluated analytically, giving rise toand
nonlocal contributions to the action in the form of anfilu-

ence function&f** s dr
o Q.7
_ ph o(srdr (e dr o W= |, pw XM 37
SIX()1==7 | ah o Bh X(n)L(r=1")x(7"),

(31)  The path integral is expressed as an integral over the new

where the functionl'(7) plays a similar role to the time- complex \{ariable@?n} so that the integration over a continu-
dependent friction kernel in the classical treatment by the@us path is replaced by the integration over an infinite num-

generalized Langevin equati¢BLE) and is given by ber of variables. In Eq.35) the coupling terms between dif-
ferent variables are absent so that the path integral can be
F(T)=ﬂﬁfmdeb(w) © cosk[_ﬁhw(l/Z— T/Bh)]_ (39 calculated analytically by solving the resulting Gaussian in-
0 sinh( Bfi /2) tegrals. By inspection we see that,)=0 and
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1

~D o — =10

Xg)= =, s % b e =0.

< O> Bmwé_ré =02
1 7

(IXq1%) = ~—, n=#0. (39)

B(MO2+mw3—T)’

Y (w)/au)
20

The average of many observables can be obtained ana-
Iytically using the results above. For example, the imaginary-
time displacement correlation function can be expressed in
terms of the Fourier coefficients

RA(—i7)=(Ix(—in)=x(0)[?)

10

— s |2

=2 A(|X|)[1~cogQ,7)]. (39) ,
n=1 FIG. 1. The real part of the complex Laplace transform of the dynamical

) ) friction kernel of the harmonic oscillator linearly coupled to a bath of har-

Inserting EqQ.(38) in Eq. (39), we can express the exact monic oscillators for two values of the paramefefsee Eq.(42)]. The

imaginary-time displacement correlation function of a har-position of the vertical dashed line corresponds to the frequency of the
monic oscillator in a bath of harmonic oscillators as an infi-t299ed oscillator.
nite series of terms that can be computed analytically.
It is useful to derive an analytic expression for the solu-
tion of the discretized path integral with the action given indefined if random noiséof amplitude that can be made very
Eq. (34) for an harmonic oscillator. In this case we perform smal) is superimposed on the imaginary-time data.
the change of variables In the next section we present the application of the
maximum entropy method to the calculation of the absorp-
o tion spectrum and real-time velocity correlation function of a
Xj= 2, ge U, (40 harmonic oscillator coupled linearly to a bath of harmonic
k=0
oscillators.
In the new variables),=qy_ the action becomes diagonal
and the discretized path integral can be again computed ana-
lytically by solving the resulting Gaussian integrals. The re-VIl. RESULTS AND DISCUSSIONS
sult for the imaginary-time displacement correlation function
is

p—1

We have considered an harmonic oscillator of frequency
wp=20a.u. and masm=1 a.u. at the inverse temperature
RY —i (1BAIP) ] p) B=1 a.u. The properties of the bath are characterized by the

spectral density of bath modég(w) or, equivalently, by the
classical dynamical friction kerngJ(t). For this study we
2BR[1—(—1)1] take
m[2p®+ (Bhw)®— ]

(D)= Lofe W1+ ay(f)*]+ay(ft)te w27, (42

a form that resembles the dynamical friction kernel of an
. 4B%%[1—cog2mkj/p)] oscillator in a fluid of Lennargs—Jones particfédn atomic
2 TR units, =225, a;=1.486x10°, a,=285, a;=903, «
=1 m{2pT1-cog2akip) ]+ (fhw) =Ty} =75.0, gmd the p;rametéassumesz, in the twi) cases eiam-
(42) ined, the values=1 andf=0.2. The real part of the com-
_ plex Laplace transform of the dynamical friction kernel
wherej=0,...p/2 andl'y is the cosine transform df; . v'(w), proportional to the spectral density of bath modes
Even though Eq(39) gives an analytic expression for Jy(w), is shown in Fig. 1 for the two values &f
the imaginary-time displacement correlation function, its  In Fig. 1 we show by a vertical dashed line the frequency
analytic continuation to real time cannot be performed byw, of the tagged oscillator. The decay rate of the amplitude
simply replacingr with it because the infinite series must be of the oscillations of the tagged oscillator due to the interac-
first summed and written in a closed form. As anticipatedtion with the bath is measured qualitatively by the value of
however, the result for the absorption cross section coincideg’ (w) at wg. The exact absorption cross sections and the
with the one[Eq. (14)] presented for the classical case. exact velocity correlation functions of the tagged oscillator
For the discretized forn41) the direct analytic continu- are given by Eq(14) and Eq.(21) and are shown in Fig. 2.
ation is mathematically undefined because the imaginaryin agreement with the fact that’(wg) for f=1 is larger
time correlation function is known only on a finite set of thanvy’(wg) for f=0.2, we find that the velocity correlation
points. We cannot, therefore, write down an expression fofunction of the oscillator decays more rapidly fior 1. Cor-
the absorption cross section for finipe In this case, how- respondingly, the absorption band férk=0.2 is narrower
ever, the maximum entropy analytic continuation is still well than the one obtained fdr= 1. By considering the difference

p/2—1
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t/Bh coupled to a bath of harmonic oscillators f@ f=1 and(b) f=0.2, cal-

culated by maximum entropy inversion of the exact imaginary-time dis-
FIG. 2. (a) The exact absorption cross section dhyithe real part of the  placement correlation functions to which a specified amount of Gaussian
exact velocity correlation function of the harmonic oscillator linearly random noise has been added, compared with the exact absorption spectra
coupled to a bath of harmonic oscillators for two values of the pararfieter from Fig. 2a).
[see Eq(42)].

study how the absorption spectrum and the velocity correla-
in the rate of decay of the velocity correlation functions, intion function change as the amplitude of the artificially added
the following thef=1 case will be referred as the “high noise is decreased. This study should probe the bias on the
damping” case and the thE=0.2 case as the “low damp- solution introduced by the numerical maximum entropy ana-
ing” case. Iytic continuation method, i.e., the effect of the imaginary-
time and frequency discretization and the effect of perform-
ing the computations using the finite arithmetics of a

In the remainder of this section we will address the prob-computer.
lem of reproducing the exact absorption spectra and the ve- In Fig. 3 we show the absorption spectra obtained as
locity correlation functions, shown in Fig. 2, by maximum described above by decreasing the relative amplitude of the
entropy analytic continuation of the imaginary-time displace-random noise from 1% to 13% (corresponding to simu-
ment correlation functions generated numerically by PIMClated data with 2 to 7 significant figunesompared with the
simulations. We will also present details of the simulationsexact absorption spectra. The corresponding real-time veloc-
and of the maximum entropy inversions to discuss the origirity correlation functions are shown in Fig. 4. The exact
of the observed deviations from the exact results. imaginary-time data are calculated on the imaginary time

Three possible sources of imaginary-time data are availgrid 7;=j 8#/256 forj=1,...,128, and the frequency grid for
able and each of them enables us to probe a different aspette calculation of the absorption spectra is composed of 250
of the errors involved in the maximum entropy analytic con-points on the interval € w<<50 a.u. for the low damping
tinuation. case and & <100 a.u. for the high damping case.

We will first consider the imaginary-time displacement We see that in the low damping case the deviations from
correlation function data obtained by inserting the exact abthe exact results are noticeable even for the highest degree of
sorption cross sectiofil4) in Eq. (18) and integrating nu- precision studied. The calculated spectrum is broader than
merically using the same integration rule and frequency gridhe exact one and the calculated velocity correlation function
used in the maximum entropy inversion. By adding somedecays more rapidly than the exact velocity correlation func-
random noise on the data so generated, and using them #ign. The excellent accuracy at short times of the calculated
input for the maximum entropy analytic continuation, we canvelocity correlation function from imaginary-time data hav-

A. Maximum entropy inversion
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correlation functions of the harmonic oscillator linearly coupled to a bath of
harmonic oscillators fof =1, calculated by maximum entropy inversion of
the imaginary-time displacement correlation functions for fipjteompared

ing only two significant figures is, however, remarkable. to the maximum entropy spectra and velocity correlation functions obtained

For the high damping case the bias introduced by thé©om the exact imaginary-time data.
numerical maximum entropy analytic continuation method
seems to be less important, even though at least four signifi-
cant figures in the input is necessary to achieve satisfactorgross sections and velocity correlation functions are shown
accuracy. for the high damping case in Fig. 5. Similar results have been

It should be stressed that one should not expect the resbtained for the low damping case. In Fig. 5 the quantities
sults from imaginary-time data generated by a PIMC com-calculated for finitep are compared to the corresponding
puter simulation to be better than the ones given here besnes calculated previously by the maximum entropy method
cause the calculated imaginary-time data are also affected bgr p=o0. The effects of the discretization error are insignifi-
systematic errors. cant compared to the bias introduced by the maximum en-

The effect of the systematic errors caused by the distropy method. In the PIMC simulations, described next, we
cretization of path integral are investigated next. set p=256 which provides results very close to the-«

In numerical path integral calculations by the PIMC limit.
method, the discretization with a finite humbgerof time A PIMC simulation based on the action in E§4) with
slices of the path integral introduces an error in the calcup=256 and V(x)=mwyx?/2, where m=1a.u. and w,
lated averages that decreases with increggsihig the present =20 a.u., and3=1 a.u. is performed for the two values of
application the error due to the finitenessptan be ob- the parameterf in Eq. (42). The quantum mechanical
tained exactly by comparing Eq$38)—(39) and (41). To  imaginary-time dynamical friction kerndl(7) is calculated
avoid the summation of the infinite series, the exact displacedsing Eq.(32) whereJ,(w), the spectral function of the bath
ment imaginary-time correlation function can been calcu-modes, is the cosine transform of the classical dynamical
lated by Eq.(18) by using the exact absorption cross sectionfriction kernel {(t) given in Eq.(42). The configurations of
o(w) from Eq. (14). For both values of the parameteran  the quantum cyclic polymer are sampled by the staging
accuracy up to three significant figures is achieved gfor method”*®based only on the kinetic energy part of the ac-
=256. The values oIRZ(—ir)(p) from Eq.(41) with 10 *%  tion. More efficient sampling methods can be devised based
noise have been used as input for the maximum entropgn the quadratic part of the potenffd® and, as we have
analytic continuation method and the resulting absorptiorshown, the action in Eq34) could be completely diagonal-
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FIG. 6. The absorption cross sections of the harmonic oscillator linearlyFIG. 7. The real part of the velocity correlation functions of the harmonic
coupled to a bath of harmonic oscillators f@ f=1 and(b) f=0.2, cal- oscillator linearly coupled to a bath of harmonic oscillators(®rf =1 and
culated by maximum entropy inversion of the imaginary-time displacementb) f=0.2, calculated from the spectra of Fig. 6, compared to the maximum
correlation functions from PIMC simulations, compared to the maximumentropy velocity correlation functions from Fig. 4 corresponding to°20
entropy spectra from Fig. 3 corresponding to 1% Gaussian noise. Gaussian noise.

ized in the form of a product of Gaussian functions so thatcorresponding velocity correlation functions are shown in
the sampling would be reduced just to the generation ofig. 7. The results for the high damping case=(L) from a
Gaussian random numbers. We, however, prefer to test thg00 000-passes PIMC simulation are equivalent to mock
maximum entropy analytic continuation method usingdata with 103% noise. The 300 000-passes PIMC simula-
imaginary-time data from primitive PIMC calculations be- tion provides a sensible improvement over a simulation three
cause they can be applied with ease to a wide variety ofimes shorter. The results for the low damping case show a
problems such as a particle in a double-well potential. Thalifferent behavior: A 100 000-passes PIMC simulation pro-
tests reported here for an harmonic oscillator should beyides results equivalent to mock data with 0.1% noise and a
therefore, equally valid for more complicated systems, suclsimulation five times longer does not seem to improve the
as an anharmonic oscillator coupled to other explicit degreequality of the results even though the correlation analysis
of freedom. shows that the statistical errors on the uncorrelated data de-
The main difference between the mock data set considereases by a factor of5 as expected.
ered previously, to which Gaussian noise is added, and the By comparing Fig. &), Fig. 5a), and &a), we notice
one produced by the simulation is that the latter data hathat for the high damping case there is a good quantitative
cross correlation, that is, the fluctuations of the imaginary-agreement between the maximum entropy absorption cross
time data at different imaginary-time slices are correlated. Irsections calculated from the PIMC data and the exact absorp-
this case it is necessary to perform an uncorrelation procdion cross section. Most of the deviation is due to the bias
dure of the data as the maximum entropy method assumestroduced by the numerical procedure used to implement
uncorrelated data for inpgé:28-2’ the maximum entropy analytic continuation method. This is
The calculated absorption cross sections for the twalso true for the calculated velocity autocorrelation function.
cases examined are shown in Fig. 6. They are compared with In the low damping case, instead, we notice that the
the absorption spectra obtained by the numerical maximurstatistical uncertainties of the PIMC data are also of rel-
entropy method from the exact data with seven significanevance because the convergence of the absorption cross sec-
digits (see Fig. 3 This comparison points out the effect of tion with respect to the PIMC simulation length seems to be
the statistical uncertainties that are contained in thesery slow. In addition, the maximum entropy bisee Figs.
imaginary-time data generated by the PIMC simulation. The3(b) and &b)] is noticeably more pronounced than in the
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0.03 - ' , ‘ ing” (f=1) and the “low damping” f=0.2) cases. As in
f\ the case of the maximum entropy method, we have first ap-
a plied SVD to the exact imaginary-time data, to which Gauss-
Exact . . . .
----- CPIMCdata ian random noise has been added; the relative amplitude of
T 104 Gaussian nowe the noise has been gradually decreased from 1% tG%0
—-— 1% Gaussian noise The exact imaginary-time data are calculated on the grid
=iBh/256 fori=1,...,128, and the frequency grid for the
calculation of the absorption spectra is comprised of 250
points on the interval & «<<50 a.u. for the low damping
case and & w<100 a.u. for the high damping case. The
results for the absorption spectra calculated from(Ed. are
shown in Fig. 83) and 8&b). It is immediately clear that the
resolution of the SVD method is much poorer compared to
LT the MEM results for the same level of random noise. Even
‘ for the lowest level of noise (I0%) the results are far from

0.02 -

o{w) a.u.

0.01

0.00 E-

010 ) ' ' ' ' being converged to the exact answer, especially in the low
damping case. Presumably, this poor resolution is due to the
oL I — ﬁmd&ta | additional “positivi_ty constraint” which we_had to impose
- - 10°°% Gaussian noise on the SVD solution. We have also applied the SVD ap-
—— - 10°% Gaussian noise proach to the simulated PIMC data, in which case a certain

—-— 1% Gaussian noise

amount of the cross correlation between the different
imaginary-time slices is present. The results are also plotted
in Fig. 8; they fall in between the results obtained with the
artificial noise of amplitude 1% and 16%; this is consis-
tent with the magnitude of statistical error in the simulation
data.

0.06

o(w) a.u.

0.04

002 |
VIIl. CONCLUSIONS

. , - Gt Path integral Monte Carl@IMC) simulations provide a
o0 100 200 e ° 400 %0 general prescription for simulating quantum fluids and have
been very useful for exploring the thermodynamics and
FIG. 8. (a) High damping casef(=1) and (b) low damping case f(  structure of quantum fluids and solute-solvent systems such
=0.2): the exact and SVD absorption cross sections obtained by analyligs ye golyated electron. Unfortunately, these methods cannot
continuation of PIMC data and analytic continuation of the exact imaginary- ) . . .
time correlation function with various amounts of added random Gaussia®?© Used to directly simulate dynamics because of the notori-
noise. ous “sign problem.” There is a clear need for methods to
determine quantum time-correlation functions and transport.
high damping case. This, again, may be understood in termSince PIMC methods allow the determination of imaginary-
of the width of the absorption band that in the high dampingtime correlation functions, and because real-time correlation
case is several times the estimated maximum entropy fréunctions are analytic continuations of imaginary-time corre-
quency resolutioR! B Aw~, whereas the bandwidth in lation functions, it is important to assess methods such as
the low damping case is very close to the maximum entropyVD and maximum entropy, which provide numerical ana-
frequency resolution. We expect, therefore, the latter to béytical continuations. Although we have already used these
more difficult to reproduce by any numerical analytic con-methods to predict dynamics in solvated electron
tinuation method. system&~2® and in vibronic transitions in solvated
The real-time dynamics for the low damping case is alsanolecules;’ it is important to use them on systems for which
more difficult to study because, in this case, the dynamics ofhe exact quantum dynamics is known. This will allow direct
the oscillator is characterized by a longer timesdaferre-  assessment of the accuracy of these numerical schemes to be
sponding to the vibrational relaxation ratdn the high ~ made. Unfortunately, very few exactly solvable systems are
damping case, instead, most of the dynamical properties aknown. In this paper we study one such system: the vibra-
determined by the short-time dynamics fox g% that is  tional relaxation of a harmonic oscillator coupled to a har-
within the time domain appropriate for applying analytic monic bath. The numerical analytical continuation methods
continuation methods. studied are found to be accurate only at short times. They
are, therefore, not applicable to slow relaxation processes.
We have used two numerical analytical continuation
methods to analyze the relaxation dynamics of a harmonic
We have applied the SVD method to reconstruct the abescillator bilinearly coupled to a bath of harmonic oscilla-
sorption spectrum of a harmonic oscillator bilinearly coupledtors. We have obtained the real-time velocity correlation
to a harmonic bath from the imaginary-time displacemenfunctions and the optical absorption cross sections of the
correlation function; we have considered the “high damp-oscillator from the corresponding imaginary-time displace-

B. Singular value decomposition inversion
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