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On the application of numerical analytic continuation methods
to the study of quantum mechanical vibrational relaxation processes
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A major problem still confronting molecular simulations is how to determine time-correlation
functions of many-body quantum systems. In this paper the results of the maximum entropy~ME!
and singular value decomposition~SVD! analytic continuation methods for calculating real time
quantum dynamics from path integral Monte Carlo calculations of imaginary time time-correlation
functions are compared with analytical results for quantum mechanical vibrational relaxation
processes. This system studied is an exactly solvable system: a harmonic oscillator bilinearly
coupled to a harmonic bath. The ME and SVD methods are applied to exact imaginary-time
correlation functions with various level of added random noise, and also to imaginary-time data
from path integral Monte Carlo~PIMC! simulations. The information gathered in the present
benchmark study is valuable for the application of the analytic continuation of PIMC data to
complex systems. ©1998 American Institute of Physics.@S0021-9606~98!51340-2#
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I. INTRODUCTION

The simulation of quantum dynamics in condens
phases is one of the major goals and one of the most c
lenging problems in computational statistical mechanics
principle, the density matrix formalism provides all the too
necessary to study equilibrium and time-dependent pro
ties of any physical system. In practice, however, only a f
systems can be treated analytically.

Semiclassical surface-hopping techniques,1,2 are often
based on the assumption that only a small part of the sys
needs to be treated quantum mechanically. This metho
ogy has been applied to a variety of problems ranging fr
spectroscopy in condensed phases,3,4 proton transfer in
liquids,5,6 and diffusion and relaxation of excess electrons
liquids.7,8 The semiclassical surface-hopping techniques
limited by the assumption that the dynamics of most of
degrees of freedom in the system can be approximated
classical mechanics. When applied to the study of quan
mechanical vibrational relaxation and vibronic transitio
this assumption has been shown to produce large errors9–11

In these semiclassical methods, thermal averaging is
problematic because it may require the calculation of a la
number of trajectories.

In an alternative approach, the total system is also
vided into a subsystem and a bath that is treated implicitly
preaveraging over the bath degrees of freedom. This tr
ment leads to a reduced density matrix formalism.12 The ef-
fect of the bath on the system is treated perturbativ
through bath time-correlation functions. The equation of m
tion for the reduced density matrix is the Redfield equation13

Some of the applications to dynamical systems of interes
chemical physics range from the spin-boson problem to l
range electron transfer14 and vibrational relaxation.15–17 In
the applications the bath is still treated classically, and t
these calculations involve the same problems as discu
above.
7740021-9606/98/109(18)/7745/11/$15.00
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In other studies, the calculation of dynamical quantit
is attempted through brute-force calculation of real-time p
integrals. This direct approach is riddled with difficulties d
to the highly oscillating behavior of the integrand that intr
duces the so-called sign problem. Early attempts to use
approach has focused on low-dimensional problems by c
ditioning the integrand by working in complex time18 or by
introducing a filter function to preferentially sample pat
close to the stationary paths.19,20 Similar ideas have been
successfully applied to the study of vibrational relaxation21

and reactivity22 in a nonadiabatic bath.
An approximate method, the centroid molecular dyna

ics method,23 has been applied to a large variety of dynam
cal systems ranging from electron and proton transfer in
uids to molecular diffusion and activated dynamics
condensed phases, but its regime of validity has yet to
defined as it cannot handle quantum mechanical cohere
accurately.

In this paper, quantum dynamics is simulated by p
forming a numerical analytic continuation of imaginar
time-correlation functions. Baym and Mermin24 showed that
a time-ordered quantum mechanical equilibrium correlat
function is an analytic function of the time variable in th
complex plane. As such, the time-correlation function cal
lated along the imaginary time axis~also called the Euclid-
ean time axis! can be uniquely analytically continued to th
real-time axis. This mathematical transformation, althou
well defined, is known to be numerically unstable and c
pable of enormously amplifying the unavoidable statisti
and systematic errors of the imaginary-time correlat
function.25

The purpose of the present study is to examine the p
formance of the maximum entropy~ME! and singular value
decomposition~SVD! analytic continuation methods to th
problem of quantum mechanical vibrational relaxation. T
ME method has been successfully applied to the study of
5 © 1998 American Institute of Physics
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equilibrium dynamics of solvated electrons.26–28 The SVD
method has been shown to be superior to maximum entr
method in reproducing the optical spectrum of chromoph
coupled to a condensed phase environment.29

A dynamical model that has been used in many conte
ranging from tunneling in Josephson junctions to activa
barrier crossing, vibrational relaxation,30 and vibronic ab-
sorption is that of a one-dimensional system bilinea
coupled to a harmonic bath. It has been shown that when
system is itself harmonic, the power spectra of the posit
and velocity, as well as the vibrational relaxation timeT1

and the vibrational dephasing timeT2 , are identical for fully
classical and fully quantum mechanical treatments. This s
tem thus provides one of the few analytically tractable t
cases for ME and SVD methods of analytical continuatio

The one-dimensional oscillator coupled to a harmo
bath is a prototype model for studying vibrational relaxati
in condensed phases, a problem that has been studied e
sively classically,31 with mixed quantum classica
ensemble15–17 and fully quantum mechanically.32,33,10These
studies point out that complicated atomic and molecular s
tems can be approximated very well by harmonic baths.
harmonic approximation for the bath degrees of freedom
lows the use of the formalism of the generalized Lange
equation in classical mechanics and of the influence fu
tional in the quantum mechanical path integral formalism.
this study we will make the additional assumption that
tagged oscillator is harmonic. This assumption is not nec
sary and most of the formalism developed can be applie
an anharmonic oscillator. It allows us, however, to solve
problem analytically9 at the quantum mechanical level.

The availability of analytical solutions allow to chec
the quality of the analytic continuation results at each st
of the calculation. This work, therefore, represents a ben
mark study and paves the way for tackling more comp
systems.

II. MODEL SYSTEM

Let us consider an oscillator linearly coupled to a bath
harmonic oscillators. The Hamiltonian of the system is

H5Hosc.1Hbath1Vint. , ~1!

whereHosc. is the Hamiltonian of the free oscillator

Hosc.5
p2

2m
1V~x!, ~2!

wherem is the reduced mass of the oscillator, andx and p
are, respectively, the displacement of the oscillator from
equilibrium position and its conjugate momentum. The
storing force of the free oscillator is described by the pot
tial V(x). The Hamiltonian of the harmonic bath is the su
of the Hamiltonians of the component harmonic oscillato

Hbath5(
a

S pa
2

2ma
1

mava
2

2
xa

2 D , ~3!
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wherexa is the coordinate of theath oscillator,pa its con-
jugate momentum,va its equilibrium frequency, andma its
reduced mass. The coupling between the oscillator and
bath is taken to be

Vint.52x(
a

gaxa , ~4!

where the parametersga measure the degree of coupling
the oscillator with theath normal mode of the bath.

Let us assume also that the oscillator is coupled to
external radiation through its dipolem(x)5q0x that varies
linearly with the displacement coordinatex. The bath is as-
sumed not to be directly affected by the field. We are int
ested in the equilibrium dynamics of the oscillator, and
particular the quantum time autocorrelation functi
^x(t)x(0)& that ultimately determines the absorption of r
diation by the system. The dipole absorption cross sec
s~v! is, in fact, given by34

s~v!5
4p

\c
v~12e2b\v!I ~v!, ~5!

where the dipole spectral densityI (v) is defined as the Fou
rier transform of the dipole time autocorrelation functio
q0

2^x(t)x(0)&

I ~v!5q0
2E

2`

1`

dteivt^x~ t !x~0!&. ~6!

Thus the decay time of the envelope of the position corre
tion function, the vibrational dephasing, or energy relaxat
time is related to the broadening of the absorption band
the oscillator.

The parameterq0 trivially scales by constant the dipol
correlation function and the spectral function. In the follow
ing it will be omitted to simplify the notation.

A. Classical treatment: the generalized Langevin
equation

In a classical treatment of an oscillator embedded i
bath of harmonic oscillators, the dipole absorption cross s
tion that describes the rate of energy absorption by the os
lator from an external oscillating radiation field is

s~v!cl.5
4pb

c
v2Cmm

cl. ~v!, ~7!

where

Cmm
cl. ~v!5E

2`

1`

dteivt^m~ t !m~0!&cl.

5E
2`

1`

dteivt^x~ t !x~0!&cl. . ~8!

The autocorrelation function of the displacement of t
oscillator can be obtained by solving the generalized Lan
vin equation35,36

mẍ~ t !52
]W@x~ t !#

]x
1j~ t !2E

0

t

dt8z~ t2t8!ẋ~ t8!, ~9!
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where the time-dependent friction kernelz(t) is related to
the spectral density of the bath modes

Jb~v!5(
a

ga
2

2mava
2 @d~v1va!1d~v2va!#, ~10!

through a cosine transform

z~ t !5E
2`

1`

dvJb~v!cos~at !. ~11!

W(x) is the potential of mean force. In the case of an h
monic bath it is given by

W~x!5V~x!2
z~0!

2
x2, ~12!

andj(t) is a Gaussian random force whose time autoco
lation function, by virtue of the fluctuation-dissipation the
rem, is proportional to the friction kernel

b^j~ t !j~0!&5z~ t !. ~13!

The generalized Langevin equation, Eq.~9!, can be
solved numerically31 by producing a set of realizations of th
random forcej(t) compatible with Eq.~13! and integrating
Eq. ~9! for each realization of the random force to obtain
set of trajectoriesx(t). By averaging over the trajectorie
the time autocorrelation̂x(t)x(0)&cl. is finally recovered.

For the particular case in which the potentialV(x) of the
oscillator is also quadratic,V(x)5mv0

2x2/2, a closed form
for the absorption cross section can be derived36

s~v!5
8p

mc

v2g8~v!

@ṽ22v21vg9~v!#21@vg8~v!#2
, ~14!

whereṽ25v0
22z(0)/m, and@mg8(v)# and@mg9(v)# are,

respectively, the real and imaginary parts of the comp
Laplace transform of the friction kernel, namely

g~v!5g8~v!1 ig9~v!5
1

m E
0

`

dteivtz~ t !. ~15!

It can be shown9 that for a harmonic system the quantu
mechanical and classical absorption cross sections coin
so that Eq.~14! is also valid when the oscillator and the ba
modes are treated quantum mechanically. It follows, in p
ticular, that the values vibrational dephasing and energy
laxation times are the same in either a classical or quan
mechanical treatment.

III. QUANTUM TREATMENT: ANALYTIC
CONTINUATION

It is extremely difficult to set up a direct numerical stud
of the real-time dynamics of an oscillator in a frictional ba
in a quantum mechanical regime. In this paper we attemp
infer dynamical properties of the system through the anal
continuation of imaginary-time correlation functions. The
gitimacy of such approach is ensured by the analyticity
quantum correlation functions.24

In particular, the real-time displacement correlati
function ^x(t)x(0)&, t.0, in Eq. ~8! can be interpreted a
the complex-time displacement correlation functi
-

-

x
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r-
e-
m

to
ic
-
f

^x(z)x(0)&, where z is a complex parameter, evaluate
along the positive real time axis. On the same footin
the imaginary-time displacement correlation functi
^x(2 i t)x(0)&, b\.t.0, is interpreted as the complex
time displacement correlation function evaluated along
negative imaginary-time axis. The imaginary-time and re
time correlation functions are, thus, two equivalent repres
tations of the same analytic function. One can be conve
into the other by means of the analytic continuation ope
tion.

In performing the analytic continuation, it is useful t
consider the spectral densityI (v) of ^x(t)x(0)&. By invert-
ing Eq. ~8! and by performing the replacementt→2 i t
~wheret,t.0!, we obtain

^x~2 i t!x~0!&5
1

2p E
2`

1`

dve2vtI ~v!, ~16!

The imaginary-time correlation function̂x(2 i t)x(0)& is,
thus, the Fourier–Laplace transform ofI (v). Assuming
^x(2 i t)x(0)& is known for 0,t,b\, the inversion of the
integral equation~16! effectively completes the analytic con
tinuation becausêx(t)x(0)& is obtainable for real and posi
tive t by a straightforward back Fourier transformation
I (v)

^x~ t !x~0!&5
1

2p E
2`

1`

dve2 ivtI ~v!. ~17!

It is convenient to perform the analytic continuatio
starting from the displacement imaginary-time correlati
function of the positionR2(2 i t)5^ux(2 i t)2x(0)u2&. In
terms of R2(2 i t) and the dipole absorption cross secti
s~v!, Eq. ~16! becomes

R2~2 i t!5^ux~2 i t!2x~0!u2&5E
0

1`

dvs~v!K~v,t!,

~18!

where the kernel functionK(v,t) is

K~v,t!5
\c

4p2

coshFb\v

2 G2coshFb\vS 1

2
2

t

b\ D G
v sinhS b\v

2 D ,

~19!

and the detailed balance relationI (2v)5e2b\vI (v) has
been used. The corresponding equation for^ux(t)2x(0)u2&
can be easily derived by expressing Eqs.~18! and~19! in real
time

R2~ t !5^ux~ t !2x~0!u2&

5
\c

4p2 E0

1`

dvs~v!
12cos~vt !

v tanh~b\v/2!
. ~20!

By differentiating twice Eq.~20! a relation between the rea
part of ^ẋ(t) ẋ(0)&5^v(t)–v& ands~v! is obtained

8p2q2

\c
Re@^v~ t !•v&#5E

0

\

dvvs~v!
v cosvt

tanhb\v/2
. ~21!
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The imaginary-time correlation functions are read
available from path integral Monte Carlo~PIMC! simula-
tions. The analytic continuation approach, therefore, has
clear advantage of avoiding the difficult task of following th
dynamics of the system in real time. It suffers, howev
from the fact that numerical analytic continuation is an
conditioned problem. In general, changes in the model s
tem parameters produce small variations in the imagina
time correlation functions but much larger variations in t
real-time correlation functions. This means that by invert
Eq. ~18! even extremely small statistical noise present in
imaginary-time correlation function can be amplified to su
an extent that little can be said about the real-time dynam
of the system. By correctly handling of the statistical no
we can, at least, successfully identify those features of
absorption spectrum and of the real-time correlation funct
that are less affected by the statistical noise.

IV. MAXIMUM ENTROPY

The maximum entropy method~MEM! ensures prope
handling of the statistical noise in the inversion of Eq.~18!.
The method makes use ofa priori knowledge about the sys
tem to determine those features of the real-time correla
function that are not constrained by the noisy imaginary-ti
correlation function. For example, the method automatica
incorporates the property of positiveness of the absorp
spectrum.

The following is a brief description of the implement
tion of the maximum entropy inversion method. Th
justification of the method37,38 and the details of our
implementation27,28 have been previously reported.

To numerically invert Eq.~25!, the frequency axis is
discretized on a grid$v j , j 51,...,N%. A N-dimensional vec-
tor A, called themap, is then defined having elements

Aj5s~v j !Dv j , j 51,...,N, ~22!

which represent the integrated values of the, still unkno
absorption spectrum in each grid spacingj of sizeDv j .

The input of the inversion procedure is the set of theM
calculated values of the displacement imaginary-time co
lation function Di5^ux(2 i t i)2x(0)u2& at the imaginary
times $t i , i 51,...,M %.

With the frequency and imaginary-time discretizatio
given above, Eq.~18! assumes the form

D5KA, ~23!

where A and D are vectors with componentsAj and Di ,
respectively, and the kernel matrixK, defined asKi j

5K(t i ,v j ) @see Eq.~19!#, describes a linear transformatio
from the N-dimensional map space to theM-dimensional
data space. Given a trial mapA, we define a measure of th
fit betweenKA andD

x2~A!5(
i

M
@Di2~KA! i #

2

s i
2

, ~24!

where thes i ’s are the uncertainties associated with the c
culated imaginary-time dataDi .
e

,

s-
y-

g
e
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e
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e
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-

l-

Because of the unavoidable uncertainty on the data,
not advisable to seek a perfect fit to the data by minimiz
x2(A). The maximum entropy method, instead, introduce
regularizing function, called the entropy, and inverts Eq.~18!
by maximizing the function

Q~A!5aS~A!2x2~A!/2. ~25!

The entropy functionS(A) is defined as

S5(
j 51

N FAj2mj2Aj ln
Aj

mj
G , ~26!

wheremj ’s are positive parameters derived in analogy w
Eq. ~22! from the so-calleddefaultmapm(v). The uncon-
strained maximum of the entropy occurs atÂi5mi for which
Ŝ50. The default mapm(v) is chosen to be consistent wit
any prior information about the map that is available. A d
fault map for the present study has been derived us
known sum rules of the dipole absorption spectrum as p
viously reported.27 The form ~26! for the entropy has been
shown to be the most general form consistent with the a
oms of the MEM formalism.38

The arbitrary parametera in Eq. ~25! is interpreted as
the inverse Lagrange multiplier in the constrained maxim
zation ofS with a fixed value ofx2. It basically weighs the
importance of the entropy function over thex2 function in
determining the outcome of the maximum entropy inversi
In this paper this Lagrange multiplier is selected according
the classic maximum entropy38,39 scheme in which the
Lagrange multiplier is determined self-consistently. T
method, thus, has no adjustable parameters.

V. SINGULAR VALUE DECOMPOSITION METHOD

As an alternative to the maximum entropy analytic co
tinuation method, we consider the approach based on
singular value decomposition~SVD!.29,40 The application of
the SVD method for inverting the imaginary-time data h
been discussed in some detail in Ref. 29; here we prese
brief summary.

Introducing the transpose,KT, of the kernel matrixK,
Eq. ~23! can be inverted in the following matrix form:

A5~KTK !21KTD. ~27!

In view of the ill-posed nature of the analytic continuatio
problem, the matrixKTK is nearly singular, and in order to
compute its inverse one has to resort to the SVD metho41

The smallest eigenvalues of this matrix will greatly ampli
any statistical noise inherent inD. Therefore we introduce a
cutoff by setting to zero all eigenvalueslk for which the
ratio lk /lmax is smaller than the statistical error inD ~lmax is
the largest eigenvalue ofKTK!.

An additional problem in applying the SVD method
the inversion of the imaginary time data stems from the f
that the SVD by itself~unlike the maximum entropy method!
does not guarantee the positivity of the calculat
spectrum.29,40 In Ref. 29, this problem was circumvented b
reconstructing thedifferencebetween the quantum mechan
cal and the~known! classical spectrum, rather than the qua
tum spectrum itself. This difference can alternate in si
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which makes it possible to apply the SVD method witho
imposing the ‘‘positivity constraint.’’ However, in the
present problem the quantum and classical spectra are
tical, and the above approach has no meaning. Moreover
classical result is not always known. We have employe
‘‘triangular window’’ 42 which ensures the positivity of th
solution~at least in the absence of noise!, but concomitantly
reduces the resolution, as indeed we will see below. Spe
cally, the application of triangular window amounts to r
placing the eigenvaluel i with l i /(12( i 21)/kmin), where
the indexkmin corresponds to the smallest eigenvalue wh
remained after introducing the cutoff based on the statist
error in D.

We close this section by noting that for anharmonic s
tems the SVD method can be applied in the same form a
Ref. 29 by reconstructing the difference between the qu
tum mechanical spectrum and the one obtained from cent
molecular dynamics.

VI. PIMC

For a system composed of a single particle of masm
interacting with a potentialV(r ), the quantum average of a
position dependent observable is expressed in the path
gral representation43

^O&5
rDr ~• !O@r ~• !#e2S@r ~• !#/\

rDr ~• !e2S@r ~• !#/\
, ~28!

where the symbolrDr (•), the functional path integral,
represents the sum over all possible closed pathsr (•),
O@r (•)# is the functional representing the space-depend
quantum observableO

^r uOur 8&5O~r !d~r2r 8! ~29!

and the Euclidean-time actionS is the functional of the path
r (•) parameterized by the imaginary-time~or Euclidean-
time! parametert, 0,t,b\,

S@r ~• !#5E
0

b\

dtFm

2 U ṙ ~t!U21V@r ~t!#G . ~30!

For the Hamiltonian defined by Eqs.~1! to ~4! the
Euclidean-time path integral is performed over all possi
paths in imaginary time of the displacement of the tagg
oscillator and of all the bath modes. The integrals over
paths of the harmonic modes of the bath, involving a q
dratic action, can be evaluated analytically, giving rise
nonlocal contributions to the action in the form of aninflu-
ence functional43,44

SI@x~• !#52
b\

2 E
0

b\ dt

b\ E
0

b\ dt8

b\
x~t!G~t2t8!x~t8!,

~31!

where the functionG~t! plays a similar role to the time
dependent friction kernel in the classical treatment by
generalized Langevin equation~GLE! and is given by

G~t!5b\E
0

`

dvJb~v!
v cosh@b\v~1/22t/b\!#

sinh~b\v/2!
. ~32!
t
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HereJb(v) is the spectral density of the bath modes defin
in Eq. ~10!, and is a property depending on the frequenc
and coupling strengths of the bath and not on whether or
the bath is classical or quantum mechanical.Jb(v) will be
the same for the the classical and quantum mechan
calculations.9

The total action is obtained by adding the influence fun
tional ~31! to the frictionless action in Eq.~30!

S@x~• !#5E
0

b\

dtFm

2 Uẋ~t!U21V@x~t!#G1SI@x~• !#. ~33!

Equilibrium averages are given by expressions similar to
~28!.

For numerical computations the path integral
discretized.18 The functional integral is replaced by a mult
dimensional integral on the discrete set of variables$xj , j
51,...,p% that describe the discretized path in imaginary tim
In the primitive form,45 the action from Eq.~33! assumes the
discretized form

S5
mp

2b\ (
j 51

p

~xj2xj 11!2

1
b\

p (
j 51

p

V~xj !2
b\

2p2 (
j , j 851

p

xjG j 2 j 8xj 8 , ~34!

whereG j 2 j 85G(t j2t j 8).
In the particular case whereV(x)5mv0

2x2/2, the exact
action ~33! can be diagonalized by working in the Fouri
representation. The result is

S@$x̂n%#52b\F1

2
~mv0

22Ĝ08!x̂0
2

1 (
n51

`

~mVn
21mv0

22Ĝn8!ux̂nu2G , ~35!

whereVn52pn/b\,

Ĝn852E
0

b\/2 dt

b\
G~t!cos~Vnt!, ~36!

and

x̂n5E
0

b\ dt

b\
x~t!eiVnt. ~37!

The path integral is expressed as an integral over the
complex variables$x̂n% so that the integration over a continu
ous path is replaced by the integration over an infinite nu
ber of variables. In Eq.~35! the coupling terms between dif
ferent variables are absent so that the path integral can
calculated analytically by solving the resulting Gaussian
tegrals. By inspection we see that^x̂n&50 and
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^x̂0
2&5

1

bmv0
22Ĝ08

,

^ux̄n
2u2&5

1

b~mVn
21mv0

22Ĝn8!
, nÞ0. ~38!

The average of many observables can be obtained
lytically using the results above. For example, the imagina
time displacement correlation function can be expresse
terms of the Fourier coefficients

R2~2 i t!5^ux~2 i t!2x~0!u2&

5 (
n51

`

4^ux̂nu2&@12cos~Vnt!#. ~39!

Inserting Eq.~38! in Eq. ~39!, we can express the exa
imaginary-time displacement correlation function of a h
monic oscillator in a bath of harmonic oscillators as an in
nite series of terms that can be computed analytically.

It is useful to derive an analytic expression for the so
tion of the discretized path integral with the action given
Eq. ~34! for an harmonic oscillator. In this case we perfor
the change of variables

xj5 (
k50

p21

qke
2 i2pk~ j 21!/p. ~40!

In the new variablesqk5qp2k* the action becomes diagon
and the discretized path integral can be again computed
lytically by solving the resulting Gaussian integrals. The
sult for the imaginary-time displacement correlation functi
is

R2@2 i ~ j b\/p!#~p!

5
2b\2@12~21! j #

m@2p21~b\v!22Ḡ08#

1 (
k51

p/221
4b\2@12cos~2pk j /p!#

m$2p2@12cos~2pk/p!#1~b\v!22Ḡk8%
,

~41!

where j 50,...,p/2 andḠk8 is the cosine transform ofG j .
Even though Eq.~39! gives an analytic expression fo

the imaginary-time displacement correlation function,
analytic continuation to real time cannot be performed
simply replacingt with it because the infinite series must
first summed and written in a closed form. As anticipat
however, the result for the absorption cross section coinc
with the one@Eq. ~14!# presented for the classical case.

For the discretized form~41! the direct analytic continu-
ation is mathematically undefined because the imagin
time correlation function is known only on a finite set
points. We cannot, therefore, write down an expression
the absorption cross section for finitep. In this case, how-
ever, the maximum entropy analytic continuation is still w
a-
-
in

-
-

-

a-
-

y

,
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y-

r
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defined if random noise~of amplitude that can be made ver
small! is superimposed on the imaginary-time data.

In the next section we present the application of t
maximum entropy method to the calculation of the abso
tion spectrum and real-time velocity correlation function o
harmonic oscillator coupled linearly to a bath of harmon
oscillators.

VII. RESULTS AND DISCUSSIONS

We have considered an harmonic oscillator of frequen
v0520 a.u. and massm51 a.u. at the inverse temperatu
b51 a.u. The properties of the bath are characterized by
spectral density of bath modesJb(v) or, equivalently, by the
classical dynamical friction kernelz(t). For this study we
take

z~ t !5z0$e
2a1~ f t !2

@11a1~ f t !4#1a2~ f t !4e2a2~ f t !2
%, ~42!

a form that resembles the dynamical friction kernel of
oscillator in a fluid of Lennard–Jones particles.46 In atomic
units, z05225, a151.4863105, a25285, a15903, a2

575.0, and the parameterf assumes, in the two cases exam
ined, the valuesf 51 and f 50.2. The real part of the com
plex Laplace transform of the dynamical friction kern
g8(v), proportional to the spectral density of bath mod
Jb(v), is shown in Fig. 1 for the two values off.

In Fig. 1 we show by a vertical dashed line the frequen
v0 of the tagged oscillator. The decay rate of the amplitu
of the oscillations of the tagged oscillator due to the inter
tion with the bath is measured qualitatively by the value
g8(v) at v0 . The exact absorption cross sections and
exact velocity correlation functions of the tagged oscilla
are given by Eq.~14! and Eq.~21! and are shown in Fig. 2
In agreement with the fact thatg8(v0) for f 51 is larger
thang8(v0) for f 50.2, we find that the velocity correlatio
function of the oscillator decays more rapidly forf 51. Cor-
respondingly, the absorption band forf 50.2 is narrower
than the one obtained forf 51. By considering the difference

FIG. 1. The real part of the complex Laplace transform of the dynam
friction kernel of the harmonic oscillator linearly coupled to a bath of h
monic oscillators for two values of the parameterf @see Eq.~42!#. The
position of the vertical dashed line corresponds to the frequency of
tagged oscillator.
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in the rate of decay of the velocity correlation functions,
the following the f 51 case will be referred as the ‘‘hig
damping’’ case and the thef 50.2 case as the ‘‘low damp
ing’’ case.

A. Maximum entropy inversion

In the remainder of this section we will address the pro
lem of reproducing the exact absorption spectra and the
locity correlation functions, shown in Fig. 2, by maximu
entropy analytic continuation of the imaginary-time displac
ment correlation functions generated numerically by PIM
simulations. We will also present details of the simulatio
and of the maximum entropy inversions to discuss the or
of the observed deviations from the exact results.

Three possible sources of imaginary-time data are av
able and each of them enables us to probe a different as
of the errors involved in the maximum entropy analytic co
tinuation.

We will first consider the imaginary-time displaceme
correlation function data obtained by inserting the exact
sorption cross section~14! in Eq. ~18! and integrating nu-
merically using the same integration rule and frequency g
used in the maximum entropy inversion. By adding so
random noise on the data so generated, and using the
input for the maximum entropy analytic continuation, we c

FIG. 2. ~a! The exact absorption cross section and~b! the real part of the
exact velocity correlation function of the harmonic oscillator linea
coupled to a bath of harmonic oscillators for two values of the paramef
@see Eq.~42!#.
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e
as

study how the absorption spectrum and the velocity corre
tion function change as the amplitude of the artificially add
noise is decreased. This study should probe the bias on
solution introduced by the numerical maximum entropy a
lytic continuation method, i.e., the effect of the imaginar
time and frequency discretization and the effect of perfor
ing the computations using the finite arithmetics of
computer.

In Fig. 3 we show the absorption spectra obtained
described above by decreasing the relative amplitude of
random noise from 1% to 1025% ~corresponding to simu-
lated data with 2 to 7 significant figures! compared with the
exact absorption spectra. The corresponding real-time ve
ity correlation functions are shown in Fig. 4. The exa
imaginary-time data are calculated on the imaginary ti
grid t j5 j b\/256 for j 51,...,128, and the frequency grid fo
the calculation of the absorption spectra is composed of
points on the interval 0,v,50 a.u. for the low damping
case and 0,v,100 a.u. for the high damping case.

We see that in the low damping case the deviations fr
the exact results are noticeable even for the highest degre
precision studied. The calculated spectrum is broader t
the exact one and the calculated velocity correlation funct
decays more rapidly than the exact velocity correlation fu
tion. The excellent accuracy at short times of the calcula
velocity correlation function from imaginary-time data ha

FIG. 3. The absorption cross section of the harmonic oscillator linea
coupled to a bath of harmonic oscillators for~a! f 51 and~b! f 50.2, cal-
culated by maximum entropy inversion of the exact imaginary-time d
placement correlation functions to which a specified amount of Gaus
random noise has been added, compared with the exact absorption s
from Fig. 2~a!.
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ing only two significant figures is, however, remarkable.
For the high damping case the bias introduced by

numerical maximum entropy analytic continuation meth
seems to be less important, even though at least four sig
cant figures in the input is necessary to achieve satisfac
accuracy.

It should be stressed that one should not expect the
sults from imaginary-time data generated by a PIMC co
puter simulation to be better than the ones given here
cause the calculated imaginary-time data are also affecte
systematic errors.

The effect of the systematic errors caused by the
cretization of path integral are investigated next.

In numerical path integral calculations by the PIM
method, the discretization with a finite numberp of time
slices of the path integral introduces an error in the cal
lated averages that decreases with increasingp. In the present
application the error due to the finiteness ofp can be ob-
tained exactly by comparing Eqs.~38!–~39! and ~41!. To
avoid the summation of the infinite series, the exact displa
ment imaginary-time correlation function can been cal
lated by Eq.~18! by using the exact absorption cross sect
s~v! from Eq. ~14!. For both values of the parameterf, an
accuracy up to three significant figures is achieved fop
5256. The values ofR2(2 i t)(p) from Eq.~41! with 1024%
noise have been used as input for the maximum entr
analytic continuation method and the resulting absorpt

FIG. 4. The real part of the velocity correlation functions of the harmo
oscillator linearly coupled to a bath of harmonic oscillators with~a! f 51
and ~b! f 50.2, calculated from the spectra of Fig. 3, compared with
exact velocity correlation functions from Fig. 2~b!.
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cross sections and velocity correlation functions are sho
for the high damping case in Fig. 5. Similar results have b
obtained for the low damping case. In Fig. 5 the quantit
calculated for finitep are compared to the correspondin
ones calculated previously by the maximum entropy meth
for p5`. The effects of the discretization error are insigni
cant compared to the bias introduced by the maximum
tropy method. In the PIMC simulations, described next,
set p5256 which provides results very close to thep5`
limit.

A PIMC simulation based on the action in Eq.~34! with
p5256 and V(x)5mv0x2/2, where m51 a.u. and v0

520 a.u., andb51 a.u. is performed for the two values o
the parameterf in Eq. ~42!. The quantum mechanica
imaginary-time dynamical friction kernelG~t! is calculated
using Eq.~32! whereJb(v), the spectral function of the bat
modes, is the cosine transform of the classical dynam
friction kernelz(t) given in Eq.~42!. The configurations of
the quantum cyclic polymer are sampled by the stag
method47,30 based only on the kinetic energy part of the a
tion. More efficient sampling methods can be devised ba
on the quadratic part of the potential48,49 and, as we have
shown, the action in Eq.~34! could be completely diagonal

FIG. 5. ~a! The absorption cross sections and~b! the real part of the velocity
correlation functions of the harmonic oscillator linearly coupled to a bath
harmonic oscillators forf 51, calculated by maximum entropy inversion o
the imaginary-time displacement correlation functions for finitep, compared
to the maximum entropy spectra and velocity correlation functions obtai
from the exact imaginary-time data.
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ized in the form of a product of Gaussian functions so t
the sampling would be reduced just to the generation
Gaussian random numbers. We, however, prefer to test
maximum entropy analytic continuation method usi
imaginary-time data from primitive PIMC calculations b
cause they can be applied with ease to a wide variety
problems such as a particle in a double-well potential. T
tests reported here for an harmonic oscillator should
therefore, equally valid for more complicated systems, s
as an anharmonic oscillator coupled to other explicit degr
of freedom.

The main difference between the mock data set con
ered previously, to which Gaussian noise is added, and
one produced by the simulation is that the latter data
cross correlation, that is, the fluctuations of the imagina
time data at different imaginary-time slices are correlated
this case it is necessary to perform an uncorrelation pro
dure of the data as the maximum entropy method assu
uncorrelated data for input.26,28,27

The calculated absorption cross sections for the
cases examined are shown in Fig. 6. They are compared
the absorption spectra obtained by the numerical maxim
entropy method from the exact data with seven signific
digits ~see Fig. 3!. This comparison points out the effect o
the statistical uncertainties that are contained in
imaginary-time data generated by the PIMC simulation. T

FIG. 6. The absorption cross sections of the harmonic oscillator line
coupled to a bath of harmonic oscillators for~a! f 51 and~b! f 50.2, cal-
culated by maximum entropy inversion of the imaginary-time displacem
correlation functions from PIMC simulations, compared to the maxim
entropy spectra from Fig. 3 corresponding to 1025% Gaussian noise.
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corresponding velocity correlation functions are shown
Fig. 7. The results for the high damping case (f 51) from a
300 000-passes PIMC simulation are equivalent to m
data with 1023% noise. The 300 000-passes PIMC simu
tion provides a sensible improvement over a simulation th
times shorter. The results for the low damping case sho
different behavior: A 100 000-passes PIMC simulation p
vides results equivalent to mock data with 0.1% noise an
simulation five times longer does not seem to improve
quality of the results even though the correlation analy
shows that the statistical errors on the uncorrelated data
creases by a factor ofA5 as expected.

By comparing Fig. 3~a!, Fig. 5~a!, and 6~a!, we notice
that for the high damping case there is a good quantita
agreement between the maximum entropy absorption c
sections calculated from the PIMC data and the exact abs
tion cross section. Most of the deviation is due to the b
introduced by the numerical procedure used to implem
the maximum entropy analytic continuation method. This
also true for the calculated velocity autocorrelation functio

In the low damping case, instead, we notice that
statistical uncertainties of the PIMC data are also of r
evance because the convergence of the absorption cross
tion with respect to the PIMC simulation length seems to
very slow. In addition, the maximum entropy bias@see Figs.
3~b! and 6~b!# is noticeably more pronounced than in th

ly

t

FIG. 7. The real part of the velocity correlation functions of the harmo
oscillator linearly coupled to a bath of harmonic oscillators for~a! f 51 and
~b! f 50.2, calculated from the spectra of Fig. 6, compared to the maxim
entropy velocity correlation functions from Fig. 4 corresponding to 1025%
Gaussian noise.
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high damping case. This, again, may be understood in te
of the width of the absorption band that in the high damp
case is several times the estimated maximum entropy
quency resolution,27 b\Dv'p, whereas the bandwidth in
the low damping case is very close to the maximum entr
frequency resolution. We expect, therefore, the latter to
more difficult to reproduce by any numerical analytic co
tinuation method.

The real-time dynamics for the low damping case is a
more difficult to study because, in this case, the dynamic
the oscillator is characterized by a longer timescale~corre-
sponding to the vibrational relaxation rate!. In the high
damping case, instead, most of the dynamical properties
determined by the short-time dynamics fort,b\ that is
within the time domain appropriate for applying analy
continuation methods.

B. Singular value decomposition inversion

We have applied the SVD method to reconstruct the
sorption spectrum of a harmonic oscillator bilinearly coup
to a harmonic bath from the imaginary-time displacem
correlation function; we have considered the ‘‘high dam

FIG. 8. ~a! High damping case (f 51) and ~b! low damping case (f
50.2): the exact and SVD absorption cross sections obtained by ana
continuation of PIMC data and analytic continuation of the exact imagina
time correlation function with various amounts of added random Gaus
noise.
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ing’’ ( f 51) and the ‘‘low damping’’ (f 50.2) cases. As in
the case of the maximum entropy method, we have first
plied SVD to the exact imaginary-time data, to which Gau
ian random noise has been added; the relative amplitud
the noise has been gradually decreased from 1% to 1025%.
The exact imaginary-time data are calculated on the gridt i

5 ib\/256 for i 51,...,128, and the frequency grid for th
calculation of the absorption spectra is comprised of 2
points on the interval 0,v,50 a.u. for the low damping
case and 0,v,100 a.u. for the high damping case. Th
results for the absorption spectra calculated from Eq.~27! are
shown in Fig. 8~a! and 8~b!. It is immediately clear that the
resolution of the SVD method is much poorer compared
the MEM results for the same level of random noise. Ev
for the lowest level of noise (1025%) the results are far from
being converged to the exact answer, especially in the
damping case. Presumably, this poor resolution is due to
additional ‘‘positivity constraint’’ which we had to impos
on the SVD solution. We have also applied the SVD a
proach to the simulated PIMC data, in which case a cer
amount of the cross correlation between the differ
imaginary-time slices is present. The results are also plo
in Fig. 8; they fall in between the results obtained with t
artificial noise of amplitude 1% and 1023%; this is consis-
tent with the magnitude of statistical error in the simulati
data.

VIII. CONCLUSIONS

Path integral Monte Carlo~PIMC! simulations provide a
general prescription for simulating quantum fluids and ha
been very useful for exploring the thermodynamics a
structure of quantum fluids and solute-solvent systems s
as the solvated electron. Unfortunately, these methods ca
be used to directly simulate dynamics because of the no
ous ‘‘sign problem.’’ There is a clear need for methods
determine quantum time-correlation functions and transp
Since PIMC methods allow the determination of imagina
time correlation functions, and because real-time correla
functions are analytic continuations of imaginary-time cor
lation functions, it is important to assess methods such
SVD and maximum entropy, which provide numerical an
lytical continuations. Although we have already used the
methods to predict dynamics in solvated electr
systems26–28 and in vibronic transitions in solvate
molecules,29 it is important to use them on systems for whic
the exact quantum dynamics is known. This will allow dire
assessment of the accuracy of these numerical schemes
made. Unfortunately, very few exactly solvable systems
known. In this paper we study one such system: the vib
tional relaxation of a harmonic oscillator coupled to a h
monic bath. The numerical analytical continuation metho
studied are found to be accurate only at short times. T
are, therefore, not applicable to slow relaxation processe

We have used two numerical analytical continuati
methods to analyze the relaxation dynamics of a harmo
oscillator bilinearly coupled to a bath of harmonic oscill
tors. We have obtained the real-time velocity correlati
functions and the optical absorption cross sections of
oscillator from the corresponding imaginary-time displac
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ment correlation functions. The result of the computatio
have been compared to the available analytical results.
find good agreement between the calculated and analy
results when the relaxation time of the velocity correlati
function of the tagged oscillator is short~high damping
case!. The instability of the numerical analytical continuatio
methods for larger real times is the cause of the disagreem
between calculated and analytical results for longer re
ation times~low damping case!.

In general, we find that the maximum entropy analy
continuation method, which enforces positivity of the a
sorption cross section, performs better than the sing
value analytical continuation method. One possible way
improve the performance of the SVD method is by reco
structing the difference between the quantum mechan
spectrum and the one obtained from centroid molecular
namics. This difference can alternate in sign, and the S
method can be applied without imposing the positivity co
straint. Hence, higher resolution can be expected. This
proach will be the subject of future investigations.

To study the origin of the discrepancy between cal
lated and analytical results, we have performed the com
tations on imaginary-time data from two sources:~i! from
exact imaginary-time correlation functions with add
Gaussian random noise; and~ii ! from imaginary-time corre-
lation functions from path integral Monte Carlo simulation
We find that the noise on the data and the discretiza
errors introduced by the implementation of the analytic c
tinuation procedures are the major source of discrepan
between calculated and exact results. For the low damp
case, the precision necessary to achieve satisfactory a
ment with the exact results is probably beyond the fin
arithmetics used to perform the computations. The pres
finding provides useful guidelines for future applications
numerical analytical continuations methods to path integ
Monte Carlo data.
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