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Path-integral diffusion Monte Carlo: Calculation of observables
of many-body systems in the ground state
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We propose a new method to calculate ground state position dependent observables in quantum
many-body systems. The method, which we call the path-integral diffusion Monte @izMC)

method, is essentially a combination of path-integral Monte C&IMC) and diffusion Monte

Carlo (DMC) methods. The distribution resulting from a DMC simulation is further propagated in
imaginary time by PIMC sampling. Tests of the new method for simple cases such as the harmonic
oscillator, a double well, and a set of ten coupled harmonic oscillators show that the results for
several observables converge rapidly to the exact result19@9 American Institute of Physics.
[S0021-960629)51313-5

I. INTRODUCTION possibility is to linearly couple the desired observable to a
field, calculate the ground state energy of the system at sev-
Bral values of the field, and calculate the slope of the energy
vs the field at zero field by interpolatidn® A problem with

round state observables. One method is based on a v ?ithis method is that several DMC runs need to be performed
ground state observables. ne method 1S based on a Vangy i 5 good estimate of the slope, and if more than one
tional formalism, where the energy of a trial function with

adjustable parameters is optimized and the expectation val gbservable is sought, the whole process needs to be repeated

e
of observableA is obtained by application of the Metropolis for T%hﬁobse:vable. h be taken b ting to th
Monte Carlo methddlto evaluate ifferent approach may be taken by resorting to the

standard path-integral Monte Caf®IMC) method*~**The
PIMC method is based on the path integral formulation of
- (1)  quantum statistical mechanics due to Feynrifeamd is use-
[dX|Wr(x,a)] ful in obtaining many body quantum statistical averages at
) . finite temperatures. If a simulation is performed at extremely
wherex denotes the coordinates of the systéi(x.a) is a low temperature, reasonable estimates of ground state prop-

trial function whose form is known, gmﬂ are the adjus_taple erties may be obtain€d.A major problem with this method
parameters. A reasonable trial function is an essential ingre-

dient of the method. The other method known as the Green"s that as the temperature is lowered, the Trotter number has

function Monte CarldGFMC) uses a guided random walk to f be mcreas_ed correspondingly, resulting in an increase in
. , . the computational effort.
successively apply the Green’s function of the relevant . _ . .
In this paper we propose an interesting alternative to the

Schralinger equation to an initial distribution to obtain a . )
distribution that approximates the ground state wave funcaPove methods and one that allows for the direct calculation

tion. of ground state position dependent observables by combining

A method that is closely related to GFMC is the diffu- DMC and PIMC. In this method path-integrals are used to

sion Monte Carld=5 method. In this method a Gaussian ran- Propagate a trial function in imaginary time. The closer the

dom walk and a birth—death process is used to propagatetﬁal function is to the ground state wave function, the

distribution in imaginary time, so that the contribution from smaller will be the amplitude of excited state contributions to
components other than the ground state vanish exponentiall{f€ trial function and only a short imaginary time propaga-
Both GFMC and DMC provide a distribution consistent with tion should be needed to obtain results within a desired error
the ground state wave function, and not the ground statBar. In our proposed method, the trial function is the distri-
wave function squared. For this reason, augmentations of theution generated by a DMC run.
method are necessitated in the calculation of observables.  In Sec. Il we derive a path integral approximation for the
For small systems with a few degrees of freedom ob-average of a coordinate dependent observable that is distrib-
servables may be obtained by histogramming the wavéited according to the square of the ground state wave func-
function® Another common technique is the descendention. The ground state wave function is the result of the
weighting techniqué.’ This method is quite difficult to pro- imaginary time propagation of a trial function by path inte-
gram, and is also not very helpful in the case of large sysgrals. We then describe the implementation of the DMC dis-
tems, since the variance of the weight increases with théribution as the trial function, as well as how to obtain ob-
number of generations of the birth—death processother  servables by this method. In Sec. Ill we perform a series of

Ground state properties of quantum many body system
are difficult to calculate. Ceperley and Kalgsresent a re-
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tests on our proposed method, by making use of analytic
expressions for the exdttand the approximaté forms of

the imaginary time propagator for the harmonic oscillator.
We then apply our proposed numerical method to several
simple model systems, namely the linear harmonic oscillator,
the double well, and a set of ten coupled harmonic oscilla-
tors. Conclusions are presented in Sec. IV.

=
A

=2

Il. METHOD Nn T
In th?s section we describe our method for calculating FIG. 1. Graphical representation of the integrand of @,

expectation values for quantum many body systems. The

method is a hybrid between DMC and imaginary time PIMC.

We first provide the general framework for obtaining observ-

ables by imaginary time PIMC. As an input, this method ~ . U

requires a trial function which will be determined from bmMc ~ (X[¥(7))= f dx’(x|exp(— 7H)[X"W(X'[¥(0)),  (7)

as outlined in Sec. Il B.

which enables us to rewrite E(p) as
A. Ground state observables and imaginary time path ®

integral Monte Carlo o o o
The expectation value of a coordinate dependent observ- Q(T):f dxf dx f dx"{x’|exp(—7H)|x)
able A(x) in the ground state is

X (x|exp(— 7H)[X")(¥ (0)[X')}{X"|¥(0)).  (8)
<A>:Q§lf d§<|\lfg(?<)|2A(7<), 2 The expectation value of a coordinate dependent observable

. o can now be expressed as
whereQy is the normalization factor

x denotes the coordinate of the system, ahg(x) is the X (x| exp( — 7H)[X)(X|exp( — 7H) [X")
unnormalized ground state wave function. For notational _ -
simplicity we refer to a one-dimensional system, but the con- X(X"|W(0))(¥(0)[x). 9

cepts are trivially generalizable to the many dimensional ,
case. The notatioi, for the normalization integral may " €ssence the method we propose is to evaluate the average
seem somewhat misleading, since in most cases the statistit EQ. (9) by samplingx, x’, andx” using a real trial wave

cal mechanical partition function has a similar notation. Infunction at timer=0,

what follows the normalization integral, however, plays a B

role similar to the partition function, thus enabling the use of (x|¥(0))="(x) (10

Monte Carlo methods in. the evaluation of observableg. and a discrete imaginary time representation of the propaga-
We seek an expression amenable to PIMC evaluation fofo s The integrand in Eq8) to be evaluated can be repre-
Eq. (2). Propagation of a wave functioffor the moment  ¢onteq graphically as shown in Fig. 1.
arbitrary to imaginary timer gives In the standard PIMC method the kernel on the right-
|‘lf(r)>=exp(—rl:|)|\lf(0)), 4) hand side Qf Eqs_(?) a!nd (9)_ is split mtop kernels each
. corresponding to imaginary time propagationsrfb. In the
whereH is the Hamiltonian operator of the systef#;(0)) present application a slight generalization was required for
is the ket corresponding to the trial function, gni(7)) is  reasons to be mentioned below, namely, we reserve the op-
the ket resulting from the propagation. For future usage weion of breaking up the imaginary time propagator unevenly

introduce the quantity (i.e., the imaginary time slices are not equathich leads to
Q(r)=<‘1’(7)|‘l'(r)>=f dX(W (X)W (), () <~X~|exp(_7.q)|;/>:j f A, - -dx,

which obeys p
lim Q(7)=Qg. (6) 11 (xilexp(—eimR)Ixi.p), (1D

Inserting a coordinate resolution of the identity operatorwherex, =X andpo:?(’ and=P_,=1. The short imagi-
in Eq. (4) and writing the whole expression in the coordinatenary time propagators may be symmetrically factorized into
representation we obtain the approximate short time expressi@rrotter breakup
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(xi|exp( — rl3|)|x-+1> The right-hand side of Eq14) is analogous to the sta-
' ' ' tistical mechanical partition function of an open chain poly-
~(x;|exp(— &7T)|Xi+1) mer with 2p+1 monomers connected by harmonic springs.

A similar analogy is exploited in the standard PIMC method.
Other than the nearest neighbor harmonic potentials the in-
termediate bead® experience a potential proportional to
. V(x), and the two terminal beads experience a potential pro-
whereT is the kinetic energy operator and(x) is the po-  portional toV(x) plus a term that depends on the trial func-
tential energy at x. The error made in this tion[proportional to—In¥(x)]. In the limit of long imagi-
approximation**?*” can be shown to be proportional to nary time[see Eq(6)] and largé® p the bead halfway along
(€7)% Inserting resolutions of the identity operator in the ye chain(whose coordinate is denoted &y is distributed
momentum representation in the kinetic energy kemel and..qqing to the square of the exact ground state wave func-
integrating the momenta.resqltsllgzt?f! standard shorttine {5, |n our method we evaluate coordinate dependent ob-
high .temperatuﬁeapprommatlo.ﬁ ~=*" ubiquitous to many  genaples using the position of this bead, therefore from here
path integral based methods, i.e., on we will refer to it as the observation bead.
We have derived an expressifig. (16)] which is ide-

ally suited for PIMC evaluation. The expression results from

( m )1/2 r{ m squaring a trial function propagated in imaginary time. A

€T
Xex[{ — 5 (V) +V(Xi+1) |, (12

<Xi|exﬂ_€iT|:|)|Xi+1>

(Xi—Xi11)? similar expression is given by Ceperley in E@.4) of Ref.

 2r¢ : N ;
Te 13 as a basis for the variational path integhéiPl) method.

27 TE

T This method implements a trial function whose functional
- T(V(Xi)’LV(XiH)))- (13 form is known such as the Jastrow wave function. As of yet
the trial function in our method has been left arbitrary, but it
Note that in the above we used atomic units and we shall dgyould be advantageous to choose it such that it is close to
so throughout the paper. the ground state. We now turn to address this issue.
Substituting Eq(13) into Eq.(11), Eqg. (1)) into Eq.(7)
and Eq.(7) into Eq. (5) we obtain the approximate expres-

sion B. The trial function
_ , , For an arbitrary trial function care must be taken in
Qp(T):J’ dxf "'deZ' ' 'dxp+lf "'deZ' +dX11 choosing the value of large enough to obtain a distribution

sufficiently close to the ground state, but small enough for
m |\ m 5 the simulation to be feasible. Runs with several values of
- z_iT(Xi ~Xit1) may be compared for convergence. Increasimgcessitates
an increase in the discretization paramgieand thus leads
1/2 . . . .
to a rise in computational effort. If, however, the trial func-
) tion ¥(x) is known to be close to the ground state wave
function, shorter imaginary propagation time (i.e., a
% exr{ _ l(xf X/, ,)%— ei—T(V(xi’) smaller chain polyme)rmay be expected to provide sufficient
26T 2 results for the desired observable. Unfortunately, for an ar-
bitrary system, the functional form of the ground state wave
(X", (14  function is not knowre priori. The DMC and GFMC meth-
ods, however, are both capable of providing a set of replicas
of the system distributed in coordinate space according to the
dround state wave function. Therefore we seek to implement

X
i=1

2meT

€T ~,
—7<V<xi)+V<xi+1>))\PT<x )(Zwm

+V(Xi41))

whereilezxi, ")Zf:xpﬂ, ;(":_Xfwl and the subscripp
is meant as a reminder that this expression is the result

Trotter factorization. Defining a distribution gen_erated _by _DMG;shaII be denoted by
Wpme(X)) as the trial function in Eq(16).
P m , & Given a trial function¥;(x) the usual Monte Carlo al-
Sl T,X)=Z1 77 XimXir) T+ 5 (V) +V(Xi+1)) gorithm can be constructed for the evaluation of Eid) in
'~ ' which the positions of all the beadscluding the terminal
P m €T bead$ are drawn from a uniform random distribution and the
’ ’ 2 [ ’ ’ . . . .
+21 7e7 X TXip )T S (V) + V(X)) acceptance criterion is given by
1= I
acq Xo1g— Xnew = MiN[1,exg —AS,(7,X) }], 1
—In\I'T(po)—In \I’T(X,,)Jrl), (15) Wherec( old new) [ H p( )}] ( 7)

wherex denotes collectively all the bead coordinates, for the

average of a quantum observable we obtain A Sp(7:X) = Sp(7:Xnew) = Sp(7:Xold) (18
- wherex,q andx,e,, denote the coordinates of the old and the
(A) - Jdxexp( = Sy(7,%)))A(X) 16 oW configurations respectively. If, however, we were able
o=

[ Jdxexp(—Sy(7,x)) to draw the positions of the terminal beads from the distri-
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bution ¥1(x) instead of a uniform random distribution, the rors into the propagation. The introduced error can have
acceptance criterion would have to be constructed using theomponents from the ground and excited states. Since the
modified action excited state components vanish upon imaginary time propa-
mod _ , gation, the increase im,,, may necessitate further imagi-
Sp (7X) = Sp(1.X) +INWr(Xpsd) TN Wr(Xp10), (19) nary time propagation by PIMC.

leading to the acceptance criterion To further facilitate sampling the DMC wave function
. o by the terminal beads, we also applied a neighbor list. As
aCA Xoig— Xnew = MiNn[ 1,ex{ — AST*Y 7,%)}]. (200 stated above trial moves of the terminal beads are accom-

Since the replicas obtained from a DMC simulation are disPlished by randomly choosing from the list of stored repli-
tributed according to¥ pyc(X), it is possible to draw the C€as: Inste.ad of randomly choosing a _repllca, we set up a
positions of the terminal beads from the distribution neighbor list for each replic@n array which for each replica

W ome(X) without having to know its functional form. This stores the index of all the other replicas within some cutoff
procedure would effectively set distanceR.,), and trial moves are made by randomly choos-

ing a replica from the neighbor list of the current replica.
W(x) =¥ pmc(X). (21 The use of variable time slices and neighbor lists al-
lowed efficient sampling of the terminal beads, and also con-

From a methodical point of view the above idea trans- .
trol over the acceptance probability.

lates into the following:

(1) After the DMC run reaches steady state, the replicas are
stored in an arraynumber of coordinatex number of
replicag. These replicas are distributed according to th
ground state wave function. A reduction in the computational effort for PIMC may

(2) The positions of the two terminal beads are samplecbe achieved by implementation of the staging
from the distribution of replicas. This can be realized astransformatiorf’?! The idea is to partially or completely di-
follows: as an initial configuration, for each terminal agonalize the kinetic part of the action, and thus sampling
bead we randomly choose a replica and place the termimay be performed in terms of coordinates which obey a
nal bead at the position of the chosen replica. A trialGaussian distribution. The Cartesian coordinates in which
move in the terminal bead is made by randomly choosnearest neighbors are connected by stiff harmonic bonds of-
ing a replica, and equating the positions of the terminaken render straightforward sampling inefficient.
bead to the position of the newly chosen replica. In the In this subsection, we give the general expressions of the
case of many degrees of freedom, since a replica corrddentities that provide the basis of the staging algorithm for
sponds to a position in the overall configuration space ofin uneven polymer chain. Since only the fundamental iden-
the system, the terminal bead corresponding to each cdities needed to be rederived, subsequent steps of the con-
ordinate needs to be moved simultaneously for such atruction of such an algorithm will only be outlined here,
trial move. details may be found in the work of Pollock and Cepéetley

(3) Accept or reject the proposed move based on the knowand of Tuckermaret al:
part of the potential that the given terminal beads expe- We introduce the following notation for the part of the
rience [i.e., the harmonic spring connecting it to the imaginary time propagator associated with the kinetic en-
neighboring bead and,;7V(x)/2]. The term propor- ergy:
tional to —In ¥(x) is already taken into account, since U2
we are drawing the positions of the terminal beads from_ ., ... :( m ) p<_ mo 2)

. . N . Po(Xi X +1;€7T) X (Xi—=Xi+1)|-
a set of replicas which are distributed according to 2me T 2€;
W(X). (22

(4) The intermediate beads may be moved by standarghne can now write the matrix element of the full propagator
PIMC methods-3 We generalize the staging algorithm to as
make it suitable for the application presented here as
described in Sec. Il C.

eC. Staging for an uneven polymer chain

A €T
- , <Xi|exq_5iTH)|Xi+1>:exF{ - ITV(Xi))Po(Xi Xit1;€T)
In the case of many degrees of freedom a difficulty with
the above prescription is that as the terminal beads are &7
moved the harmonic springs attaching them to the neighbor- Xexr{ - 7V(xi+1)) . (23
ing beads on the chain may stretch enormously and these
trial moves will often be rejected. This is the circumstanceA sequence of kinetic energy imaginary time propagators
which inspired the uneven breakup of the imaginary timemay be written as
propagator. If the time slice that determines the spring con- . .

. . . J J 1/2
stant of the spring connecting a terminal bead to the nex ) B =0l my
bead €, 1) is increased, then this spring becomes less stiffi Po(Xi Xic+17 €kT) = Po(X1 X+ 17 € T)k:1 2T
hence the chain becomes more flexible. However since the
i ) . ) m

error dL_Je to the breakLZJp_ of the_lmagmary_ tlme propagator is <ext — k(Xk—XE)Z , (24)
proportional to €,.,7)“ increasinge,; will introduce er- 2
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where The virial estimator used here is distinct from the virial es-
timator used in PIMC simulatiorfS, which is based on the
classical version of the virial theorem.

§=2 €, (25)

= Another estimator for the ground state energy may be
constructed in a manner similar to that of the PIMC primitive
e estimator. We take an arbitrary functi¢pw (0)) and propa-
M=mz : (26)  gate it to imaginary timer,
€k—1€k R
~ W (7)) =exp(—7H)[¥(0)). (33
5 EXat €k 1Xk1 . . . . -
X =——m. (27)  Expanding|¥(0)) in terms of the eigenfunctions ¢ and
€k substituting into Eq(33) results in
Equation(24) follows from the identity o
_ , [W(n)= 2] anexp(—E,)|én), (34)
po(X1,Xk; @) po( Xk, Xk+1:8) A=0

po(X1, Xk+1;+ B) whereE, denote the eigenvalues ahgl,) denote the eigen-
functions ofH. Using the definition oQ(7) [Eq. (5)] it can

m(a+B)\*? m(a+B) ~ .2 ;
= —F - (X — easily be shown that
( 2maf ) ex 2ap (X=X (28 y
| 19InQ(7)| £ 35
where TITL —5 5, |~ Eo (35
’“kzw_ (29) whereE, is the ground state energy.
atp Equation(35) provides the basis for the construction of

rfn energy estimator. Substituting our approxim&eér)

In the staging algorithm, a set of consecutive beads ar . LS
chosen for a proposed move. The move is proposed in ter Lom Eq. (14) we obtain the primitive ground state energy
S§stimator

of the staged coordinates for the chosen beads which in o

case are defined as p :
S X P V) + V(x4 0)
U= X — X (30) M Sae2 0 Y 4 ' i+1
These coordinates are distributed according to a Gaussian P , o, o 6 , ,
distribution, which allows their direct sampling as is done in _i:El 4€_Tz(xi ~Xip) "+ 7 (VOO +V(Xi11))- (36)
the standard staging algorithm. !
D. Observables Ill. RESULTS

The PI-DMC method is helpful mainly in evaluating the In the following, the PI-DMC method is applied to
ground state expectation value of_coordinate dependent Ol%'lmple model systems, and the results are compared to re-
servables. To evaluate them one simply averages the value gfjts known analytically or simulations using other methods
the function corresponding to the desired observable at thg ot have been thoroughly tested. In the case of the harmonic
sampled coordinatg) of the observation bead. oscillator, we use known formulas for the analytical and the

The kinetic energy may be evaluated via the quantunyiscretized propagator to test mainly the convergence of the
mechanical virial theorefd which states that for stationary method. On the numerical side, we run a DMC simulation
states for a fixed imaginary timesufficient to obtain the ground

~ ~ state energyand store replicas, which shall be used to rep-
(T)= < X Lﬁx)> (31)  resent the ground state wave function. Subsequently we cal-
2 gx culate ground state observables from the obtained distribu-

. ) ) i i . tion by PIMC propagation to various imaginary times. We
For sufficient imaginary time propagation the observation,iso examine the effect of varying the Trotter numpesn
bead is expected to be distributed according to the probabily,o (agyits.

ity distribution obtained by squaring the ground state wave _ . _ _
function (a stationary staje The virial theorem is thus appli- A. One-dimensional harmonic oscillator
cable for the evaluation of the kinetic energy, since the virial Although simple, and rather well understood, the har-

is a coordinate dependent observable. monic oscillator provides a reasonable testing ground for

The total ground state energy may be calculated in tWoyeyy methods, since a more detailed investigation is permit-
ways. One is to use the virial theorem and construct th§aq than in the case of more complex systems.

following virial estimator: Since the imaginary time propagator may be solved ana-
= G lytically both for the exadf' and the discretizéd case, we
Svir:X N +V(X). (32  May test the general idea of our proposed method by analyti-

2 4x cally performing propagations on chosen initial wave func-
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tions. The exact imaginary time propagator for a one dimen- 0.251 v . v .
sional harmonic oscillator as given by Feynrifais Eract
e Tp=.
] o PR L ot B e
x|exp(— V= —F—— - sup=.
{ A= H)IX") 27 sinh(wT) 2sinfwT) = Tip =.05
0.25 L4 n [ ] [ ] [ [ ] [ ] a [ ]
X[(X2+X’2)C05Kw7)_2XX,] , (37) A A a i i a A A N A
A\ * . * * * * * * *
wherem andw denote mass and frequency, respectively, and 02495 1 1
7 denotes the imaginary time of propagation. Its discretized
approximate analog given by Schweizgral® for a propa-
gator whose imaginary time of propagatietis divided up 0491, I
into p even time increments is L L T T
12 0.2485 : ‘ ' :
N Mw
' 2 12 0 2 4 6 8 10
— ~ —— - +
(x|exp(—7H)|x") (27” exp{ > [B(x*+Xx'?) .

FIG. 2. Evaluation of the ground state potential energy of a linear harmonic
— 2 AxX ]] ’ (38) oscillator as a function of propagation timausing the analytic form of the
exact[see Eq.{37)] and the discretizefsee Eq(38)] propagator. The line
corresponds to the exact propagator, the different symbols correspond to
where different factorizationgi.e., Trotter numbejs

p—1cf2_

A= (ﬂ)u (39

w7] (f2P—1) . : :

known value of(V)=0.25 is achieved. The conclusion that

oT p (f—1)(fP~1+1) the average potential energy of a simple harmonic oscillator

ﬁ) o7 (f2°—1) . (40) is underestimated by a discretized propagator also holds in
the case of the standard finite temperature PIMC method,

In the above equations we have also used the relations  where a cyclic chain is used in the algorithm. Note also that

for short imaginary times, the results obtained by using the

B=

f=1+ ERZJF 1_2(4+ R2)12 (42) discretized propagator are closer to the exact result than for
2 R long imaginary times. This is due to the fact that we are
and propagating the exact ground state wave function, for which
if the propagation timer was zero, then the exact result
R= 2T (42  would be obtained.
p The propagator given in E38) is for the case when the

We are thus able to test the effect of discretization on théfopagation timer is divided into equal increments. How-
propagator in our method. To this end we use the exacgVer in our method, the time slices are unegiste Eq.

ground state wave function for the harmonic oscillator given(1D]- In the case of unequal breakup, E88) is no longer
valid. Instead one can evaluate expectation values of propa-

b
y va gated wave functions by evaluating the propagated wave
|7 No , function analytically at each imaginary time step and using
T(x)=|—]| exp——X (43 : . N )
Mw the resulting wave function as the initial wave function for

the next time step. The integrals one must evaluate in this
se are all Gaussian, so the calculation may be done ana-
eIytically. Since the functional form of the wave function is
known at each time step, it can be used to calculate observ-
ables. The uneven time slices were defined such that the first

as an initial wave function in Eq9), and calculate the av-
erage potential. The ground state wave function propagat
by the discretized propagator with Trotter paramgieto
imaginary timer follows from Eqgs.(7), (38), and(43),

1/4

T propagation time step; is given a value, and the value of
W(x,7)= A2 each subsequent time slice is given by the recursion formula
m“’( B8+ 1)
m A2 Ti+1=Tila, (45
Lt (=S
Xexp{ > B—57/%|- (44)

wherea is an input parameter. This recursion relation is fol-
In Fig. 2 we present the results of analytic propagationowed until the firstr;< & is reached, them; is set equal t&

using the exact and the discretized version of the propagat@nd subsequently a#t; are set equal t@.

for a harmonic oscillator with massm=1 and frequency The results shown in Fig. 3 were obtained by setting

w=1. The average potential is calculated. The results show2, 6=0.05 and by varying the value of the initial time slice

that discretizing the propagator leads to an underestimation; from 0.25 to 0.5. We compare to the case of the even

of the average potential. Asis increased convergence to the breakup where/p=0.05. We find that the two propagations
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T T T 0.8 . .
0.25 ——— Analytic
06 L < DMC
0.249 - .
2 L 4
504
0.248 - * b
s 02 | ,
§ .
V0247 ¢ ) 1 0 . : : .
M —— Exact
0.246 ----1p=.05 1 06 _
o1, = .25
. o = =
0245 |- : . 504 1
02 1
0.244 ' ‘ : :
0 1 2 3 4 5
T 0 L 1
-5 -3 -1 1 3 5
FIG. 3. Evaluation of the average potential energy of the linear harmonic x

oscillator as a function of propagation timausing the analytic form of the

exact propagatofsee Eq.(37)] and both the evenly discretizddee Eq. FIG. 5. Spatial distribution of replicas generated by DMC for the linear

harmonic oscillator. The upper panel shows one snapshot of 2000 replicas,

v di ; on for th
Ejﬁ)gtig:ﬂsugs\;in g’yd";; [i)z]e?orprrop:ag 6;2 E,t:nc? : p:reos Zloghgrsglﬁj wsge the lower panel shows twenty snapshots averaged. The solid line shows the
: e 1 gxact ground state wave function.

denotes the result using the exact propagator, the dashed line denotes t
result using an evenly discretized propagator with=0.05, the symbols
denote the results of using unevenly discretized propagators with different
initial times ;.
here. The results indicate that as the deviations of the trial
function from the exact ground state wave function increase,
using different initial times all converge in the limit of long the imaginary time propagation required to obtain a result
imaginary time to the result obtained by the evenly dividedwithin a given tolerance also increase. Comparison of Figs. 3
propagator. and 4 shows that the error generated by using a larger initial
It is also instructive to assess the advantage of using th#ime step in the first split of the propagator introducesy
ground state wave function instead of some other trial funcsmall amplitude contributions from excited states. Thus the
tion. By propagation of Gaussian trial functions of the formimaginary time needed to obtain converged results is shorter
o \U4 oMo than is required if the exact propagator is used together with
—) ex;{ - X2, (46)  atrial function that deviates considerably from the true wave
amo 2 function. In other words, having a small error in the propa-
wherea is an input parametéir=1 corresponds to the exact gator but using the ground state wave function is advanta-
ground state wave functignThe results are shown in Fig. 4 geous over propagating exactly a trial function which is a
for three different values of.. The exact propagator is used superposition of several eigenstates. This realization pro-
vides the basis for the PI-DMC method which approximately
propagates a trial wave function that is very close to the
ground state wave function.
. Up to this point all the results presented are based on
Pote analytically derived propagators. We now test the PI-DMC
7 method for the linear harmonic oscillator. A DMC run with a
o2r ) 1 time step of A7pyc=0.01 is performed for 10000 initial
i’ steps, and 10000 observation steps and of the replicas are
n stored every 500 steps. The number of replicas is initially set
0.15 [/ / 1 to 2000. Subsequently, open chain path integral Monte Carlo
simulations are performed such that the positions of the ter-
e a=11 minal beads are sampled from the positions of the replicas
o1 ff ) =2 . that were stored during the DMC run. Since there are 20 sets
of replicas stored, 20 path integral simulations are per-
formed, and the results are averaged over the 20 runs. The
0.05 ‘ s number of equilibration and observation steps is 100 000 and
0 2 4 an observation is made every 10 steps. The neighbor list
cutoff distance waf = 0.2. We vary two parameters in the
_ _ _ “path integral runs, the time of propagation, and the discreti-
FIG. 4. Evaluation of the average potential energy of the linear harmonic, ¢ - First we use an evenly discretized path integral chain.
oscillator as a function of propagation timeising the exact propagatfsee . .
Eq. (37)] to propagate different wave functions whose form is given by Eq. In Fig. 5 we compare the histogram of the DMC wave
(46). function to the analytic form of the ground state wave func-

W(x)=

0.25

<V>
-
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0255 | ' T T ' TABLE |. Evaluation of the average potential of the linear harmonic oscil-
’ T -+ jT lator as a function of imaginary timeby the PI-DMC method. The initial
0.245 ] time stepr,=0.125, other relevant parameters are2,6=0.05.
0235 - I :
* Up=.05 \Y
0225 | 4 ] P T (V)
0255 | ' ’ ’ ' — 5 0.3375 0.2420.002
) + - iy 10 0.5875 0.2480.008
0245 ] 15 0.8375 0.25(:0.011
0.235 - b
I * p=.067

A 0225 - .

> } t t t }

V0255 F - . i
0245 | = 3] =1. In Table | we show the result of three propagations
' where 7; had been set to 0.125 and the number of beads is
0u5 1 cwp=t | p=10, 20, and 30. The results in Table Il were generated the
0225 1 : : : : . same way, except for the fact that the initial time step was set
0.255 3 to 0.25. We see that the results are very close to the exact
0245 | - - - ] value of 0.25(this value is always within the error baiThe
0235 b - ] overall imaginary timer is relatively small in all six cases,
0205 | cp=2 which demonstrates the advantage of using the ground state

o 5 . p ; ” wave function in the propagation.

T

FIG. 6. Evaluation of the average potential energy of the linear harmonid3. Double well
oscillator as a function of propagation timeaising the PI-DMC method for

four different values of the Trotter paramefefor the case of even discreti- In this subsection we present results for a quartic double
zation. The solid line shows the analytic result. well potential of the form
d , ¢\
V(x)=Zx+a —CX4, (47)

tion. The upper panel shows a histogram of repli@a90 of

them obtained at the end of a DMC run. It compares rea-where we set=0.15 andd=0.01. The simulation details

sonably with the analytic wave function, but there are somere the same as for the previous example. We compare our

discrepancies. However if we histogram all twenty snapshotgesults to an imaginary time grid propagation done according

we obtain a more precise estimate of the ground state wave a method developed by Kosldft.Since we are dealing

function (lower panel. Each snapshot is a starting point of with a one-dimensional system it is instructive to make a

an open chain path integral propagation. Since a single snapemparison of our proposed method to a grid method. Grid

shot deviates from the ground state wave function, it is eximethods in general are known to work well in low dimen-

pected that some imaginary time propagation is necessary gonal systems.

determine a ground state observable. As before a DMC run of 10000 steps without taking
In Fig. 6 we show the average potential calculated bymeasurements and 10000 steps such that a configuration is

PI-DMC for four imaginary times(r=1, =3, 7=5, and stored every 500 steps is performed. Using the 20 initial

7=10). The virial estimator for the kinetic energy equals the configurations generated by DMC, we perform 20 imaginary

potential energy in this case, therefore we will show only thetime PIMC runs using an even breakup of the propagator.

results for the potential energy. The results in each pandtach run equilibrates for 100 000 steps and observations are

differ in the Trotter discretization used. The data show thaimade every 10 steps for 100 000 steps. The neighbor cutoff

upon increasing the time of propagation and the discretizadistance isR.=0.1.

tion the result converges from below to the known result In Figs. 7 and 8 we show the kinetic and potential ener-

which is {(V)=0.25 (solid line). Varying the discretization gies. The virial estimator has been used to evaluate the ki-

turned out to be more relevant, since on the top panel onlyetic energy. The results indicate convergence as a function

the shortest rurfr=1) deviates from the known result sig- of 7, and as a function gb. The results for the total ground

nificantly. As the time of propagation is increased, the erroistate energy using the primitive estimator indicate conver-

bars of long compared to intermediate imaginary time propagence as wel(see Fig. 9.

gations increase as well. This is expected, since as the propa-

gation time is increased, the polymer used by PIMC length-

ens. TABLE II. Evaluation of the average potential of the linear harmonic oscil-
Although an observable for this example may be Ca|cu_l<_e\tor as a function of imaginary timeby the PI-DMC method. The initial

lated using an evenly discretized propagator, it is still jn-time stepr, =0.25, other relevant parameters are 2,6=0.05.

structive to run a test where the propagator is unevenly dis- p r V)

cretized. We run a DMC simulation the same way as before:

We generate the time stefs;} according to the recursion 10 g'ggg g'égg'ggg

fOfmUla[Eq. (45)] USing input parameteIaSZZ and5=0.05. 15 1:0375 0:25ﬁ0:007

The neighbor list cutoff distance in this simulation wRg,
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o1 F T ¥ - 0275 | 1
= ] - * 1/p=.05
0.09 ¢ 0.265 |- ’
0.07 | ] 0255 | 1
oos o Up=05 ‘ 1 1 1 by
0.03 | N 0245 - - T -]
; : | : : 1 . : } e 4
011 + 1 0275 1
s -
= o Up=.067
0.09 1 025 F — i
007 | .
0255 1
oos| L o Up=.067 ] - 1 =
fo0BE , ‘ | Tl et T E . ——
Voooa1 [ IR ' - ] g 0275 ¢ | | | | y 1I 1
] . Tp=
009 1 0.265 | v
007 [ .
0255 - .
0.05 I . T/p=.1 ] T 3 e —_
0.03 ] 0245 b T X X —= |
: : : : : ; : : : |
o1 | o o - 0275 ey
F ] * Tp=
0.09 0265 | ’
007 ¢ ] 0255 | ]
005 - cup=2 ] ’ KN = . -
0.03 C L L L L 1 i 0.245 L 1 t L il i ]
0 2 4 6 8 10 0 2 4 6 8 10
T T

FIG. 7. Evaluation of the average kinetic energy of the one dimensionaFIG. 9. Evaluation of the average total energy for the one dimensional
double well[see Eq.(47)] as a function of propagation time using the double well[see Eqg.(47)] as a function of propagation time using the
PI-DMC method for four different values of the Trotter parametéor the PI-DMC method for four different values of the discretization parampter
case of even discretization. The solid line shows the result of imaginary tim& he primitive estimator of Eq(36) has been used. The solid line shows the
grid propagation. The kinetic energy in the PIDMC results has been estiresult of numerical imaginary time grid propagation.

mated using the virial theorefisee Eq(31)].

The frequencies were kept between 0.6 and 0.7 since if the
C. Ten-dimensional harmonic oscillator spread in frequencies is too large, then a multiple imaginary

In the following, we test the method for a model Systemtime scale algorithm would have to be introduced. This

with many degrees of freedom for which we know the eXaclmodification, although certainly possible, shall be the subject

result. This system is a set of ten coupled harmonic oscillagf future research. We note in passing that this modification
is not necessary for more realistic systems such as a

tors with randomly generated frequencies and coupling con® X

stants. The Hamiltonian of the system may be written as Lennard-Jones clusters. The coupling constants were gener-
1 ated according to

2

10
H= >, Zp_rl:1+ %wixfﬁ > GapXaXs) - (48) gij=0.2%0;wj, (49
ot pet whereg;; is the coupling constant between mddendj, and
w; is the frequency of mode
oss [ : : : : — We ran a DMC simulation of this system that used 4800
0.145 | T 3] replicas for 10000 steps. This was enough for the distribu-
0.135 [ i - tion of replicas to reach steady state. Subsequently we ran for
0.125 I o tUp=05 ] 10000 steps storing a set of replicas every 500 steps and the
gig F ; ; 4 : —] energy was calculated at every step and averaged. As for the
0145 |- + = imaginary time PIMC run, we used the 20 stored DMC rep-
0.135 b i ] licas to perform 20 runs with 10 000 steps equilibration and
0.125 | I . TUp=067 ] 10000 steps for making measurements every 10 steps. The
% gig . ; ; ; ; ] neighbor list cutoff was set t&.,=0.17. For this example
o145 b - = | we used an uneven breakup of the chain constructed such
0.135 | + ] that the initial imaginary time step;=0.9, which deter-
0125 | ] . tp=1 . mines the spring constant between the terminal beads and the
0.115 1 , , , , R beads closest to the terminal beads. Subsequently, each
g'fé ] — - ] imaginary time slice is determined by the recursion relation
0.135 | = 1 Eq. (45). 6 for each run was set to 0.05. The exact result for
0125 | etp=2 ] the total energy of this system may be obtained by diagonal-
0.115 (; : . : . - ] ization and it iSEgyac= 3.03363.

We test the method for three different valueseofa
=3,2,1.5) and for eacta four different chain lengths
FIG. 8. Evaluation of the average potential energy for the one dimensionak= 25 50,75,100). The results for the total energy of the sys-
double well[see Eq.(47)] as a function of propagation time using the tem are shown in the set of Tables Ill-V. We test both the
PI-DMC method for four different values of the discretization parampter . .. . . . .
The solid line shows the result of numerical imaginary time grid propaga-Pfimitive and the virial estimator. Since the virial estimator

tion. is a coordinate dependent observalitr the system under
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TABLE Ill. Comparison of the ground state energies a system of tenTABLE V. Comparison of the ground state energies a system of ten coupled
coupled harmonic oscillators obtained by the PI-DMC method. The paramharmonic oscillators obtained by the PI-DMC method. The parameters for
eters for generating the time steps age=0.9,6=0.05a=3. generating the time steps arg=0.9,6=0.05a=1.5.
p T <8vir> <8prm> <E>DMC p T <5vir> <8prm> <E>DMC

25 2.40 2.9a:0.01 3.01:0.02 3.04:0.02 25 3.44 2.96:0.01 2.99:0.02 3.05:0.02

50 3.65 2.980.04 3.070.03 50 4.69 2.9%0.04 3.01-0.02

75 4.90 2.9%0.06 3.03:0.04 75 5.94 2.980.05 3.06:0.03

100 6.15 3.060.07 3.02:0.04 100 7.19 3.060.07 3.04£0.04

investigation the ground state energy is twice the potential ivalentl iabl . tants f hh .
it is a valid test of the ability of the method to calculate equivalently varable spring constants for each harmonic

coordinate dependent observables for quantum many bo ond. This enables control of the acceptance probability of
problems. The rightmost column shows the results for th e terminal beads, and control over the convergence of the

energy calculated by the DMC run which generated the triapbservable's'. We have also mtroduceq a neighbor list to
wave function sample efficiently the moves for the terminal beads. The gen-

The results indicate quantitative agreement. Increasing eralization of the staging algorithm and the neighbor list are

seems to have two effects. One is that the expectation valués sential for the method to work. . . :

converge to the DMC result, and the other is that the erro The results for systems of IOV\_’ dlmenspnahty generated

bars increase. The growth in error bars is expected since Itthe new Tedtht? d al?ree \t/veII Wt';]h gnalyml:_al L(Tsutltslor rz—_

the polymer chain is longer. The fact that the average poten;‘shu r? ig?]n::‘ra et my aTiman? {Eed 0 IS a\?vp :ﬁa vs IIOforWth -
tial is slightly underestimated is most likely due to the fact \ensional systems. The method aiso works wetll for the

that we are using a discretized representation of the patlﬁ'ghe.r dimensional sys_te_ms tested in this work. In the future

integral. As we have shown using the analytic formula forV® W”klj adssesstthe el}fchen(?y IOf :he ntevg methor:d ontlarge

the discretized imaginary time propagator of the harmoni¢12ny-body systems of physicalinterest. ne such system we

oscillator that even if thexactground state wave function is plan to study is the quantum anisotropic planar rotor

25 . ; i .
used as a trial function and is propagated in imaginary timénOd?I’ 'E Wh'gh anomzl_otjsdpgastla ”f”s'“??ﬁ at low (;ent"n t
using a discretized propagator, the average potential jgerature have been predicted. Evaluation of the ground state

: order parameter and its moments will provide insight about
slightly lower than the exact result. this phase transition. We anticipate that the PI-DMC method
will work well for many-body systems in which both DMC
and PIMC simulations are applicable.

In this paper we have proposed and tested a method for
calculating ground state position dependent observables of
guantum many body systems. Although we have calculate@CKNOWLEDGMENTS
only the potential, kinetic, and total energies, the procedure
is applicable to any observable that can be written in a fom}ion

that s diagonal in the coordinate representatorder pa- grant to B.J.B. from the National Science Foundation. The

rameter, many body correlation functions, gtcln our : . .
method a PIMC simulation propagates in imaginary time ar|authors wish to thank David Ceperley for reading the manu-

initial distribution determined by DMC. The use of a DMC Zlcsfgpfthg;?(r ézvegtggi‘g??ofﬂzlf?&Zei;iﬂs?gggesnons' we
wave function is advantageous, because a distribution gener- P '

ated by a DMC will not deviate much from the exact ground

state wave function, so short propa_gatlor? times or .eq.wva_lD. M. Ceperley and M. H. Kalos, iiMonte Carlo Methods in Statistical
lently a small PIMC polymer chain W"'l §Uff|C€ for obtaining Physics edited by K. BinderSpringer, Berlin, 1979 Chap. 4, pp. 145—
accurate values of ground state position dependent observ-194.

ables. 2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E.

. . i _ Teller, J. Chem. Phy21, 1087(1953.
Implementation of the method requires the generaliza 33, B. Anderson, J. Chem. Phya3, 1499 (1975.

tion of the staging algorithm to variable time slices or 43 g anderson, J. Chem. Physs, 4121(1976.
5J. B. Anderson, J. Chem. Phy&3, 3897(1980.
6Z7. Liu, Ph.D. thesis, Columbia University, 1993.
TABLE IV. Comparison of the ground state energies a system of ten 7M. H. Kalos, Phys. Rev. 2, 250(1970.

coupled harmonic oscillators obtained by the PI-DMC method. The param-8R. D. Amos, Adv. Chem. Phy$7, 99 (1987).

IV. CONCLUDING REMARKS

E.R. acknowledges the Rothschild and Fulbright founda-
s for financial support. This work was supported by a

eters for generating the time steps age=0.9,6=0.05a=2. 9p. Sandler, V. Buch, and D. C. Clary, J. Chem. PHy&l, 6353(1994.
10M. H. Miser and J. Ankerhold, Europhys. Letd, 216 (1998.
p T (&vir) (&pm) (E)omc 11B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Ché&.401 (1986.
12p, Chandler, inLiquids, Freezing, and Glass Transitioedited by D.
25 224 2.940.01 3.06-0.02 3.04:0.02 Levesque, J. P. Hansen, and J. Zinn-Ju@ilorth-Holland, Amsterdam,
50 3.99 2.9%0.04 3.06:0.03 1991, Chap. 4, pp. 193-285.
75 5.24 2.99:0.06 3.02-0.03 13D, M. Ceperley, Rev. Mod. Phy$§7, 279(1995.
100 6.49 2.990.07 3.04:0.04 1R. P. Feynman and A. R. HibbQuantum Mechanics and Path Integrals

(McGraw—Hill, New York, 1965%.




J. Chem. Phys., Vol. 110, No. 13, 1 April 1999 Hetenyi, Rabani, and Berne 6153

15p_ K. Mackeown, Am. J. Phy&3, 880(1985. 20E. L. Pollock and D. M. Ceperley, Phys. Rev.3, 2555(1984.

16K. S. Schweizer, R. M. Stratt, D. Chandler, and P. G. Wolynes, J. Chem?M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem.
Phys.75, 1347(1981). Phys.99, 2796(1993.

171, s. SchulmanTechniques and Applications of Path Integratigiley— 22 H. Bransden and C. J. Joachaintroduction to Quantum Mechanics
Interscience, New York, 1981 (Longman Scientific and Technical, New York, 1989

18]t is customary to call the members of the polymer beads. Throughout th&M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. PR§s5150
rest of the paper we will adhere to this custom. (1982.

9The increase i (i.e., the refining of the Trotter factorizatiphas to be  2*R. Kosloff, Annu. Rev. Phys. Cherd5, 145 (1994.
carried out such that;—0 for all ¢; . 25D, Marx and P. Nielaba, J. Chem. Phyi€1, 4538(1995.



