
JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 13 1 APRIL 1999
Path-integral diffusion Monte Carlo: Calculation of observables
of many-body systems in the ground state

Balázs Hetényi, Eran Rabani, and B. J. Berne
Department of Chemistry and Center for Biomolecular Simulation, Columbia University,
New York, New York 10027

~Received 24 November 1998; accepted 4 January 1999!

We propose a new method to calculate ground state position dependent observables in quantum
many-body systems. The method, which we call the path-integral diffusion Monte Carlo~PI-DMC!
method, is essentially a combination of path-integral Monte Carlo~PIMC! and diffusion Monte
Carlo ~DMC! methods. The distribution resulting from a DMC simulation is further propagated in
imaginary time by PIMC sampling. Tests of the new method for simple cases such as the harmonic
oscillator, a double well, and a set of ten coupled harmonic oscillators show that the results for
several observables converge rapidly to the exact result. ©1999 American Institute of Physics.
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I. INTRODUCTION

Ground state properties of quantum many body syste
are difficult to calculate. Ceperley and Kalos1 present a re-
view of the two most common approaches for comput
ground state observables. One method is based on a v
tional formalism, where the energy of a trial function wi
adjustable parameters is optimized and the expectation v
of observableA is obtained by application of the Metropol
Monte Carlo method2 to evaluate

^A&5
EdxuCT~x,a!u2A~x!

EdxuCT~x,a!u2
, ~1!

wherex denotes the coordinates of the system,CT(x,a) is a
trial function whose form is known, anda are the adjustable
parameters. A reasonable trial function is an essential in
dient of the method. The other method known as the Gree
function Monte Carlo~GFMC! uses a guided random walk t
successively apply the Green’s function of the relev
Schrödinger equation to an initial distribution to obtain
distribution that approximates the ground state wave fu
tion.

A method that is closely related to GFMC is the diff
sion Monte Carlo3–5 method. In this method a Gaussian ra
dom walk and a birth–death process is used to propaga
distribution in imaginary time, so that the contribution fro
components other than the ground state vanish exponent
Both GFMC and DMC provide a distribution consistent wi
the ground state wave function, and not the ground s
wave function squared. For this reason, augmentations o
method are necessitated in the calculation of observable

For small systems with a few degrees of freedom
servables may be obtained by histogramming the w
function.6 Another common technique is the descend
weighting technique.1,7 This method is quite difficult to pro-
gram, and is also not very helpful in the case of large s
tems, since the variance of the weight increases with
number of generations of the birth–death process.1 Another
6140021-9606/99/110(13)/6143/11/$15.00
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possibility is to linearly couple the desired observable to
field, calculate the ground state energy of the system at
eral values of the field, and calculate the slope of the ene
vs the field at zero field by interpolation.8–10 A problem with
this method is that several DMC runs need to be perform
to obtain a good estimate of the slope, and if more than
observable is sought, the whole process needs to be repe
for each observable.

A different approach may be taken by resorting to t
standard path-integral Monte Carlo~PIMC! method.11–13The
PIMC method is based on the path integral formulation
quantum statistical mechanics due to Feynman,14 and is use-
ful in obtaining many body quantum statistical averages
finite temperatures. If a simulation is performed at extrem
low temperature, reasonable estimates of ground state p
erties may be obtained.15 A major problem with this method
is that as the temperature is lowered, the Trotter number
to be increased correspondingly, resulting in an increas
the computational effort.

In this paper we propose an interesting alternative to
above methods and one that allows for the direct calcula
of ground state position dependent observables by combi
DMC and PIMC. In this method path-integrals are used
propagate a trial function in imaginary time. The closer t
trial function is to the ground state wave function, th
smaller will be the amplitude of excited state contributions
the trial function and only a short imaginary time propag
tion should be needed to obtain results within a desired e
bar. In our proposed method, the trial function is the dis
bution generated by a DMC run.

In Sec. II we derive a path integral approximation for t
average of a coordinate dependent observable that is dis
uted according to the square of the ground state wave fu
tion. The ground state wave function is the result of t
imaginary time propagation of a trial function by path int
grals. We then describe the implementation of the DMC d
tribution as the trial function, as well as how to obtain o
servables by this method. In Sec. III we perform a series
3 © 1999 American Institute of Physics
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tests on our proposed method, by making use of anal
expressions for the exact14 and the approximate16 forms of
the imaginary time propagator for the harmonic oscillat
We then apply our proposed numerical method to sev
simple model systems, namely the linear harmonic oscilla
the double well, and a set of ten coupled harmonic osci
tors. Conclusions are presented in Sec. IV.

II. METHOD

In this section we describe our method for calculati
expectation values for quantum many body systems.
method is a hybrid between DMC and imaginary time PIM
We first provide the general framework for obtaining obse
ables by imaginary time PIMC. As an input, this meth
requires a trial function which will be determined from DM
as outlined in Sec. II B.

A. Ground state observables and imaginary time path
integral Monte Carlo

The expectation value of a coordinate dependent obs
ableA(x) in the ground state is

^A&5Qg
21E dx̃uCg~ x̃!u2A~ x̃!, ~2!

whereQg is the normalization factor

Qg5E dx̃uCg~ x̃!u2, ~3!

x̃ denotes the coordinate of the system, andCg( x̃) is the
unnormalized ground state wave function. For notatio
simplicity we refer to a one-dimensional system, but the c
cepts are trivially generalizable to the many dimensio
case. The notationQg for the normalization integral may
seem somewhat misleading, since in most cases the sta
cal mechanical partition function has a similar notation.
what follows the normalization integral, however, plays
role similar to the partition function, thus enabling the use
Monte Carlo methods in the evaluation of observables.

We seek an expression amenable to PIMC evaluation
Eq. ~2!. Propagation of a wave function~for the moment
arbitrary! to imaginary timet gives

uC~t!&5exp~2tĤ !uC~0!&, ~4!

whereĤ is the Hamiltonian operator of the system,uC(0)&
is the ket corresponding to the trial function, anduC(t)& is
the ket resulting from the propagation. For future usage
introduce the quantity

Q~t!5^C~t!uC~t!&5E dx̃^C~t!ux̃&^x̃uC~t!&, ~5!

which obeys

lim
t→`

Q~t!5Qg . ~6!

Inserting a coordinate resolution of the identity opera
in Eq. ~4! and writing the whole expression in the coordina
representation we obtain
ic
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^x̃uC~t!&5E dx̃8^x̃uexp~2tĤ !ux̃8&^x̃8uC~0!&, ~7!

which enables us to rewrite Eq.~5! as

Q~t!5E dx̃E dx̃8E dx̃9^x̃8uexp~2tĤ !ux̃&

3^x̃uexp~2tĤ !ux̃9&^C~0!ux̃8&^x̃9uC~0!&. ~8!

The expectation value of a coordinate dependent observ
can now be expressed as

^A&5 lim
t→`

Q~t!21E dx̃E dx̃8E dx̃9A~ x̃!

3^x̃8uexp~2tĤ !ux̃&^x̃uexp~2tĤ !ux̃9&

3^x̃9uC~0!&^C~0!ux̃8&. ~9!

In essence the method we propose is to evaluate the ave
in Eq. ~9! by samplingx̃, x̃8, and x̃9 using a real trial wave
function at timet50,

^xuC~0!&5CT~x! ~10!

and a discrete imaginary time representation of the propa
tors. The integrand in Eq.~8! to be evaluated can be repre
sented graphically as shown in Fig. 1.

In the standard PIMC method the kernel on the rig
hand side of Eqs.~7! and ~9! is split into p kernels each
corresponding to imaginary time propagations oft/p. In the
present application a slight generalization was required
reasons to be mentioned below, namely, we reserve the
tion of breaking up the imaginary time propagator uneve
~i.e., the imaginary time slices are not equal!, which leads to

^x̃uexp~2tĤ !ux̃8&5E •••E dx2•••dxp

3)
i 51

p

^xi uexp~2e itĤ !uxi 11&, ~11!

wherex15 x̃ andxp115 x̃8 and( i 51
p e i51. The short imagi-

nary time propagators may be symmetrically factorized i
the approximate short time expression~Trotter breakup!

FIG. 1. Graphical representation of the integrand of Eq.~8!.
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^xi uexp~2e itĤ !uxi 11&

'^xi uexp~2e itT̂!uxi 11&

3expS 2
e it

2
~V~xi !1V~xi 11!! D , ~12!

where T̂ is the kinetic energy operator andV(x) is the po-
tential energy at x. The error made in this
approximation11,12,17 can be shown to be proportional t
(e it)2. Inserting resolutions of the identity operator in th
momentum representation in the kinetic energy kernel
integrating the momenta results in the standard short time~or
high temperature! approximation11,12,17 ubiquitous to many
path integral based methods, i.e.,

^xi uexp~2e itĤ !uxi 11&

'S m

2pte i
D 1/2

expS 2
m

2te i
~xi2xi 11!2

2
e it

2
~V~xi !1V~xi 11!! D . ~13!

Note that in the above we used atomic units and we shal
so throughout the paper.

Substituting Eq.~13! into Eq. ~11!, Eq. ~11! into Eq. ~7!
and Eq.~7! into Eq. ~5! we obtain the approximate expre
sion

Qp~t!5E dx̃E •••E dx2•••dxp11E •••E dx28•••dxp118

3)
i 51

p S m

2pe it
D 1/2

expS 2
m

2e it
~xi2xi 11!2

2
e it

2
~V~xi !1V~xi 11!! DCT~ x̃8!S m

2pe it
D 1/2

3expS 2
m

2e it
~xi82xi 118 !22

e it

2
~V~xi8!

1V~xi 118 !! DCT~ x̃9!, ~14!

where x̃5x15x18 , x̃85xp11 , x̃95xp118 and the subscriptp
is meant as a reminder that this expression is the resu
Trotter factorization. Defining

Sp~t,x!5(
i 51

p
m

2e it
~xi2xi 11!21

e it

2
~V~xi !1V~xi 11!!

1(
i 51

p
m

2e it
~xi82xi 118 !21

e it

2
~V~xi8!1V~xi 118 !!

2 ln CT~xp11!2 ln CT~xp118 !, ~15!

wherex denotes collectively all the bead coordinates, for
average of a quantum observable we obtain

^A&p5
*•••*dx exp~2Sp~t,x!!A~ x̃!

*•••*dx exp~2Sp~t,x!!
. ~16!
d

o

of

e

The right-hand side of Eq.~14! is analogous to the sta
tistical mechanical partition function of an open chain po
mer with 2p11 monomers connected by harmonic spring
A similar analogy is exploited in the standard PIMC metho
Other than the nearest neighbor harmonic potentials the
termediate beads18 experience a potential proportional t
V(x), and the two terminal beads experience a potential p
portional toV(x) plus a term that depends on the trial fun
tion @proportional to2 ln CT(x)]. In the limit of long imagi-
nary time@see Eq.~6!# and large19 p the bead halfway along
the chain~whose coordinate is denoted byx̃) is distributed
according to the square of the exact ground state wave fu
tion. In our method we evaluate coordinate dependent
servables using the position of this bead, therefore from h
on we will refer to it as the observation bead.

We have derived an expression@Eq. ~16!# which is ide-
ally suited for PIMC evaluation. The expression results fro
squaring a trial function propagated in imaginary time.
similar expression is given by Ceperley in Eq.~7.4! of Ref.
13 as a basis for the variational path integral~VPI! method.
This method implements a trial function whose function
form is known such as the Jastrow wave function. As of
the trial function in our method has been left arbitrary, bu
would be advantageous to choose it such that it is clos
the ground state. We now turn to address this issue.

B. The trial function

For an arbitrary trial function care must be taken
choosing the value oft large enough to obtain a distributio
sufficiently close to the ground state, but small enough
the simulation to be feasible. Runs with several values ot
may be compared for convergence. Increasingt necessitates
an increase in the discretization parameterp, and thus leads
to a rise in computational effort. If, however, the trial fun
tion CT(x) is known to be close to the ground state wa
function, shorter imaginary propagation timet ~i.e., a
smaller chain polymer! may be expected to provide sufficien
results for the desired observable. Unfortunately, for an
bitrary system, the functional form of the ground state wa
function is not knowna priori. The DMC and GFMC meth-
ods, however, are both capable of providing a set of repli
of the system distributed in coordinate space according to
ground state wave function. Therefore we seek to implem
a distribution generated by DMC~shall be denoted by
CDMC(x)) as the trial function in Eq.~16!.

Given a trial functionCT(x) the usual Monte Carlo al-
gorithm can be constructed for the evaluation of Eq.~16! in
which the positions of all the beads~including the terminal
beads! are drawn from a uniform random distribution and t
acceptance criterion is given by

acc~xold→xnew!5min@1,exp$2DSp~t,x!%#, ~17!

where

DSp~t,x!5Sp~t,xnew!2Sp~t,xold!, ~18!

wherexold andxnew denote the coordinates of the old and t
new configurations respectively. If, however, we were a
to draw the positions of the terminal beads from the dis
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bution CT(x) instead of a uniform random distribution, th
acceptance criterion would have to be constructed using
modified action

Sp
mod~t,x!5Sp~t,x!1 ln CT~xp11!1 ln CT~xp118 !, ~19!

leading to the acceptance criterion

acc~xold→xnew!5min@1,exp$2DSp
mod~t,x!%#. ~20!

Since the replicas obtained from a DMC simulation are d
tributed according toCDMC(x), it is possible to draw the
positions of the terminal beads from the distributi
CDMC(x) without having to know its functional form. This
procedure would effectively set

CT~x!5CDMC~x!. ~21!

From a methodical point of view the above idea tran
lates into the following:

~1! After the DMC run reaches steady state, the replicas
stored in an array~number of coordinates3 number of
replicas!. These replicas are distributed according to
ground state wave function.

~2! The positions of the two terminal beads are samp
from the distribution of replicas. This can be realized
follows: as an initial configuration, for each termin
bead we randomly choose a replica and place the te
nal bead at the position of the chosen replica. A tr
move in the terminal bead is made by randomly cho
ing a replica, and equating the positions of the termi
bead to the position of the newly chosen replica. In
case of many degrees of freedom, since a replica co
sponds to a position in the overall configuration space
the system, the terminal bead corresponding to each
ordinate needs to be moved simultaneously for suc
trial move.

~3! Accept or reject the proposed move based on the kno
part of the potential that the given terminal beads ex
rience @i.e., the harmonic spring connecting it to th
neighboring bead andep11tV(x)/2]. The term propor-
tional to 2 ln CT(x) is already taken into account, sinc
we are drawing the positions of the terminal beads fr
a set of replicas which are distributed according
CT(x).

~4! The intermediate beads may be moved by stand
PIMC methods.13 We generalize the staging algorithm
make it suitable for the application presented here
described in Sec. II C.

In the case of many degrees of freedom a difficulty w
the above prescription is that as the terminal beads
moved the harmonic springs attaching them to the neigh
ing beads on the chain may stretch enormously and th
trial moves will often be rejected. This is the circumstan
which inspired the uneven breakup of the imaginary ti
propagator. If the time slice that determines the spring c
stant of the spring connecting a terminal bead to the n
bead (ep11) is increased, then this spring becomes less s
hence the chain becomes more flexible. However since
error due to the breakup of the imaginary time propagato
proportional to (ep11t)2 increasingep11 will introduce er-
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rors into the propagation. The introduced error can ha
components from the ground and excited states. Since
excited state components vanish upon imaginary time pro
gation, the increase inep11 may necessitate further imag
nary time propagation by PIMC.

To further facilitate sampling the DMC wave functio
by the terminal beads, we also applied a neighbor list.
stated above trial moves of the terminal beads are acc
plished by randomly choosing from the list of stored rep
cas. Instead of randomly choosing a replica, we set u
neighbor list for each replica~an array which for each replica
stores the index of all the other replicas within some cut
distanceRcut), and trial moves are made by randomly choo
ing a replica from the neighbor list of the current replica.

The use of variable time slices and neighbor lists
lowed efficient sampling of the terminal beads, and also c
trol over the acceptance probability.

C. Staging for an uneven polymer chain

A reduction in the computational effort for PIMC ma
be achieved by implementation of the stagi
transformation.20,21 The idea is to partially or completely di
agonalize the kinetic part of the action, and thus sampl
may be performed in terms of coordinates which obey
Gaussian distribution. The Cartesian coordinates in wh
nearest neighbors are connected by stiff harmonic bonds
ten render straightforward sampling inefficient.

In this subsection, we give the general expressions of
identities that provide the basis of the staging algorithm
an uneven polymer chain. Since only the fundamental id
tities needed to be rederived, subsequent steps of the
struction of such an algorithm will only be outlined her
details may be found in the work of Pollock and Ceperle20

and of Tuckermanet al.21

We introduce the following notation for the part of th
imaginary time propagator associated with the kinetic
ergy:

r0~xi ,xi 11 ;e it!5S m

2pe it
D 1/2

expS 2
m

2e it
~xi2xi 11!2D .

~22!

One can now write the matrix element of the full propaga
as

^xi uexp~2e itĤ !uxi 11&5expS 2
e it

2
V~xi ! D r0~xi ,xi 11 ;e it!

3expS 2
e it

2
V~xi 11! D . ~23!

A sequence of kinetic energy imaginary time propagat
may be written as

)
k51

j

r0~xk ,xk11 ;ekt!5r0~x1 ,xj 11 ; ẽ jt!)
k51

j S mk

2pt D 1/2

3expS 2
mk

2t
~xk2xk* !2D , ~24!
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where

ẽ j5(
i 51

j

e i , ~25!

mk5m
ẽk

ẽk21ek

, ~26!

xk* 5
ẽkx11ek11xk11

ẽk

. ~27!

Equation~24! follows from the identity

r0~x1 ,xk ;a!r0~xk ,xk11 ;b!

r0~x1 ,xk11 ;a1b!

5S m~a1b!

2pab D 1/2

expS 2
m~a1b!

2ab
~xk2 x̃k!

2D , ~28!

where

x̃k5
bx11axk11

a1b
. ~29!

In the staging algorithm, a set of consecutive beads
chosen for a proposed move. The move is proposed in te
of the staged coordinates for the chosen beads which in
case are defined as

uk5xk2xk* . ~30!

These coordinates are distributed according to a Gaus
distribution, which allows their direct sampling as is done
the standard staging algorithm.

D. Observables

The PI-DMC method is helpful mainly in evaluating th
ground state expectation value of coordinate dependent
servables. To evaluate them one simply averages the valu
the function corresponding to the desired observable at
sampled coordinate~s! of the observation bead.

The kinetic energy may be evaluated via the quant
mechanical virial theorem22 which states that for stationar
states

^T&5K x̃

2

]V~ x̃!

] x̃
L . ~31!

For sufficient imaginary time propagation the observat
bead is expected to be distributed according to the proba
ity distribution obtained by squaring the ground state wa
function ~a stationary state!. The virial theorem is thus appli
cable for the evaluation of the kinetic energy, since the vi
is a coordinate dependent observable.

The total ground state energy may be calculated in
ways. One is to use the virial theorem and construct
following virial estimator:

«vir5
x̃

2

]V~ x̃!

] x̃
1V~ x̃!. ~32!
re
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The virial estimator used here is distinct from the virial e
timator used in PIMC simulations,23 which is based on the
classical version of the virial theorem.

Another estimator for the ground state energy may
constructed in a manner similar to that of the PIMC primiti
estimator. We take an arbitrary functionuC(0)& and propa-
gate it to imaginary timet,

uC~t!&5exp~2tĤ !uC~0!&. ~33!

ExpandinguC(0)& in terms of the eigenfunctions ofĤ and
substituting into Eq.~33! results in

uC~t!&5 (
n50

`

an exp~2tEn!ufn&, ~34!

whereEn denote the eigenvalues andufn& denote the eigen-
functions ofĤ. Using the definition ofQ(t) @Eq. ~5!# it can
easily be shown that

lim
t→`

F2
1

2

] ln Q~t!

]t G5E0 , ~35!

whereE0 is the ground state energy.
Equation~35! provides the basis for the construction

an energy estimator. Substituting our approximateQ(t)
from Eq. ~14! we obtain the primitive ground state energ
estimator

«prm5
p

t
2(

i 51

p
m

4e it
2
~xi2xi 11!21

e i

4
~V~xi !1V~xi 11!!

2(
i 51

p
m

4e it
2
~xi82xi 118 !21

e i

4
~V~xi8!1V~xi 118 !!. ~36!

III. RESULTS

In the following, the PI-DMC method is applied t
simple model systems, and the results are compared to
sults known analytically or simulations using other metho
that have been thoroughly tested. In the case of the harm
oscillator, we use known formulas for the analytical and t
discretized propagator to test mainly the convergence of
method. On the numerical side, we run a DMC simulati
for a fixed imaginary time~sufficient to obtain the ground
state energy! and store replicas, which shall be used to re
resent the ground state wave function. Subsequently we
culate ground state observables from the obtained distr
tion by PIMC propagation to various imaginary times. W
also examine the effect of varying the Trotter numberp on
the results.

A. One-dimensional harmonic oscillator

Although simple, and rather well understood, the h
monic oscillator provides a reasonable testing ground
new methods, since a more detailed investigation is perm
ted than in the case of more complex systems.

Since the imaginary time propagator may be solved a
lytically both for the exact14 and the discretized16 case, we
may test the general idea of our proposed method by ana
cally performing propagations on chosen initial wave fun
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tions. The exact imaginary time propagator for a one dim
sional harmonic oscillator as given by Feynman14 is

^xuexp~2tĤ !ux8&5S mv

2p sinh~vt! D
1/2

expH 2
mv

2 sinh~vt!

3@~x21x82!cosh~vt!22xx8#J , ~37!

wherem andv denote mass and frequency, respectively, a
t denotes the imaginary time of propagation. Its discretiz
approximate analog given by Schweizeret al.16 for a propa-
gator whose imaginary time of propagationt is divided up
into p even time increments is

^xuexp~2tĤ !ux8&'S mpA

2pt D 1/2

expH 2
mv

2
@B~x21x82!

22Axx8#J , ~38!

where

A5S p

vt D f p21~ f 221!

~ f 2p21!
, ~39!

B5S vt

2p D1
p

vt

~ f 21!~ f 2p2111!

~ f 2p21!
. ~40!

In the above equations we have also used the relations

f 511
1

2
R21

12

R
~41R2!1/2 ~41!

and

R5
vt

p
. ~42!

We are thus able to test the effect of discretization on
propagator in our method. To this end we use the ex
ground state wave function for the harmonic oscillator giv
by

C~x!5S p

mv D 1/4

expS 2
mv

2
x2D ~43!

as an initial wave function in Eq.~9!, and calculate the av
erage potential. The ground state wave function propag
by the discretized propagator with Trotter parameterp to
imaginary timet follows from Eqs.~7!, ~38!, and~43!,

C~x,t!5S p

mvS B2
A2

B11D D
1/4

3expH 2
mv

2 S B2
A2

B11D x2J . ~44!

In Fig. 2 we present the results of analytic propagat
using the exact and the discretized version of the propag
for a harmonic oscillator with massm51 and frequency
v51. The average potential is calculated. The results sh
that discretizing the propagator leads to an underestima
of the average potential. Asp is increased convergence to th
-

d
d

e
ct
n

ed

n
or

w
n

known value of̂ V&50.25 is achieved. The conclusion th
the average potential energy of a simple harmonic oscilla
is underestimated by a discretized propagator also hold
the case of the standard finite temperature PIMC metho23

where a cyclic chain is used in the algorithm. Note also t
for short imaginary times, the results obtained by using
discretized propagator are closer to the exact result than
long imaginary times. This is due to the fact that we a
propagating the exact ground state wave function, for wh
if the propagation timet was zero, then the exact resu
would be obtained.

The propagator given in Eq.~38! is for the case when the
propagation timet is divided into equal increments. How
ever in our method, the time slices are unequal@see Eq.
~11!#. In the case of unequal breakup, Eq.~38! is no longer
valid. Instead one can evaluate expectation values of pro
gated wave functions by evaluating the propagated w
function analytically at each imaginary time step and us
the resulting wave function as the initial wave function f
the next time step. The integrals one must evaluate in
case are all Gaussian, so the calculation may be done
lytically. Since the functional form of the wave function
known at each time step, it can be used to calculate obs
ables. The uneven time slices were defined such that the
propagation time stept1 is given a value, and the value o
each subsequent time slice is given by the recursion form

t i 115t i /a, ~45!

wherea is an input parameter. This recursion relation is fo
lowed until the firstt i<d is reached, thent i is set equal tod
and subsequently allt i are set equal tod.

The results shown in Fig. 3 were obtained by settinga
52, d50.05 and by varying the value of the initial time slic
t1 from 0.25 to 0.5. We compare to the case of the ev
breakup wheret/p50.05. We find that the two propagation

FIG. 2. Evaluation of the ground state potential energy of a linear harmo
oscillator as a function of propagation timet using the analytic form of the
exact@see Eq.~37!# and the discretized@see Eq.~38!# propagator. The line
corresponds to the exact propagator, the different symbols correspon
different factorizations~i.e., Trotter numbers!.
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using different initial times all converge in the limit of lon
imaginary time to the result obtained by the evenly divid
propagator.

It is also instructive to assess the advantage of using
ground state wave function instead of some other trial fu
tion. By propagation of Gaussian trial functions of the for

C~x!5S p

amv D 1/4

expS 2
amv

2
x2D , ~46!

wherea is an input parameter~a51 corresponds to the exac
ground state wave function!. The results are shown in Fig.
for three different values ofa. The exact propagator is use

FIG. 3. Evaluation of the average potential energy of the linear harm
oscillator as a function of propagation timet using the analytic form of the
exact propagator@see Eq.~37!# and both the evenly discretized@see Eq.
~38!# and unevenly discretized propagators@an expression for the wave
function is given by Eq.~44!# for t150.25 andt150.5. The solid line
denotes the result using the exact propagator, the dashed line denot
result using an evenly discretized propagator witht/p50.05, the symbols
denote the results of using unevenly discretized propagators with diffe
initial times t1 .

FIG. 4. Evaluation of the average potential energy of the linear harm
oscillator as a function of propagation timet using the exact propagator@see
Eq. ~37!# to propagate different wave functions whose form is given by E
~46!.
e
-

here. The results indicate that as the deviations of the
function from the exact ground state wave function increa
the imaginary time propagation required to obtain a res
within a given tolerance also increase. Comparison of Fig
and 4 shows that the error generated by using a larger in
time step in the first split of the propagator introducesvery
small amplitude contributions from excited states. Thus t
imaginary time needed to obtain converged results is sho
than is required if the exact propagator is used together w
a trial function that deviates considerably from the true wa
function. In other words, having a small error in the prop
gator but using the ground state wave function is advan
geous over propagating exactly a trial function which is
superposition of several eigenstates. This realization p
vides the basis for the PI-DMC method which approximat
propagates a trial wave function that is very close to
ground state wave function.

Up to this point all the results presented are based
analytically derived propagators. We now test the PI-DM
method for the linear harmonic oscillator. A DMC run with
time step ofDtDMC50.01 is performed for 10 000 initia
steps, and 10000 observation steps and of the replicas
stored every 500 steps. The number of replicas is initially
to 2000. Subsequently, open chain path integral Monte C
simulations are performed such that the positions of the
minal beads are sampled from the positions of the repli
that were stored during the DMC run. Since there are 20
of replicas stored, 20 path integral simulations are p
formed, and the results are averaged over the 20 runs.
number of equilibration and observation steps is 100 000
an observation is made every 10 steps. The neighbor
cutoff distance wasRcut50.2. We vary two parameters in th
path integral runs, the time of propagation, and the discr
zation. First we use an evenly discretized path integral ch

In Fig. 5 we compare the histogram of the DMC wa
function to the analytic form of the ground state wave fun

ic

the

nt

ic

.

FIG. 5. Spatial distribution of replicas generated by DMC for the line
harmonic oscillator. The upper panel shows one snapshot of 2000 rep
the lower panel shows twenty snapshots averaged. The solid line show
exact ground state wave function.
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tion. The upper panel shows a histogram of replicas~2000 of
them! obtained at the end of a DMC run. It compares re
sonably with the analytic wave function, but there are so
discrepancies. However if we histogram all twenty snapsh
we obtain a more precise estimate of the ground state w
function ~lower panel!. Each snapshot is a starting point
an open chain path integral propagation. Since a single s
shot deviates from the ground state wave function, it is
pected that some imaginary time propagation is necessa
determine a ground state observable.

In Fig. 6 we show the average potential calculated
PI-DMC for four imaginary times~t51, t53, t55, and
t510!. The virial estimator for the kinetic energy equals t
potential energy in this case, therefore we will show only
results for the potential energy. The results in each pa
differ in the Trotter discretization used. The data show t
upon increasing the time of propagation and the discret
tion the result converges from below to the known res
which is ^V&50.25 ~solid line!. Varying the discretization
turned out to be more relevant, since on the top panel o
the shortest run~t51! deviates from the known result sig
nificantly. As the time of propagation is increased, the er
bars of long compared to intermediate imaginary time pro
gations increase as well. This is expected, since as the pr
gation time is increased, the polymer used by PIMC leng
ens.

Although an observable for this example may be cal
lated using an evenly discretized propagator, it is still
structive to run a test where the propagator is unevenly
cretized. We run a DMC simulation the same way as befo
We generate the time steps$t i% according to the recursion
formula @Eq. ~45!# using input parametersa52 andd50.05.
The neighbor list cutoff distance in this simulation wasRcut

FIG. 6. Evaluation of the average potential energy of the linear harm
oscillator as a function of propagation timet using the PI-DMC method for
four different values of the Trotter parameterp for the case of even discreti
zation. The solid line shows the analytic result.
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51. In Table I we show the result of three propagatio
wheret1 had been set to 0.125 and the number of bead
p510, 20, and 30. The results in Table II were generated
same way, except for the fact that the initial time step was
to 0.25. We see that the results are very close to the e
value of 0.25~this value is always within the error bar!. The
overall imaginary timet is relatively small in all six cases
which demonstrates the advantage of using the ground s
wave function in the propagation.

B. Double well

In this subsection we present results for a quartic dou
well potential of the form

V~x!5
d

4S x21
c

dD 2

2cx2, ~47!

where we setc50.15 andd50.01. The simulation details
are the same as for the previous example. We compare
results to an imaginary time grid propagation done accord
to a method developed by Kosloff.24 Since we are dealing
with a one-dimensional system it is instructive to make
comparison of our proposed method to a grid method. G
methods in general are known to work well in low dime
sional systems.

As before a DMC run of 10 000 steps without takin
measurements and 10 000 steps such that a configurati
stored every 500 steps is performed. Using the 20 ini
configurations generated by DMC, we perform 20 imagina
time PIMC runs using an even breakup of the propaga
Each run equilibrates for 100 000 steps and observations
made every 10 steps for 100 000 steps. The neighbor cu
distance isRcut50.1.

In Figs. 7 and 8 we show the kinetic and potential en
gies. The virial estimator has been used to evaluate the
netic energy. The results indicate convergence as a func
of t, and as a function ofp. The results for the total ground
state energy using the primitive estimator indicate conv
gence as well~see Fig. 9!.

ic

TABLE I. Evaluation of the average potential of the linear harmonic os
lator as a function of imaginary timet by the PI-DMC method. The initial
time stept150.125, other relevant parameters area52,d50.05.

p t ^V&

5 0.3375 0.24960.002
10 0.5875 0.24860.008
15 0.8375 0.25060.011

TABLE II. Evaluation of the average potential of the linear harmonic osc
lator as a function of imaginary timet by the PI-DMC method. The initial
time stept150.25, other relevant parameters area52,d50.05.

p t ^V&

5 0.5375 0.24960.002
10 0.7875 0.25060.005
15 1.0375 0.25060.007
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C. Ten-dimensional harmonic oscillator

In the following, we test the method for a model syste
with many degrees of freedom for which we know the ex
result. This system is a set of ten coupled harmonic osc
tors with randomly generated frequencies and coupling c
stants. The Hamiltonian of the system may be written as

H5 (
a51

10 S pa
2

2m
1

1

2
va

2xa
21 (

b51

10

gabxaxbD . ~48!

FIG. 7. Evaluation of the average kinetic energy of the one dimensio
double well @see Eq.~47!# as a function of propagation timet using the
PI-DMC method for four different values of the Trotter parameterp for the
case of even discretization. The solid line shows the result of imaginary
grid propagation. The kinetic energy in the PIDMC results has been
mated using the virial theorem@see Eq.~31!#.

FIG. 8. Evaluation of the average potential energy for the one dimensi
double well @see Eq.~47!# as a function of propagation timet using the
PI-DMC method for four different values of the discretization parametep.
The solid line shows the result of numerical imaginary time grid propa
tion.
t
-

n-

The frequencies were kept between 0.6 and 0.7 since if
spread in frequencies is too large, then a multiple imagin
time scale algorithm would have to be introduced. Th
modification, although certainly possible, shall be the sub
of future research. We note in passing that this modificat
is not necessary for more realistic systems such a
Lennard-Jones clusters. The coupling constants were ge
ated according to

gi j 50.25v iv j , ~49!

wheregi j is the coupling constant between modei and j , and
v i is the frequency of modei.

We ran a DMC simulation of this system that used 48
replicas for 10 000 steps. This was enough for the distri
tion of replicas to reach steady state. Subsequently we ran
10 000 steps storing a set of replicas every 500 steps and
energy was calculated at every step and averaged. As fo
imaginary time PIMC run, we used the 20 stored DMC re
licas to perform 20 runs with 10 000 steps equilibration a
10 000 steps for making measurements every 10 steps.
neighbor list cutoff was set toRcut50.17. For this example
we used an uneven breakup of the chain constructed s
that the initial imaginary time stept150.9, which deter-
mines the spring constant between the terminal beads an
beads closest to the terminal beads. Subsequently,
imaginary time slice is determined by the recursion relat
Eq. ~45!. d for each run was set to 0.05. The exact result
the total energy of this system may be obtained by diago
ization and it isEexact53.03363.

We test the method for three different values ofa (a
53,2,1.5) and for eacha four different chain lengths (p
525,50,75,100). The results for the total energy of the s
tem are shown in the set of Tables III–V. We test both t
primitive and the virial estimator. Since the virial estimat
is a coordinate dependent observable~for the system under

al

e
ti-

al

-

FIG. 9. Evaluation of the average total energy for the one dimensio
double well @see Eq.~47!# as a function of propagation timet using the
PI-DMC method for four different values of the discretization parametep.
The primitive estimator of Eq.~36! has been used. The solid line shows t
result of numerical imaginary time grid propagation.
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investigation the ground state energy is twice the potent!,
it is a valid test of the ability of the method to calcula
coordinate dependent observables for quantum many b
problems. The rightmost column shows the results for
energy calculated by the DMC run which generated the t
wave function.

The results indicate quantitative agreement. Increasint
seems to have two effects. One is that the expectation va
converge to the DMC result, and the other is that the e
bars increase. The growth in error bars is expected sinc
the polymer chain is longer. The fact that the average po
tial is slightly underestimated is most likely due to the fa
that we are using a discretized representation of the p
integral. As we have shown using the analytic formula
the discretized imaginary time propagator of the harmo
oscillator that even if theexactground state wave function i
used as a trial function and is propagated in imaginary t
using a discretized propagator, the average potentia
slightly lower than the exact result.

IV. CONCLUDING REMARKS

In this paper we have proposed and tested a method
calculating ground state position dependent observable
quantum many body systems. Although we have calcula
only the potential, kinetic, and total energies, the proced
is applicable to any observable that can be written in a fo
that is diagonal in the coordinate representation~order pa-
rameter, many body correlation functions, etc.!. In our
method a PIMC simulation propagates in imaginary time
initial distribution determined by DMC. The use of a DM
wave function is advantageous, because a distribution ge
ated by a DMC will not deviate much from the exact grou
state wave function, so short propagation times or equ
lently a small PIMC polymer chain will suffice for obtainin
accurate values of ground state position dependent obs
ables.

Implementation of the method requires the generali
tion of the staging algorithm to variable time slices

TABLE III. Comparison of the ground state energies a system of
coupled harmonic oscillators obtained by the PI-DMC method. The par
eters for generating the time steps aret150.9,d50.05,a53.

p t ^«vir& ^«prm& ^E&DMC

25 2.40 2.9060.01 3.0160.02 3.0460.02
50 3.65 2.9860.04 3.0760.03 ¯

75 4.90 2.9760.06 3.0360.04 ¯

100 6.15 3.0060.07 3.0260.04 ¯

TABLE IV. Comparison of the ground state energies a system of
coupled harmonic oscillators obtained by the PI-DMC method. The par
eters for generating the time steps aret150.9,d50.05,a52.

p t ^«vir& ^«prm& ^E&DMC

25 2.24 2.9460.01 3.0060.02 3.0460.02
50 3.99 2.9760.04 3.0060.03 ¯

75 5.24 2.9960.06 3.0260.03 ¯

100 6.49 2.9960.07 3.0460.04 ¯
l
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equivalently variable spring constants for each harmo
bond. This enables control of the acceptance probability
the terminal beads, and control over the convergence of
observables. We have also introduced a neighbor list
sample efficiently the moves for the terminal beads. The g
eralization of the staging algorithm and the neighbor list
essential for the method to work.

The results for systems of low dimensionality genera
by the new method agree well with analytical results or
sults generated by alternate methods applicable to low
mensional systems. The method also works well for
higher dimensional systems tested in this work. In the fut
we will assess the efficiency of the new method on la
many-body systems of physical interest. One such system
plan to study is the quantum anisotropic planar ro
model,25 in which anomalous phase transitions at low te
perature have been predicted. Evaluation of the ground s
order parameter and its moments will provide insight ab
this phase transition. We anticipate that the PI-DMC meth
will work well for many-body systems in which both DMC
and PIMC simulations are applicable.
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