
JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 7 15 FEBRUARY 1999
Calculating the hopping rate for diffusion in molecular liquids: CS 2

J. Daniel Gezelter, Eran Rabani, and B. J. Bernea)

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

~Received 16 October 1998; accepted 10 November 1998!

We extend the cage correlation function method for calculating the hopping rate in Zwanzig’s model
of self-diffusion in liquids@R. Zwanzig, J. Chem. Phys.79, 4507~1983!# to liquids composed of
polyatomic molecules. We find that the hopping rates defined by the cage correlation function drop
to zero below the melting transition and we obtain excellent agreement with the diffusion constants
calculated via the Einstein relation in liquids, solids, and supercooled liquids of CS2. We also
investigate the vibrational density of states of inherent structures in liquids which have rough
potential energy surfaces, and conclude that the normal mode density of states at the local minima
are not the correct vibrational frequencies for use in Zwanzig’s model when it is applied to CS2.
© 1999 American Institute of Physics.@S0021-9606~99!50507-2#
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I. INTRODUCTION

In a recent series of papers,1,2 we have been investigat
ing approaches to the calculation of hopping rates for Zw
zig’s model of self-diffusion in liquids.3 This model has its
roots in the inherent structure theory for liquids,4–7 and the
primary result of the model is an expression for the diffus
constant,

D5
kT

M E
0

`

dv r~v!
t

~11v2t2!
, ~1!

in terms of the vibrational density of states in the inher
structures on the liquid’s potential energy surface,r~v!, and
a hopping time, t, which characterizes the distributio
@exp(2t/t)# of residence times in the inherent structures. T
primary quantity that must be obtained to make this mo
useful for a liquid is the hopping timet. There are two
approaches that have been presented in the literature fo
taining t from simulations. The first approach attempts
calculate the hopping time from a static property—the fr
tion of imaginary frequency instantaneous normal modes.8–16

The other approach is to measure the decorrelation of ato
surroundings by associating the hopping rate (1/t) with the
long-time decay rate of the cage correlation function.2

A. Instantaneous normal modes

Keyes and co-workers have approached the problem
obtaining the hopping time by using instantaneous nor
modes~INMs!.8–13 INMs are obtained by diagonalizing th
matrix of second derivatives of the potential energy surfa
Since the instantaneous configurations are not necessar
the local minima, and since liquids contain anharmoniciti
some of the INM frequencies will be imaginary. Averagin
over many liquid configurations allows one to obtain a de
sity of states of INM frequencies. The INM theory sugges
by Keyeset al. interprets the fraction of imaginary frequenc
modes as an indicator of the number of barriers that

a!Electronic mail: berne@chem.columbia.edu
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accessible to the system, and indeed there is relatively g
agreement between the fraction of unstable modes and
diffusion constant in some limited cases~i.e., liquids of mod-
erate temperature!. There have been other elaborations on
INM approach,14–18 which seek to correct some problem
with the basic INM theory, but the underlying assumpti
that imaginary frequencies correlate with barrier crossing
the same.

In the most recent versions of the INM theory,15,16 one
must first project the atomic coordinates along each of
instantaneous normal modes, and then classify the mo
into three ‘‘flavors’’ according to the behavior of the pote
tial energy surface along the projections. Those modes wh
have a double well~DW! in this projection are the ones tha
are assumed to be correlated with barrier crossings. A
tionally, in computing the density of states of the DW
modes, each mode is weighted by its projection onto cen
of-mass translations of the molecules. The INM theory
then based on the assumption that the fraction of DW tra
lational modesf DW

TR is correlated strongly with the diffusion
constant.

We have previously argued against the INM approa
because the imaginary frequency INMs~which may indeed
measure anharmonicity on the potential energy surfa!
make up a substantial fraction of the modes in crystall
solids of Lennard-Jones atoms.1 This system cannot cros
any barriers to self-diffusion, so the imaginary frequen
INMs contain many ‘‘false barriers.’’ The merits of the INM
theory and our critique of it are still matters of inten
debate.1,19–21 Interested readers should consult the origin
papers since the INM debate will not be the primary conc
of this paper.

B. Cage correlation functions

In response to some of the problems that we obser
with the INM approach, we developed the cage-correlat
function.2 The rate at which this function decays is a meas
of the time it takes atoms to experience changes in th
surroundings.
4 © 1999 American Institute of Physics
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An atom’s immediate surroundings are best describe
those atoms immediately bonded to it, in addition to t
other atoms in the liquid that make up the first solvation sh
of the molecule. When a diffusive barrier crossing whi
involves the molecule has taken place, the atoms in the m
ecule have most likely left their immediate surroundings, a
following the barrier crossing, they will have a slightly di
ferent group of atoms surrounding them. If one were able
paint identifying numbers on each of the atoms in a simu
tion, and kept track of the list of numbers that each at
could see at any time, then the barrier crossing event wo
be evident as a substantial change in this list of neighb
This is precisely what is done when using neighbor lists
molecular dynamics simulations—where they are used to
duce the time spent on computing interatomic forces. Tra
tionally, the list of nearby atoms is updated every few tim
steps, and the forces are calculated using only those a
that are within each atom’s list of neighbors. This can sa
an immense amount of CPU time, and has become an inv
able technique in large simulations.22

The cage correlation function uses a generalized ne
bor list to keep track of each atom’s neighbors. If the list
an atom’s neighbors at timet is identical to the list of neigh-
bors at time 0, the cage correlation function has a value o
for that atom. If any of the original neighbors aremissingat
time t, it is assumed that the atom participated in a hopp
event and the cage correlation function is 0. This is sho
graphically in Fig. 1.

Averaging over all atoms in the simulation, and studyi
the decay of the cage correlation function gives us a wa
measure the hopping time directly from very short simu
tions.

We have previously investigated this function
Lennard-Jones systems,2 and we now generalize the ap
proach to molecular systems.

II. DIFFUSION OF POLYATOMIC MOLECULES

A generalized neighbor list (l i) for atomi in anN atom
system is a vector of lengthN, and is defined as

l i[S f ~r i1!

A

f ~r iN!
D , ~2!

FIG. 1. A sketch of the idea behind the cage correlation function. The b
atom’s cage radius is denoted by the dotted line. The grey atom was in
the black atom’s cage at time 0~left side!, but has exited the cage at timet
~right side!. The value of the cage correlation function is therefore 0 in
right figure even though four of the original five atoms stayed within
cage radius.
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wheref (r i j ) is a function of the interatomic distance (r i j ). In
large simulations,f (r i j ) is typically taken as the Heavisid
function,

f ~r i j !5Q~r nlist2r i j !5H 1 if r i j <r nlist

0 otherwise
, ~3!

wherer nlist is the neighbor list cutoff radius.
We have chosenr nlist differently from how one would

choose it to speed the calculation of forces. In calculat
l i , we setr nlist to the location of the minimum in the pai
correlation function,22

g~r !5
V

N2K (i
(
j Þ i

d~r2r i j !L ~4!

that separates the first and second solvation shells. This
tance is not necessarily the best choice forr nlist , but it pro-
vides a starting point for the calculation of neighbor list co
relation functions.

There are some quite striking properties of the corre
tion function,

Cl ~ t ![
^l i~0!•l i~ t !&

^l i~0!2&
, ~5!

for the radial cutoff neighbor lists. In our previous work,2 we
found that this function decays very slowly relative to oth
estimates of the hopping timet. When an atom has bee
involved in a barrier crossing, many of the original membe
of that atom’s neighbor list persist into the atom’s ne
neighbor list. What we seek is a correlation function that i
measure of whether or not the cage has undergoneany real
change in timet. To compute this, we must first know th
number of atoms that have left the neighbor list since
original configuration. The number of atoms that have l
atom i ’s original neighbor list at timet is

ni
out~0,t !5ul i~0!u22l i~0!•l i~ t !. ~6!

In this equations,ul i(t)u2 is the number of atoms ini ’s
neighbor list at timet, while l i(0)•l i(t) is the number of
atoms that are ini ’s neighbor list at both time 0 and timet.

Next we definec, which is the number of atoms tha
must leave an atom’s neighbor list before we can be reas
ably sure that a change in surroundings has taken place.
correlation function for the cage is then

Ccage
out ~ t ![^Q~c2ni

out~0,t !!&. ~7!

~We have chosenc51 for the calculations in this paper.! A
plot of a typical cage correlation function is shown in Fig.

Since single atoms can leave and rejoin the neighbor
during normal vibrational motion, there is a significant dec
of Ccage(t) at short times. In liquids, there are two competi
channels that contribute to the decay of the cage correla
function. In addition to the vibrational channel, the cage c
change when the system has crossed a barrier on the p
tial energy surface. The phenomenological effect of the b
rier crossing is a second decay of the cage correlation fu
tion that happens over much longer times.

The decay of correlation functions over multiple tim
scales is by no means a newly observed phenomenon. In
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late 1970’s, Chandler, Montgomery, and Berne23,24 observed
this phenomenon in the correlation function for fluctuatio
in the number of particles at the barrier to isomerization o
model double-well system. They treated the dynamics us
the reactive flux method,23–26 which has often been used t
study rare events in liquids.27

In a molecular system like CS2, there is a straightfor-
ward generalization of Eqs.~2!–~7!. Instead of using the po
sitions of the constituent atoms, one can instead rep
atomic position with the centers-of-mass of the molecu
themselves. To measure the hopping rate for spatial diffus
in CS2, this is exactly what we have done. A typical cente
of-mass cage correlation function for liquid CS2 is shown in
Fig. 2.

III. COMPUTATIONAL DETAILS

Simulations of liquid carbon disulphide were carried o
using the intermolecular potential energy surface of Tild
ley and Madden.28 The form of the intermolecular potentia
between moleculesi and j is a sum of pair interactions be
tween sites on the two molecules,

Vi j 5 (
a51

3

(
b51

3

Vab~r ab!, ~8!

where the site–site potentials are given by

Vab~r ab!54eabF S sab

r ab
D 12

2S sab

r ab
D 6G , ~9!

and eab and sab are the usual Lennard-Jones energy a
length parameters. The cross terms (eCS andsCS) are taken
from the traditional mixing rules for crossed interactions:

sab5
~saa1sbb!

2
,

~10!
eab5Aeaaebb.

FIG. 2. A typical center-of-mass cage correlation function. This particu
function is calculated for liquid CS2 at a density of 1.46 g cm23, a tempera-
ture of 242 K, and a cage radius of 5.2 Å. Note the fast initial~vibrational!
decay att,1 ps and a slower exponential decay due to diffusional hopp
for t.1 ps.
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In addition to the intermolecular potential, we have i
cluded terms for the intramolecular stretch and bends,

Vi5
1
2ku~u2u0!21D0~12e2b~r 122r 0!!2

1D0~12e2b~r 232r 0!!2, ~11!

with parameters chosen to match the vibrational frequen
for CS2.29 This form of the intramolecular potential was use
by Moore and Keyes in their work on the instantaneous n
mal modes of liquid carbon disulphide.30 The parameters
~both inter- and intramolecular! are summarized in Table I.

All of our simulations were performed with 256 mo
ecules in a constant-NVE ensemble. Trajectories of crys
line CS2 were started in the orthorhombic configuration~unit
cell dimensions: a56.379 Å,b55.566 Å,c58.973 Å).
Equilibration was assured by rescaling the velocities
match the target temperature for the system every 200
Following a 50 ps period of equilibration, data were co
lected during uninterrupted runs of 100 ps in length. Co
figurations were saved every 500 fs from the data collect
runs.

For the supercooled liquid trajectories, our quench p
gramming started with a liquid at a density ofr
51.46 g cm23 and a temperature of 280 K. After a 200 p
equilibration period, we quenched it to 260 K over 12 p
with velocity rescalings performed every 100 fs. The traje
tory was allowed to stabilize at the new temperature for 6
and data were collected for 100 ps after the stabilization. T
12 ps quench, 6 ps stabilization, and 100 ps data collec
process were repeated for temperatures at 20 K inter
down to 100 K.

The higher density (r51.5875 g cm23) supercooled
liquid trajectories were obtained in the same manner,
starting from an initial temperature of 400 K. The supe
cooled liquid trajectories utilized cubic box periodic boun
ary conditions to prevent crystallization.

The integrator used for the simulations was a reversib
RESPA integrator with the forces for the inner loop obtaine
from the intramolecular potential functions, while the forc
for the outer loop came from the intermolecular potentia31

This integrator lets us run a trajectory;43 faster than one
which uses the standard velocity verlet integrator with forc
computed using all atoms in the simulation. Minimum-ima
periodic boundary conditions were enforced using an ort
rhombic box with the same length ratios as the unit cell

r

g

TABLE I. Parameters of the potential energy surface for liquid carbon d
ulphide.

Parameter Value

sCC 3.35 Å
sSS 3.52 Å
eCC 0.1017 kcal mol21

eSS 0.3637 kcal mol21

u0 p rad
ku 85.15 kcal mol21rad22

D0 167.38 kcal mol21

b 1.82 Å21

r 0 1.57 Å
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the solid, but which had been scaled to give the correct d
sity. The cutoff radius was chosen to be smaller than 1/2
the length of the shortest of the simulation box dimensio

Translational diffusion constants were computed fro
the stored trajectories using the standard Einstein relatio32

D5 lim
t→`

1

6t
^ur i~ t !2r i~0!u2&, ~12!

and were compared to the predictions of the Zwanzig mo
~using estimates of the hopping rate from both INM theo
and from the cage correlation function!.

Center-of-mass cage correlation functions are compu
using a cage radius that is set to be the location in the sec
minimum in the pair correlation function@Eq. ~4!#. Due to
the anisotropy of the system around a single molecule
CS2, the first solvation shell is split into two peaks ing(r ).
Both peaks are included in that molecule’s cage for the p
poses of the cage correlation function calculation.

IV. RESULTS

A. Liquids and crystals

Using the hopping rates calculated from the decay
Ccage(t), we can apply Zwanzig’s model and calculate t
self-diffusion constant. When the hopping timet is very
long, the rate (kh51/t) is very small. If we rewrite Eq.~1!
with this substitution,

D5
kBT

M E
0

`

dvr~v!
kh

~kh
21v2!

, ~13!

then we can see that to a very good approximation, the
can come outside of the integral, leaving

D'kh

kBT

M E
0

`

dv
r~v!

v2
. ~14!

To a good approximation, the integral is temperature in
pendent, so the diffusion constant should scale linearly w
the product of the temperature and hopping rate,

D'kh

kBT

M
g, ~15!

whereg can be determined from integrating a known dens
of states, or by matchingD to the experimentally determine
diffusion constant at a single temperature. In the results
sented below, we have used this approximation, and h
determinedg by matching the Einstein diffusion consta
@Eq. ~12!# to the right hand side of Eq.~15! at a temperature
just above the melting transition. Our reasons for making
approximation are covered in greater detail in Sec. V. R
sults for liquids and crystalline solids at temperatures n
the melting transition are show in Figs. 3 and 4.

In contrast to the instantaneous normal mode theori1

the diffusion constants calculated via the cage correla
function are effectively zero for crystalline solids. Note th
the data presented in Figs. 3 and 4 are obtained from c
n-
f
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stant energy trajectories, so the largest uncertainties
along the temperature axis. The data points each have a
dard error of less than 5 K along this axis.

The present theory does quite well at predicting t
translational diffusion constant in moderate and high den
fluids for a wide range of temperatures. We know from o
previous work,2 and from the work of Mohanty33 and
Bagchi34 that the hopping mechanism for self-diffusion
liquids breaks down when the hopping rate becomes
large. Therefore, the Zwanzig hopping model should be c
sidered relevant only for moderate to high density liquid
The cage correlation function results begin to deviate fr
the Einstein relation when the hopping rate rises above
ps21, which is well into the liquid regime. We have tw
explanations for this deviation:

~1! either the hopping mechanism begins to break down
the dominant mechanism for diffusion, or

FIG. 3. Plots of the temperature dependence of the diffusion constan
equilibrium CS2 near the melting transition forr51.46 g cm23: (s) the
diffusion constants calculated via the Einstein relation@Eq. ~12!#, and (L)
calculated via the center-of-mass cage correlation function@Eq. ~7!# com-
bined with the modified Zwanzig formula@Eq. ~15!#. The fraction of un-
stable pure-translation instantaneous normal modes,f u

TR is plotted (,), and
the scale for the fraction of unstable modes is along the left side of
figure.

FIG. 4. The same as Fig. 3 but at a density ofr51.5875 g cm23.
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~2! the small rate approximation in Eq.~13! is invalid at
higher temperatures.

A hopping model of diffusion is of greatest interest in phy
cal systems~membranes, supercooled liquids and glass!
where the hopping rate is much smaller than the ceiling
report here, so methods based on the Zwanzig model are
of great utility.

B. Supercooled liquids

We have also calculated diffusion constants in the sup
cooled liquid regime using the center-of-mass cage corr
tion functions. We show comparisons of the current work
the Einstein diffusion constants in Figs. 5 and 6.

Note that as the temperature~and the diffusion and hop
ping rate! falls, the approximation in the modified Zwanz
formula @Eq. ~15!# becomes more correct, so there is incre
ing agreement between the diffusion constants calculated
the cage correlation function and the results from the E
stein relation@Eq. ~12!#.

V. DISCUSSION

In Zwanzig’s original work on an inherent structu
model for diffusion, he used the Debye spectrum for
vibrational density of states.3 This was an approximation to
the density of harmonic states in the liquid, and more rec
elaborations on Zwanzig’s model have attempted to prov
more realistic vibrational densities of states around the
uid’s inherent structures.

Keyes approximated the vibrational density of sta
with the functional form

r INM~v!5~2vs!
21@12cos~pv/vs!#, ~16!

wherevs is taken from the maximum in the distribution o
the stable branch of the instantaneous normal mode de
of states.9,11

FIG. 5. The temperature dependence of the diffusion constant for reg
and supercooled liquid CS2 for r51.46 g cm23: (s) diffusion constants
calculated via the Einstein relation@Eq. ~12!#, and (L) calculated via the
center-of-mass cage correlation function@Eq. ~7!# combined with the modi-
fied Zwanzig formula@Eq. ~15!#. The temperature of the melting transition
shown by the vertical dashed line.
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A. The quenched density of states

Vijayadamodar and Nitzan have postulated thatrq(v),
the normal mode frequencies at thequenchedconfigurations,
should be used in Eq.~1!.14 This idea builds on the inheren
structure model since it associates the vibrational frequen
at the nearest local minima~the quenched configurations!
with the vibrational frequencies of the liquid itself. In ou
original paper where we derived hopping rates from
cage-correlation function in a Lennard-Jones system,2 we
used the quenched density of states in Eq.~1! and obtained
excellent agreement with the diffusion constant and with
velocity correlation function.

Given the success of using the quenched density
states for atomic liquids, we were surprised to find that
same density of states does not work in liquid CS2. ~We
assume here that the cage correlation function gives an
curate measure of the hopping times in this liquid – a r
sonable assumption given the accuracy of this method
Lennard-Jones systems.! To compute the pure-translatio
density of states15 rq

TR(v) for CS2 we constructed Hessians
which consisted of the second derivates of the potential
ergy surface with respect to the~mass-weighted! coordinates
of the molecular centers-of-mass:

Kix, jx85M S ]2V

]qix]qjx8
D , ~17!

where the center-of-mass coordinates are obtained trivi
from the atomic coordinates

qix5 (
a51

3 maqix
a

M
. ~18!

The Hessian is then diagonalized~for a number of quenched
configurations! to give the normal mode vibrational frequen
cies, and these frequencies are used to construct the tra
tional density of states.

The low-frequency behavior ofr(v) is most important
for accurate estimates of the diffusion coefficient@cf. Eqs.
~13! and ~14! which weight the low frequency part of th

lar FIG. 6. The same as Fig. 5, but at a density ofr51.5875 g cm23.
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spectrum by 1/v2]. The observed quenched density of sta
~see Fig. 7! displays a low-frequency~0–10 cm21) gap and
thus predicts a diffusion coefficient much smaller than
correct one. It is easy to understand why a low-freque
gap should occur in systems with very rough energy la
scapes. From the schematic given in Fig. 8 we note that
system quenches into local minima with high frequencie
thus the gap. For such systems it would be a mistake to
the quenched density of states in the Zwanzig theory.

It would seem then that the vibrations which are m
relevant to Zwanzig’s model are those that involve the s
tem as it moves from one end of a large basin to another~i.e.,
from one diffusive barrier to another!. The normal mode fre-
quencies in each of the individual local minima may ha
little relation to frequencies of the basin vibrations.~An ex-
treme form of this would be the hard-sphere liquid, for whi
there are no vibrational frequencies at the quenched con
rations.!

In atomic Lennard-Jones systems, the quenched den
of states appears to mimic the density of states of these la
scale ‘‘basin’’ vibrations.2 This indicates to us that there
very little roughness on the atomic liquid’s potential ener
surface. One possible explanation for this is that
Lennard-Jones potential energy surface has only one
depth while the CS2 surface has three different wells~S–S,
C–C, and C–S!. Slight deviations in molecular orientation
can therefore lead to small barriers between nearby lo
minima.

B. Estimating r„v… from power spectra

The spirit of the Zwanzig model is to recognize that t
velocity autocorrelation functionC(t)5^v(t)•v(0)& decays
due to hopping over diffusive barriers in addition to the d
cay from vibrational motion that occurs inside the basin
we define a zeroth-order velocity autocorrelation funct
@C(0)(t)# for those trajectories which remain in the initi

FIG. 7. The different candidates for the vibrational density of states
liquid CS2 at a density of 1.46 g cm23: (h) from the quenched configura
tions @rq(v)#, (s) obtained from Eq.~16!, (L) arer (0)(v), and the thin
solid line isrq

(0)(v).
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basin, then the overall correlation function is a product of
zeroth-order part and the survival probability in the basi
which is taken to be exponential:

C~ t !5C~0!~ t !e2t/t, ~19!

since ~within the Zwanzig model! hopping over the barrier
will destroy any correlations that may exist prior to the ho

The decay ofC(0)(t) can be understood simply as th
loss of correlation due to vibrational motion within a basi

C~0!~ t !5E
0

`

dv r~0!~v!cos~vt !, ~20!

wherer (0)(v) is the power spectrum ofC(0)(t), which we
call the density of vibrational states in the basin. In the ori
nal Zwanzig formulation, the motion is assumed to be h
monic. We stress thatr (0)(v) is not identical to the power
spectrum of the full velocity autocorrelation function, but
the power spectrum for those trajectories which do not h
over diffusive barriers.

Zwanzig’s model writes the full velocity autocorrelatio
function in terms of the vibrational modes in the basins a
then uses the Green–Kubo relation to extract the diffus
constant@cf. Eq. ~1!#. Since we already have a method f
obtaining the hopping timet, we can attempt to extract th
density of states in the basin by following the logic of th
Zwanzig model. We simply write the correlation function
terms of the basin modes@r (0)(v)#,

C~ t !5E
0

`

dv r~0!~v!cos~vt !e2t/t, ~21!

and then use a singular value decomposition~SVD!35 to back
out a discrete representation ofr (0)(v) from values for the
velocity autocorrelation function determined from molecu
dynamics. Note that we are simply finding ther (0)(v) that
gives the best fit to the velocity autocorrelation function a
single temperature. The density of statesr (0)(v), so ob-
tained~and shown in Fig. 7!, does not display a gap as doe
the quenched density of states. Interestingly, when we de
minedr (0)(v) for a wide range of temperatures from aSVD

analysis of Eq.~21! using the values oft at the different
temperatures we obtained from the cage correlation funct

r

FIG. 8. A sketch of a ‘‘rough’’ potential energy surface which has a dis
bution of small barriers superimposed on the real barriers to diffusion wh
separate the basins from one another.
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we found thatr (0)(v) is not sensitive to the temperatur
Our observedr (0)(v) ~calculated at a temperature of 280 K!
is displayed in Fig. 7.

Thus r (0)(v) need only be determined at one tempe
ture for each liquid density. This information together wi
the Green–Kubo relation for the translational diffusion co
ficient, using Eqs.~20! and ~21!, allows determination ofD,

D5
kBT

M E
0

`

dv r~0!~v!
t

v2t211
. ~22!

If r (0)(v) is really the density of states for motion in
basin, we should be able to observe it as the power spec
of C(t) for trajectories whichdo nothop over the large dif-
fusive barriers. Given the observations that:~a! the quenched
density of statesrq(v) has a frequency gap butr (0)(v) does
not, and~b! r (0)(v) appears to be independent of tempe
ture, we have tried the following experiment: We comput
velocity correlation functions for an ensemble of trajector
that was generated by starting at the quenched config
tions, giving each configuration just enough thermal ene
(;5 K! so that they were not able to cross the large diffus
barriers. Fourier transforming these velocity correlati
functions enabled us to extract the density of states ea
from short low-temperature simulations. This average d
sity of states, which we callrq

(0)(v), is also plotted in Fig. 7.
As expected, we see thatr (0)(v) and rq

(0)(v) are very
similar ~except at very low frequencies where theSVD ap-
proach is slightly larger!, and both are quite different from
the quenched density of states.r (0)(v) and rq

(0)(v) both
contain more low-frequency vibrations than we have o
served in the quenched density of states, so even the s
amount of thermal motion in the system at 5 K recovers the
low-frequency motions related to anharmonicities.~Similar
experiments at 10 and 15 K show similar results, so we
pect thatrq

(0)(v) is also independent of temperature.!
We do not mean to suggest that either of these two

proaches@calculatingr (0)(v) or rq
(0)(v)] are good ways of

calculating diffusion constants or testing the Zwanzig mod
~TheSVD approach is circular in that it assumes that both
Zwanzig model and a particular method of computing ho
ping times are correct.! Indeed, when these two methods a
used to calculate diffusion constants in Eq.~1! the diffusion
constants differ from each other by almost a factor of
Since the two densities of states are so similar except for
very lowest frequencies (,1 cm21), this suggests that Eq
~1! is extremelysensitive to the lowest part of the frequen
range. One can make very small errors in the lowest frequ
cies~i.e., within the error bars for the density of states! which
result in very large changes in the diffusion constants.

What these investigations do tell us is that one wo
need exceedingly accurate estimates of the density of s
at the very lowest frequencies to compute diffusion consta
using Eq.~1! when the potential energy surface is rough.

Table II compares the errors one obtains in diffusi
constants using the above estimates forr~v!.
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C. Computational cost

If one wishes to calculate diffusion coefficients in hig
temperature liquids, the traditional method of using the me
square displacement@Eq. ~12!# is usually quite efficient.
However, at lower temperatures and in the supercooled
gime, the simulation time required to converge the slope
the mean square displacement becomes prohibitive.
Zwanzig hopping model allows one to avoid these lo
simulations if the characteristic time of residence betwe
hops is short relative to the convergence time for the slop
the mean square displacement. In Sec. III, we have gi
details of an efficient way of obtaining the hopping tim
from short simulations, and now the issue of computatio
cost rests on estimating the density of states in the liquid

The simplest approach to this estimate is to avoid it
together by making the small rate approximation. One s
ply computes the diffusion coefficient using mean squ
displacements at a relatively high temperature~where the
standard approach is not computationally prohibitive!, and
then uses this diffusion coefficient to scale the results fr
the hopping times as in Eq.~15!. The slow step in this
method is the calculation of the mean square displaceme
the high temperature, which does require a fairly long sim
lation, but needs to be done only once for each liquid d
sity.

Using the quenched density of statesrq(v) requires the
collection of quenched configurations~local minima! by
steepest descent from a set of statistically independent liq
configurations. This can be very time consuming, parti
larly when the liquid contains a mixture of high- and low
frequency vibrational degrees of freedom~as is the case in
CS2). Obtaining the normal mode frequencies at these c
figurations is simply a matter of diagonalizing the mas
weighted Hessian, which rises in computational cost with
cube of the number of molecules in the simulation. Mo
importantly, the quenched density of states does not g
good diffusion coefficients.

Slightly cheaper than the quenched density of state
the calculation ofrq

(0)(v) via a Fourier transform of short
time trajectories carried out at;5 K above the quenched
configurations. The short trajectories and the Fourier tra
forms are both inexpensive, but one must still start from
quenched configurations, and obtaining these can be ex
sive.

TABLE II. Relative errors,^(Dpredicted2D)/D& in the self-diffusion con-
stants computed using Eq.~1! and the four proposed methods for obtainin
the vibrational density of states. Results for two different liquid densities
shown.

% error in D

Liquid density

Method for estimatingr(v) 1.46 g cm23 1.5875 g cm23

rq(v) 288% 288%
r INM(v) ~Eq. ~16!! 275% 280%
r (0)(v) 111% 223%
rq

(0)(v) 263% 255%
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The cheapest method of obtaining an estimate of
density of states is the calculation ofr (0)(v) via SVD of the
velocity autocorrelation function at a temperature for wh
the hopping time is known. TheSVD procedure that produce
r (0)(v) in Fig. 7 involved a 200032000 matrix diagonaliza-
tion, but sincer (0)(v) is largely independent of temperatur
this is done only once for each liquid density.

D. Summary

We now know that neitherrq(v) nor r INM(v) gives a
good estimate of the density of states in this liquid. Howev
we do not know which of the power-spectrum methods
estimating it is ‘‘correct.’’ We can make plausible argumen
for both of them, and since they result in different vibration
densities of states, they give rise to different diffusion co
stants in Zwanzig’s model. As stated at the beginning of S
IV, we have used the small rate approximation to calcul
diffusion constants in CS2, matching the constantg in Eq.
~15! to obtain agreement just above melting. It is not sa
fying to leave a free parameter in the theory, but without
accurate means of obtaining the vibrational density of sta
for a liquid, and in systems for which the hopping rate
small, this is a reasonable approach. It would therefore b
great interest to have a method for estimating the true vib
tional density of states~particularly at the lowest frequen
cies! on a rough potential energy surface.

VI. CONCLUSION

In the preceding sections, we have extended to mole
lar liquids a method for using molecular dynamics simu
tions to estimate the hopping rate for the Zwanzig mode
self-diffusion @Eq. ~1!#. We associate the hopping rate wi
the slow decay of the cage correlation function@Eq. ~7!#,
where the cage radius is measured from the center of ma
each of the molecules in the liquid, and membership in
molecule’s cage is determined by comparing center-of-m
distances for the other molecules in the liquid. We assoc
the fast initial decay of the cage correlation function eith
with simple vibrational and librational motion of the liquid
or with barrier crossings of the small perturbing barriers o
rough potential energy surface—barriers which are not
barriers to diffusion.

Because the hopping rate in this system is relativ
small, we have been able to make a simplification to
Zwanzig model, and have seen excellent agreement betw
the self-diffusion constants calculated with our method a
those calculated via the Einstein relation@Eq. ~12!#, particu-
larly in the supercooled liquid regime, where convergence
the Einstein relation is very slow. Since our method requi
simulations that are just long enough to observe the s
decay of the cage correlation function (; 10 ps for the low-
est temperatures studied!, and since the Einstein relation re
quires 50–100 ps for convergence in the same system,
method results in substantial savings in CPU time.

We therefore repeat an important caveat for use of
Zwanzig model~in any form! for systems with rough poten
tial energy surfaces. The original formulation of the Zwanz
model utilized the density of states of the ‘‘inherent stru
e
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tures’’ of the liquid. This has usually been taken to mean
normal mode density of states at the nearest local minim
on the potential energy surface. This works quite well
atomic Lennard-Jones systems, which have relatively sim
potential energy surfaces. We now know that when the
tential energy surface is rough~as in CS2) these vibrational
frequencies can be quite different from those the liquid
periences when it can traverse the small nondiffusive ba
ers. Our evidence for this is shown quite graphically in F
7 where the normal mode density of states is missing
important low-frequency modes that are present when
observes vibrational frequencies from a supercooled liqui
nonzero temperature. If one were to apply the Zwan
model to this system naively@i.e., usingrq(v) in Eq. ~1!#
there would be substantial errors in the predicted diffus
constants.

Although we can eliminate some methods of estimat
r(v) from consideration, we do not yet have a satisfyi
way of arriving at a density of states for the basins on
rough potential energy surface, so there is still a free par
eter in the current method for determining the diffusion co
stant. Even with this caveat, the cage correlation funct
provides an efficient way to measure the hopping time
diffusive motion, and gives excellent agreement with the d
fusion constants obtained with more computationally exp
sive methods.

We must also entertain the possibility that a model bu
on interrupted basin vibrations in what is an essentially
harmonic system will not be able to predict diffusion acc
rately. Alternative hopping models~like the one proposed by
Hartmann and Heermann!36 which accumulate hopping dis
tances as well as hopping times may be more useful in s
systems where the Zwanzig model breaks down.
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