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Parametrizing a polarizable force field from ab initio data.
I. The fluctuating point charge model
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We have developed a polarizable force field for peptides, using all-atom OPLS~OPLS-AA!
nonelectrostatic terms and electrostatics based on a fluctuating charge model and fit toab initio
calculations of polarization responses. We discuss the fitting procedure, and specific techniques we
have developed that are necessary in order to obtain an accurate, stable model. Our model is
comparable to the best existing molecular mechanics force fields in reproducing quantum-chemical
peptide energetics. It also accurately reproduces many-body effects in many cases. We believe that
straightforward extensions of our linear-response electrostatic model will significantly improve the
accuracy for those cases that the present model does not adequately address. ©1999 American
Institute of Physics.@S0021-9606~99!52402-1#
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I. INTRODUCTION

The development of accurate and reliable force field
a central objective of molecular modeling. For relative
simple systems consisting of small molecules of unifo
composition, such as liquid water, it is possible to fit
empirical pair potential to experimental data~typically ther-
modynamic quantities!. Such potentials can give a reaso
able description of microscopic properties such as the liq
state radial distribution function. However, for more comp
cated molecules in heterogeneous environments, it is not
sible to construct an accurate set of potential functions fr
experimental information alone. Hence,ab initio quantum-
chemical calculations have become an increasingly imp
tant source of fitting data. Most of the current generation
protein molecular modeling potential functions use such d
to a greater or lesser extent.1–15

Even with the use of quantum-chemical methods, ho
ever, there are fundamental limitations on the accuracy
tainable in describing a complex chemical system with
pairwise additive functional form. For liquid water, it is re
sonable to represent many-body energetic effects in the
tem via an averaged enhancement of the two-body inte
tion energy, because each molecule can be thought o
existing in a substantially equivalent environment on a r
sonably short time scale. In a protein, however, this is not
case; different amino acids are surrounded by very differ
molecular environments, and averaged interaction par
eters cannot hope to represent all of these reliably. It will
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necessary to include many-body effects explicitly in order
obtain truly quantitative accuracy in the next generation
force fields.

There is another reason why the use of a pair poten
creates major problems in the development of molecu
modeling force fields. If one models polarization effects v
empirical adjustment of terms in a pair potential, one can
then fit these terms toab initio calculations on gas-phas
molecular pairs. This makes it difficult to reliably param
etrize interactions like hydrogen bonding. Most force fiel
represent hydrogen bonding primarily by electrostatic int
actions between the donor and acceptor groups. Our gr
has recently shown, however, that electrostatics often p
vides a quantitatively inaccurate evaluation of hydrog
bonding; in fact, hydrogen bonding correlates more stron
with the acidity or alkalinity of the participating groups tha
with their partial charges.16 A quantitatively accurate de
scription of hydrogen bonding requires development o
force field explicitly representing many-body effects. Such
force field can be required to reproduce both gas-phase
~via the many-body terms! condensed-phase molecular pro
erties; thus it can be fit to quantum-chemical pair data w
out compromising its applicability to condensed-phase ca
lations.

In order to construct a force field explicitly modelin
many-body effects, we must first determine what functio
form is required to properly represent many-body energe
as determined from accurate quantum chemistry. Our gro
and others, have concluded that the great majority of ma
body interactions can be well represented via a simple c
sical electrostatic model that includes local polarizability.17,18

Furthermore, linear response is a very good approxima

sti-
© 1999 American Institute of Physics
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when electric fields on the order of typical strong interm
lecular interactions are applied to a molecule. Thus, lin
response models, such as those involving fluctua
charges19,20 or polarizable dipoles,21–23 are in principle ca-
pable of providing a quantitatively accurate description
many-body energetics.

If this analysis is correct, the major obstacle to wid
spread use of polarizable force fields for complex chem
systems is that they involve many more parameters than
responding potentials that do not include polarizability. It
nontrivial to determine these added parameters from exp
mental data. Furthermore, using polarizable force fields
creases the computational cost of carrying out simulatio
although the increase can be relatively modest for cer
functional forms. If we are to go to the considerable ad
tional trouble and expense of incorporating polarizability,
require methods for assessing the errors in the model.
broad applicability, we also seek a systematic approac
parameter development. In contrast, the great majority of
larizable models published in the past decade have re
uponad hocparametrization methods that may yield reaso
able results for a small number of examples, but would lik
fail or become intractable in attempting to deal with a lar
set of molecules.

We present here a systematic, largely automated
proach to determining the parameters for a polarizable fo
field from ab initio quantum-chemical calculations, and
rigorous method for monitoring the accuracy with which t
force field reproduces many-body energetics. We have c
sen in our initial work to describe the polarizable electros
ics using a fluctuating charge~FQ! model such as that de
scribed by Berne and co-workers,20 based on
electronegativity equalization principles.24–29,19 Such a
model has the advantage of having a relatively low com
tational cost when applied to large-scale molecular simu
tions. FQ and other point-charge models may not be
equate, however, for several important classes of functio
groups such as aromatic rings~where a point charge mode
certainly cannot describe the out-of-plane polarization
sponse! or bifurcated hydrogen bonds to carbonyl oxyge
an important motif in some types of drug–protein intera
tions. Thus we believe that we will need to augment
current FQ model in order to achieve a level of quantitat
accuracy suitable for the next generation of force fields;
purpose of our exploration of this model is principally
demonstrate the feasibility of automatic fitting of paramet
to ab initio data. It is formally and computationally straigh
forward to incorporate polarizable dipoles into the mod
and we expect to report results in the near future for such
expanded model.30

In Sec. II, we present a theoretical formulation of t
model, and describe the computer implementation requ
to fit parameters efficiently for large systems. In Sec. III,
construct a polarizable force field for the alanine dipept
based on the OPLS-AA force field,1 by replacing the fixed
charge electrostatics with the FQ model and making a sl
modification to the Lennard-Jones parameters. We test
transferability of this force field by applying it to the serin
dipeptide, and by calculating energies for ten conformati
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of the alanine tetrapeptide, structures that our group has
viously studied with quantum chemistry.31 We compare the
performance of this ‘‘OPLS-FQ’’ force field with conven
tional fixed charge force fields and accurate quantu
chemical data. Finally, in Sec. IV, we discuss future dire
tions of research.

II. THEORY

A. Fluctuating charge model

The potential energy in an FQ model is given by19

E5
1

2 (
i j

Ji j qiqj1(
i

qi~x i1f i !, ~1!

where Ji j is a ‘‘Coulomb’’ matrix element,qi is a partial
charge on sitei, f i is the value of the external electrostat
potential at sitei, andx i is the ‘‘electronegativity’’ of atomi.
Others have justified this equation in terms of fundamen
quantum-chemical arguments, for example via density fu
tional theory.26–29Our use of the FQ model focuses more
the mathematical form of Eq.~1! and its solutions, and les
on the precise physical interpretation of the quantitiesJi j and
x i .

Application of the variational principle to Eq.~1!, by
minimizing the energy with respect to the chargesqi subject
to the constraint of constant total charge, yields the se
linear equations

Jq52~f1x!. ~2!

Our interpretation of the components of Eq.~2! is as follows.
At sufficiently large separation of sitesi and j, the matrix
element Ji j must revert to the bare Coulomb interactio
1/r i j , as other effects fall off rapidly with distance. Empir
cally, the use of the bare Coulomb term appears to be a
rate unless the atoms in question are connected by one or
bonds ~i.e., ‘‘1–2’’ or ‘‘1–3’’ interactions!. The self-
interaction termsJii represent the penalty for adding or r
moving charge from sitei, which presumably depends o
very complex quantum-chemical effects as well as Coulo
bic energies.

These diagonal and near-neighborJi j interactions can
qualitatively be thought of as ‘‘screened Coulomb’’ term
but it is not clear that we could easily derive quantitative
accurate formulas for them fromab initio quantum chemistry
along these lines. Rather, it seems more useful to sim
considerJ as a linear response matrix that converts an in
external field and/or electronegativity vector into a set
partial atomic charges. If we were to replace the par
chargesqi on atomic sites by a dense grid of charge densi
r(r i) where ther i are the grid point locations, we coul
rigorously identify the inverse of theJ matrix as the Green’s
function G(r,r 8) and derive the equivalent of Eq.~2! from
standard Rayleigh–Schro¨dinger perturbation theory. In prac
tice, we must use a more heuristic definition of the cha
distribution @in the present work, we use electrostati
potential-fitted~ESP! partial charges32#, which renders any
rigorous derivation problematic. This means that we may
well consider the ‘‘near’’Ji j s to be adjustable parameter
which we hope will be specific to local functional groups a
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743J. Chem. Phys., Vol. 110, No. 2, 8 January 1999 Banks et al.
hence transferable between molecules. The problem of
veloping an FQ model fromab initio data is thus reduced t
determining theJi j s not specified by Coulomb’s law. W
subsequently determine thex is using charges computed
the absence of any external field.

B. General linear response analysis of polarizable
models

The above analysis is not restricted to an FQ model w
point charges on atom centers only. A simple generaliza
of the model is to allow sites to be defined anywhere
physical space—for example, on the ‘‘M site’’ of the TIP4P
water model,33,20 on bonds between atoms, at lone pair po
tions, or above and below the plane of an aromatic ring.
of these models are linear response models and the only
ference is the number of charge sitesN and the location of
these sites. Furthermore, a polarizable dipole model is al
linear response model, although its equations involve elec
fields ~gradients of potentials! as well as electrostatic poten
tials. The formalism and computational procedures
present here can readily be applied, with minimal modifi
tion, to incorporate off-atom charges, polarizable dipoles
both.

The theoretical accuracy achievable with the model
pends on the choice of the charge representation—the n
ber, type, and location of polarizable sites. Assuming tha
linear response model is an accurate picture—and our
merical tests indicate that it is, for field strengths relevan
intermolecular interactions—the only important question
whether a particular linear response model is capable o
producing the properties of the actual quantum-mechan
system. On the other hand, we have found that attemptin
reproduce the quantum-chemical response spectrum to
trary precision can lead to an unstable model. We investig
these issues in more detail in Secs. II C 1 and III. Here,
discuss the technology that we use to collect the quant
chemical data and derive a linear response model from

Suppose we want to build a linear response model o
single conformation of a particular molecule. Our basic p
cedure is to perturb the molecule with a series of app
electric fields, which we design to span the space of fie
relevant to intermolecular interactions. We have develo
an automated code that places point-charge or dipole pr
at various locations surrounding the molecule. The first s
we fill are potential hydrogen bonding positions, includi
points above and below the centers of aromatic rings~taking
the p electron clouds to be potential hydrogen-bond acc
tors!. In general, there are not enough such sites to gene
a sufficiently large set of fields to fit the parameters of o
model, and we add probes either at random locations~be-
yond some minimum distance from the molecule! or uni-
formly spaced on the molecular van der Waals surface.
cause we exclude an infinite set of fields from our fit, a
indeed because we restrict our model itself to a finite num
of sites comparable to the number of atoms, we may end
with a model that cannot fit the response to very stro
fields, or those containing large, rapid oscillations on
atomic scale. But such a model may still be perfectly su
cient to describe the interactions of actual molecules. Mo
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over, our tests on several small molecules indicate that
polarization energies that the model predicts are insens
to the precise choice of nonhydrogen-bonding probe sites
the fit, suggesting that additional probes would not add s
nificant information.

Initially, we determine ‘‘zero-field’’ charges by perform
ing an ESP fit32 on the gas-phase wave function of the mo
ecule. Then we perform such a fit for the wave functi
computed from each applied field calculation. The diffe
ences in the partial charges on sitesi, due to applied fieldk as
compared to the gas phase, are denoteddqik , or in vector
notationdqk. The linearity of the model then allows us t
subtract Eq.~2! for the gas phase from the same equation
each applied field, implying that the FQ Coulomb matrixJ
should satisfy

Jdqk52fk , ~3!

wherefk is a vector specifying the value of thekth applied
potential at the various sites of the FQ model. Note that
site electronegativitiesx do not appear in this equation. The
affect the gas-phase charges on the molecule, but the li
response matrix depends solely on the charge shifts indu
by applied fields.

In general, if there areN charge-carrying sites in the FQ
model, we require data fromM applied fields, whereM
.N. Given sufficient data, we use a least-squares formali
which adds stability and reliability to the fitting procedure.
a straightforward implementation of this formalism, the r
sidual errore in the least-squares sense is defined as:

e5 (
k51

M

wk(
i 51

N S (
j 51

N

Ji j dqjk1f ikD 2

, ~4!

wherewk is a weight assigned to datasetk. ~In fitting experi-
mental data, the appropriate weight for a data point is
reciprocal of its variance; but the weights we use have
such interpretation in terms of uncertainties in ourab initio
‘‘data.’’ Unless otherwise specified, we use equal weights
all data.!

If we ignore for the moment the issue of the appropria
functional form for theJi j , we can find the set of valuesJi j

that minimizese by solving the normal equations:

(
j ,k

Ji j dqjkwkdqkl
T 52(

k
f ikwkdqkl

T . ~5!

We can solve this set of equations numerically, using st
dard techniques for linear systems on the square ma
dqwdqT. Since we do not know in advance that all thefks
are linearly independent~and indeed our calculations ind
cate that they often are not!, we prefer to use the singula
value decomposition formalism~SVD! to solve Eq. ~5!.
Equivalently, we can apply SVD directly to the overdete
mined system of Eq.~3!, ‘‘inverting’’ the N3M matrix dq
to obtain the values ofJi j that come closest, in the leas
squares sense, to satisfying this equation. We set the S
cutoff sufficiently low that the eigenvalues we omit~typi-
cally ranging from 1025 to 10230 times the largest eigen
value! clearly represent degeneracies in the fields rather t
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actual physics. Although SVD is generally slower than oth
linear system methods, we have found the computation ti
acceptable for the systems we have studied.

In the calculations described here, we impose the c
straint Ji j 5Jji on the matrix elements, in keeping with th
physical interpretation of theJi j s as Coulomb matrix ele
ments. Allowing an asymmetricJ matrix would in general
produce a fit with a smaller residual, but we have not fou
this generalization necessary.

It is important to note that solving Eq.~5! for Ji j actually
solves the wrong optimization problem. We want to find t
FQ model that produces polarization chargesdq that agree
with those from quantum mechanics, given input potent
f. As written, the least-squares equations instead minim
the error inf given an inputdq. If the solution forJ results
in a residual exactly equal to zero, then the two conditio
are equivalent. In general, however, there will be signific
differences in the nature of the errors that appear.

One way to understand this problem is through an eig
value analysis of the linear response matrixJ. Solving Eq.
~5! weights the contributions of the various eigenvectors oJ
in direct proportion to their eigenvalues. In the polarizati
response to an external field, however, the contribution o
given eigenvector ofJ to dq is proportional to the reciproca
of the corresponding eigenvalue, so it is more importan
represent the small-eigenvalue modes accurately.

To minimize the errors indq, it would thus be better to
fit the inverse of theJ matrix, J21. In this formulation, the
residual is

e5 (
k51

M

wk(
i 51

N S (
j 51

N

Ji j
21f jk1dqikD 2

. ~6!

We show in Secs. II C 3 and III that minimizing this residu
leads to a highly accurate reproduction of the quantu
mechanical response modes.

Solving forJ21 is likely to give the best and most stab
fit to a single conformer for any given version of the F
model, and as such can be a useful validation tool for me
ods such as the ‘‘direct’’ solution forJ. Unfortunately, a
given element ofJ21 has contributions from all atoms in th
molecule, and its analytical form at long distances is uncle
unlike the simple Coulomb form of the elements ofJ. There-
fore, this approach is not useful for developing a model t
is transferable among different molecules, or even differ
conformations of one molecule.

To fit a transferable functional form, then, we must u
Eq. ~5!, and face the numerical instabilities resulting from
fitting procedure that suppresses precisely the modes c
sponding to large polarization responses. A naı¨ve implemen-
tation of this approach is in fact numerically unstable for
but the smallest target molecules. We have made signifi
technical improvements, however, which render the fitt
procedure stable. We have automated most parts of t
techniques, which is essential to our objective of develop
the model with a minimum of human intervention. We d
scribe these improvements in Sec. II C.
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C. Construction of a numerically stable fitting
procedure for the linear response matrix

We describe below three techniques for enhancing
stability of the linear response model when fitting theJ ma-
trix directly @Eq. ~3!#. The combined use of all three tech
niques appears to be necessary to generate stable and re
results, as we discuss in Sec. III. Careful examination
factors affecting stability is in its infancy, however, and w
expect that new approaches to filtering noise will provi
further improvements in the results.

1. Removal of small-eigenvalue modes from the
electrostatic potential fit results

It is well known that when a molecule has ‘‘buried
atoms~that is, atoms with no exposed surface area!, the ESP
fitting procedure becomes numerically unstable.34 In such
cases, the matrix that appears in the normal equations o
ESP fit has small eigenvalues. This matrix is derived fro
the Coulomb operatorRi j 51/r i j , where r i j is the distance
between a charge sitei and a grid pointj where the electro-
static potential is to be fit. Its small eigenvalues correspo
to charge distributions that have small effects on the elec
static potential outside the surface on which the grid poinj
lie, typically the molecular van der Waals surface. Su
charge distributions have very small dipole~and other low
multipole! moments, and are typically delocalized over t
entire molecule.

Because the external field associated with an unsta
ESP eigenmode is small, obtaining an accurate measur
its amplitude in a least-squares procedure is problema
Small changes in the molecular geometry can have a sig
cant influence on the optimized eigenvector coefficients, p
ticularly if the modes are relatively delocalized. When t
‘‘signal’’ is small to begin with, as it inevitably will be for an
unstable mode, the ‘‘noise’’ associated with these geome
alterations leads to an erratic representation of the geom
dependence of the mode. It is very difficult to reproduce
behavior of such modes with a simple functional form su
as we use in our FQ model, particularly since there are pr
lems with the inverted weighting of the small-eigenval
modes in any case. In practice, we find that inclusion
unstable ESP-fit modes leads to chronic and apparently
mediable instabilities in the resulting FQ model.

We take a straightforward approach to the unstable m
problem, and project these modes out of the fit using sing
value decomposition. Note that here, in contrast to the us
SVD to remove degeneracies in fitting theJ matrix, we may
be omitting physically plausible charge distributions. Th
raises the practical question of where to set the eigenv
cutoff. If the cutoff is too small, some small-mode instabi
ties remain; if it is too large, the electrostatic representat
of the molecule may be inaccurate. We desire a system
method for finding a compromise that ensures stability wh
only marginally diminishing accuracy.

Fortunately, the same characteristic that renders a m
unstable—it produces a very small electrostatic potential o
side of the molecular van der Waals surface—also imp
that its contribution to the polarization energy is minima
Indeed, the interaction of such a charge distribution w
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other molecules is fundamentally limited, as a test charg
a realistic location for any interacting molecule will be ou
side of the van der Waals surface. This suggests a prac
approach to assessing the energetic importance of any g
mode. We place probe charges at hydrogen-bonding
tances~the closest intermolecular interaction that is impo
tant in a real system! at various points surrounding the mo
ecule and calculate the electrostatic interaction energy of
charges with the various ESP eigenmodes of the molec
Table I presents typical results from one conformation of
alanine dipeptide. We see here that the small-eigenv
modes indeed interact only weakly with the probes. We
therefore use this criterion to choose an eigenvalue cutoff
the ESP fit. In practice, we are still experimenting with t
choice of this cutoff, which is therefore not yet an automa
feature of our procedure.

It is also helpful that the many-body polarization ener
is typically one order of magnitude smaller than the tw
body Coulomb interaction. This suggests that we can cut
the ESP fit at a larger eigenvalue for fitting the linear
sponse matrix, and use a smaller cutoff to generate the e
tronegativities. This approach increases the stability of
linear response matrix while allowing a more accurate
scription of the permanent~zero-field! charges. If we instead
calculate the electronegativities using the larger cutoff
quired for stability, we produce inaccuracies in many-bo
energies on the order of 0.2–0.5 kcal/mol. With the tw
tiered scheme proposed above, errors attributable to the
fitting protocol are only about 0.1 kcal/mol. We consider th
to be acceptable for a prototype force field. For the alan
dipeptide, all six conformers we use in the FQ fit have sim

TABLE I. Eigenvalues~atomic units! of the ESP fit for the alanine dipeptid
C7eq conformation, and interaction energies~kcal/mol! of the corresponding
charge distributions with each of three external probes placed in hydro
bonding positions. The first and last eigenmodes arise from the cha
conservation constraint.

Eigenvalue E~probe 1! E~probe 2! E~probe 3!

20.0150 20.0544 20.0569 0.0045
0.0034 20.0635 0.1548 20.0485
0.0045 0.2370 0.1739 20.0017
0.0051 20.3277 0.0395 20.0747
0.0067 20.0148 20.1989 0.1844
0.0115 0.9978 0.4152 0.6276
0.0259 21.1860 1.2246 21.4713
0.0969 23.1833 1.9274 0.3588
0.1698 2.3057 2.3277 25.6939
0.5429 23.5148 26.9225 27.2461
0.6478 20.7221 6.0713 24.5768
0.7707 24.9499 22.3820 24.1117
0.8823 8.3657 25.4829 23.6771
1.3756 2.9930 21.1686 20.8254
2.3583 2.4858 1.7092 21.8747
2.5891 6.7303 2.2138 1.0462
3.1523 23.5317 2.0916 24.7158
5.0301 6.9582 0.8175 215.5601
5.4441 7.2251 15.7573 3.3441

15.0500 216.7209 8.4220 27.6560
54.3794 6.9615 26.9842 6.1629
75.2700 29.0679 11.6403 12.1804

1598.6489 230.5530 230.3299 33.5109
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lar patterns of ESP eigenvalues, and similar interaction e
gies of the corresponding charge distributions with exter
probes. In Sec. III B, we present results for an FQ model
this molecule that involves cutting the four smallest posit
eigenvalues~as well as the negative eigenvalue associa
with the charge-conservation constraint! out of the data for
the electronegativity calculation~zero-field charges!, and
cutting the eight lowest positive modes out of the polariz
tion charges to which we fit the linear response matrix.

To implement the ESP eigenvalue cutoffs in fitting t
linear response model, we simply use the polarizat
charges computed with these cutoffs as the fitting datadq in
Eq. ~3!. In other words, we ignore polarization respons
proportional to the omitted ESP modes. As we have no
above, attempting to fit the linear response matrixJ to re-
sponses including these modes leads to serious instabil
so this effective damping of the unstable modes is crucia
achieving a robust and reliable linear response model
can properly represent the system across a wide rang
geometries.

2. Use of bond space rather than site space in the
fitting protocol

Equations~1!–~3! represent the charge distribution o
the molecule in terms of atom-centered point charges, wh
sum is constrained to equal the net charge on the molec
This constraint does not directly appear in the least-squ
formalism for solving Eq.~3!. Instead, the ESP fitting proce
dure incorporates a Lagrange multiplier formalism, whi
guarantees that theab initio polarization charges resultin
from any applied field sum to zero, preserving the n
charge. Thedq vectors that we use to fit theJ matrix thus
span only an N21-dimensional subspace of th
N-dimensional space of all possible charge distributions
an N-atom molecule, and the resultingJ, if it were an exact
solution of Eq.~3!, would be of rankN21 and have a zero
eigenvalue.

We have empirically determined that we can avoid so
of the instability in theJ matrix by explicitly changing vari-
ables to anN21-dimensional representation of the char
distribution, which conserves charge automatically. We
fine bond-charge increments~BCIs! hi j , on bonds connect-
ing atom sitesi andj, which are related to the site chargesqi

by

qi5(
j

hi j , ~7!

where the sum is over all atomsj bonded to atomi. If
hji 52hi j , the chargesqi automatically sum to zero; for an
ionic molecule, we can add fixed chargesqi

(0) to sum to the
desired net charge, without affecting thehs or the linear
response matrix. An acyclicN-atom molecule has exactl
N21 bonds, and Eq.~7! uniquely determines thehi j s. A
cyclic molecule has additional bonds to close rings, lead
to ambiguities in the BCIs. We resolve this by fixinghi j

50 for one bond in each ring.~The arbitrary choice of which
bond to ‘‘cut’’ in this manner can significantly affect th
resulting values of the response matrix elements, and

n-
e-
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tailed work with ring molecules will require an appropria
method for ‘‘averaging out’’ such effects. In preliminary in
vestigations, we have achieved reasonable results by sim
replicating datasets in the least-squares fit, choosingh50 for
a different bond in each replica.! Once we have chosen a
unambiguous set of BCIs, it is straightforward to expre
them in terms of the charges:

hk5(
i

akiqi , ~8!

where the coefficientsaki are all 0, 1, or21, and depend
solely on the topology of the molecule, not on the values
theqs in a given conformation or environment. Thus we c
compute the coefficients once for a given molecule, and s
them for repeated use as needed.

The formal transformation of the fitting equations fro
‘‘site space’’ to ‘‘bond space’’ is straightforward. We firs
rewrite Eq.~7! as a sum over bondsl rather than neighbo
atomsj:

qi5(
l

hil , ~9!

where we can take the sum to run over all bonds in
molecule, if we definehil 50 for bondsl that do not connec
to atom i. Clearly if bond l connects atomsi and j, then
hil 52hjl . If we adopt the convention to list the atoms
bond l as ~p,q! with p always less thanq, then we can write

hil 5~d ip2d iq!hl , ~10!

whered ip andd iq are Kronecker deltas, andhl is the bond-
charge increment that bondl contributes to its ‘‘first’’ atom,
p.

We insert the defining equations~9! and~10! into Eq.~1!
to obtain the energy expression in bond space:

E5
1

2 (
lm

~Jil ,im2Jil , jm2Jjl ,im1Jjl , jm!hlhm

1(
l

@~x i l 1f i l !2~x j l 1f j l !#hl , ~11!

where for each term in the sums, bondl connects atoms~il,jl !
and bondm connects atoms~im,jm!, with i l , j l and im
, jm. Applying the variational principle to this equatio
yields

(
m

Mlmhm52~x l81f l8!, ~12!

where we have defined the bond-space equivalents ofJ, x,
andf by

Mlm5Jil ,im2Jil , jm2Jjl ,im1Jjl , jm , ~13!

x l85x i l 2x j l , ~14!

f l85f i l 2f j l . ~15!

As we did above to obtain Eq.~3! from Eq. ~2!, we subtract
Eq. ~12! for zero field from the same equation for a give
electrostatic potential distributionf8, to obtain:

Md h52f8, ~16!
ly

s

f
n
re

e

whered h is related tod q by exactly the same linear trans
formation as betweenh andq.

The definition, in Eq.~13!, of the bond-space matrix
elementMlm expresses it in terms of the site-space mat
elementsJi j that connect one atom in bondl to one in bond
m. As we have explained in Sec. II A, we take the function
form of a givenJi j to depend on the ‘‘topological separa
tion’’ of atoms i and j—the number of bonds connectin
them. In particular, we take theJi j s for ‘‘1–4’’ ~three inter-
vening bonds! and more distant interactions to have the pu
Coulomb form, and those for closer interactions to be in
pendent of the molecular geometry~see Sec. II D!. A given
Mlm , however, combinesJi j s of several different topologica
separations, and a givenJi j contributes to several differen
Mlms. ForMlms that contain no Coulomb contributions, w
can fitMlm directly rather than the individualJi j s. For those
that involve both Coulomb and non-CoulombJi j s, we must
fit the non-Coulomb contributions separately, and ensure
the same non-Coulomb contribution to two differentMlms is
not fit by two separate parameters. We enumerate he
minimal set of independent parameters that determine all
non-Coulomb parts of various topological classes ofMlms.
The notation J(12n) here indicates aJi j for separation
12n, wheren51 ~diagonal!, 2, 3, etc.

Diagonal elements: For l 5m, Mlm has contributions
from two J(121)s and oneJ(122), but we fit the combination
as a single parameter.

Touching bonds: If l andm have one atom in common
there are again no Coulomb contributions, so we again fi
single parameter.

Torsional terms: If l and m are separated by one add
tional bond~that is, they form the outer bonds of a torsion
angle!, thenMlm contains oneJ(122), two J(123)s, and one
Coulomb term. We fit separate parameters for theJ(123)s,
and a ‘‘torsional’’ parameter representing theJ(122). Note
that we must constrain eachJ(123) contribution to be equa
to the contribution of the same atoms to otherMlms. But we
need not relate the torsional parameter to theJ(122) contri-
butions in the previous classes ofMlms, since these are com
bined with other contributions in a single overall parame
in those classes.~If we call the overall parametera and the
J(122) contributionb, and letc5a2b, then we are free to
treat eithera and b or c and b as the independent param
eters.!

Two intervening bonds: SuchMlms are composed of on
J(123) and three Coulomb terms. SinceJ(123)s are treated as
independent parameters in the previous class, we must a
constrain theJ(123) contribution to one of theseMlms to be
equal to the contribution of the same atoms to otherMlms.

More than two intervening bonds: For such distant sepa
rations,Mlm contains only Coulomb contributions.

3. Nonlinear refinement of the linear response matrix
elements

The procedures we have described have the advantag
employing a linear least-squares methodology to determ
the linear response matrix elements. Solution of a linear s
tem of equations is rapid even if there are thousands of v
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ables, and issues such as multiple minima or slow con
gence, which are important effects when solving nonlin
equations, do not arise for a linear system.

As we have noted in Sec. II B, however, our formalis
really solves thewrong linear least-squares problem. W
minimize the error inf, whereas for stability and accurac
we really want to minimize the error ind q, which is anon-
linear function of the response matrix elementsJi j . ~It is of
course a linear function of the inverse matrix elementsJi j

21,
but as we have pointed out, these matrix elements are
suitable for constructing a transferable potential functio!
This suggests that we can improve on the results of the le
squares fit to Eq.~3! @or Eq. ~16! in bond space# by using
them as an initial guess in a standard~e.g., conjugate gradi
ent! nonlinear optimization of the true residual, Eq.~6!. Us-
ing a very good initial guess defuses the multiple minimu
problem—presumably, we are starting quite close to the
timal solution—and significantly reduces the computatio
effort necessary to carry out the optimization, as compare
a random starting point.

The major computational expense in the nonlinear o
mization procedure is the determination of the derivatives
the objective function with respect to the fitting paramete
Finite difference computations of these derivatives would
volve evaluating the objective function, and thus inverti
the linear response matrix, at least one extra timeper param-
eter at each iteration of the minimization algorithm. Instea
we derive analytic expressions for the derivatives that
volve far fewer inversions of the matrix, and allow an eva
ation procedure that scales favorably with system size.

We want to minimize the objective functione as given
by Eq. ~6!. We rewrite this equation as

e5(
k

wk(
i

~yik
~fit!2yik

~0!!2, ~17!

whereyik
(0) is the ‘‘correct’’ ~ab initio! value ofdq ~or dh)

for site ~or bond! i in datasetk, and

yjk
~fit!52(

i
Jj i

21f ik ~18!

is the fit value of the same quantity at a given stage of
fitting procedure. We assume that the elements of theJ ~or
M ! matrix, and thus those ofy(fit) , depend on some param
etersAp , which we vary in the nonlinear fit. As we explai
in Sec. II D, we typically take the parameters to be the n
CoulombJi j s themselves, with no spatial dependence. T
makes the dependence of the matrix elements on the pa
eters completely trivial in site space, and almost as trivia
bond space. The dependence of the objective function on
parameters is given by

]e

]Ap

52(
k, j

wk~yjk
~fit!2yjk

~0!!
]yjk

~fit!

]Ap

. ~19!

We note that as theAps change, Eq.~18!, defining the
relationship between theJi j s and theyi

(fit)s, remains valid. In
other words, the quantities
r-
r

ot
.
st-

p-
l
to

i-
f
.
-

,
-
-

e

-
is
m-
n
he

(
j

Ji j ~A!yjk
~fit!~A!52f ik ~20!

are independent of theAps. We use this equation to solve fo
the ]yj /]Aps in terms of the]Ji j /]Aps:

(
j

]

]Ap
~Ji j y jk

~fit!!5(
j

F S ]Ji j

]Ap
D yjk

~fit!1Ji j S ]yjk
~fit!

]Ap
D G50,

~21!

]yjk
~fit!

]Ap
52(

i ,r
Jj i

21S ]Jir

]Ap
D yrk

~fit! . ~22!

Plugging Eq.~22! into Eq. ~19!, we get an analytic expres
sion for the derivatives of the objective functione with re-
spect to the parametersAp :

]e

]Ap
522(

k, j
wk~yjk

~fit!2yjk
~0!!(

i ,r
Jj i

21S ]Jir

]Ap
D yrk

~fit! , ~23!

where the (]Jir /]Ap)s are all constants, many of them zer
At each optimization step, we need to invert theJ matrix
oncerather than once per parameter, and obtain the newyjs
from Eq. ~18!. Furthermore, we can arrange the order
calculating the sums so as to minimize computation time

D. Specification of a transferable FQ functional form

As stated above, we treat all interactions involvin
‘‘1–4’’ and more distant connections as simple Coulom
electrostatics, with no free parameters. Thus theJ(121),
J(122), and J(123) parameters are sufficient to specify th
linear response model. Our first ansatz is to define these
rameters to be independent of interatomic distances, for
same reason that conventional molecular mechanics f
fields set the equivalent Coulomb and van der Waals in
actions equal to zero. As in previous work,18 we assume tha
the valence part of the energy function, including such ter
as stretches and bends, completely describes the en
changes as a function of displacements of these interna
ordinates. In a polarizable model, however, setting the ‘‘v
lence’’ electrostatic terms to zero might make it more dif
cult to describe delocalized polarization modes involvi
coupled charge shifts. Instead, we achieve the same effec
eliminating the distance dependence of the interaction
rameters, thus avoiding large changes in the electrostatic
ergy upon displacement of internal coordinates~which in
quantum-chemical calculations are counterbalanced by o
equally large terms!. With this approach, we have found th
it is possible to use existing molecular mechanics param
sets, with minimal modification, to describe stretching a
bending interactions.

In this formulation, it is then natural to associate para
eters with atom types and attempt to build up a transfera
database of parameters. Because we fit directly toab initio
quantum chemistry, with no empirical modification fo
‘‘condensed phase’’ effects, in principle we can use a v
large set of highly sophisticated atom types, limited only
our ability to generate the quantum-chemical data, which
to recent computational advances is actually quite rapid
the present paper, we make no attempt to describe a c
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plete atom-typing approach; rather, we hand code spe
cases. However, the generalization to an arbitrary mole
is straightforward, if tedious, and is currently in progress

III. RESULTS

A. Overview

We present here five results we have achieved using
methods of Sec. II:

~1! We have constructed a polarizable electrostatic mo
for the alanine dipeptide, with parameters fitted to at
types over several conformations of the molecule.

~2! This electrostatic model accurately reproduces quant
chemical three-body energies for test cases consistin
the dipeptide and two external probes.

~3! We have assembled a complete force field for the dip
tide by combining our electrostatic model with th
OPLS-AA stretching, bending, torsional, and van d
Waals terms, with minimal modifications in paramete

~4! This force field performs well in ranking the energies
alanine tetrapeptide conformations, using as a ben
mark high level quantum-chemical energies that o
group has determined in previous work.31

~5! Using backbone parameters from the alanine dipep
model, and in one test adding side-chain parame
from fits to small molecules, we have constructed sim
electrostatic models for the serine dipeptide. The succ
of these models indicates that we can hope to ob
transferable electrostatic parameters by fitting a pola
able model to a tractable subset of the universe of
possible molecules.

We have selected polyalanine as a test case because
central to the construction of protein force fields. Most su
force fields in common use derive peptide backbone par
eters by fitting the alanine dipeptide surface. The coup
torsional interactions in the peptide backbone, and the hig
polar amide groups, present a significant challenge in fo
field development. It is highly nontrivial to reproduce te
rapeptide energetics: as our group has previously reporte31

many widely used protein force fields perform this task qu
poorly. If we can successfully model these energies, and
many-body effects, using a truly systematic protocol, th
there is substantial reason to believe that our methods
give satisfactory results for a wide variety of complex m
ecules.

B. Polarizable electrostatic model for the alanine
dipeptide

In previous work,31 our group has generated the s
minima on the alanine dipeptide surface at the HF/6-31G**
level via quantum-chemical minimization, followed b
single-point LMP2/cc-pVTZ~-f! calculations to determine
accurate energy differences. We list the~f,c! torsional
angles from the HF/6-31G** structures, and the
LMP2/cc-pVTZ~-f! relative energies, in Table II.

For each of these conformers, we generate a se
quantum-chemical responses to applied fields. By includ
data from all six minima, we aim to develop a model th
fic
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reproduces the molecular polarizability over a wide range
the dipeptide geometry. We use up to 30 polarization d
sets per conformer in a combined least-squares fit. For
results presented below, we solve the bond-space equa
~16! for the non-Coulombic parametersMlm describing 1–1,
1–2, and 1–3 interactions. We assign unique parameters
cording to the atom types defined in Table III. We use at
types, rather than optimizing each matrix element individ
ally, in the hope of generating a transferable model.

Table IV gives the root-mean-square~rms! error, and
maximum absolute error, in the individual polarizatio
charges resulting from several least-squares fits to ala
dipeptide data. In all cases shown, we used bond-sp
charges and fit the matrix elementsMlm by atom types rather
than individually. The cases differ in whether, and to wh
extent, we discarded small-eigenvalue modes in the ES
~see Sec. II C 1!, and whether we used a nonlinear optimiz
tion step to improve the model~see Sec. II C 3!. If all
data sets have unit weight in the fit, the rms error is relate
the objective functione of Eq. ~17! by

rms5Ae/Npts, ~24!

TABLE II. Alanine dipeptide HF/6-31G** torsional anglesf andc ~deg!,
and LMP2/cc-pVTZ~-f! relative energies~kcal/mol!, for six conformations
at local minima of the energy surface. Reproduced from Ref. 31, Tabl
and 2.

Conf. f c Energy

C7eq 285.8 278.5 0.00
C5 2157.9 160.3 0.95
C7ax 75.8 256.5 2.67
b2 2128.6 23.2 2.75
aL 66.9 29.7 4.31
a8 2166.4 240.1 5.51

TABLE III. Atom type codes for the FQ model.~In all cases,
code51003atomic number1subcode.)

Code Description Where found

104 Amide hydrogen Peptide backbone
108 Hydrogen ona-carbon
608 Carbonyl carbon
609 a-carbon
702 Amide nitrogen
802 Carbonyl oxygen

102 Acetyl ~methyl! hydrogen Peptide end groups
107 N-methylamide~methyl! hydrogen
606 N-methylamide~methyl! carbon
607 Acetyl methyl carbon
618 Acetyl carbonyl carbon

110 ~Methyl! hydrogen onb-carbon Alanine side chain
610 ~Methyl! b-carbon

132 CH2 b-hydrogen Serine side chain
133 Hydroxyl hydrogen
637 CH2 b-carbon
833 Hydroxyl oxygen

101 Water hydrogen Water
801 Water oxygen
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whereNpts is the total number of charge sites in the fit: wi
six conformers, 30 polarization datasets per conformer,
22 charge sites~atoms! in the molecule,Npts56330322
53960. Both the rms error and the maximum absolute e
are useful predictors of the stability of the model. In partic
lar, if the model severely overestimates polarization charg
these overestimates will increase during the course of a
ometry optimization or dynamics simulation, as the larg
fields from inaccurately large charges produce inaccura
large polarizations in nearby atoms. It is clear from Table
that cutting ESP modes, and nonlinear refinement, both
to significant improvements in the quality of the fit. We e
pect that accuracy on the order of 131022 charge units, as
in the last line of the table, will be sufficient for most pu
poses.

We present in Tables V–VIII the parameters of the F
model resulting from the bond-space fit to six alanine dip
tide conformations with four ESP eigenmodes cut from
zero-field charges~SVD cutoff50.01 charge units! and eight
modes cut from the polarization charges (cutoff50.2), in-
cluding nonlinear refinement. These parameters are as
fined in Sec. II C 2: in particular, the torsional parameter
Table VIII corresponds to theJ(122) contribution to the in-
teraction between a pair of bonds that, with the one interv
ing bond, form a torsional angle. In addition to testing t

TABLE IV. rms and maximum absolute errors, in electronic charge u
~ECU!, in alanine dipeptide polarization charges, from bond-space FQ m
els with various ESP cutoffs and with or without nonlinear refinement
parameters.~Perm. cut5number of modes omitted in calculation of zer
field charges. Pol. cut5number of modes omitted in calculation of polariz
tion charges.!

Perm. cut Pol. cut Refinement? rms error Maxuerroru

0 0 no 0.0062 0.0728
4 7 no 0.0046 0.0527
4 8 no 0.0028 0.0294
4 9 no 0.0036 0.0356
4 8 yes 0.0015 0.0097

TABLE V. Diagonal bond-space FQ parameters for the alanine dipep
The bondl connects atoms of typesi and j. Here and in the following three
tables, the elements of theM matrix are in units of kcal/~mol3ECU2!, and
the left-hand columns indicate the atom types to which each paramete
the right applies.

i j M ll

607 618 568.9222
607 102 608.6219
618 702 467.8894
618 802 727.3375
702 609 688.3098
702 104 953.3389
609 610 768.1983
609 608 750.4136
609 108 869.9510
610 110 588.4623
608 802 658.3106
608 702 502.9180
702 606 493.7056
606 107 555.3920
d
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quality of the fit as shown in Table IV, we have used the
parameters to calculate polarization charges for two con
mations not included in the fit. The~f,c! values for these
conformations~in degrees! are~50, 2130!, the location of a
seventh minimum of the LMP2/cc-pVTZ~-f!//HF/6-31G**
energy surface that Beachy of our group has generated;35 and
~260, 260!, in thea-helical region. The maximum absolut
deviation of the polarization charges from theab initio val-
ues for these two conformations is less than 0.02 cha

s
d-
f

e.
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TABLE VI. FQ parameters for pairs of touching bonds in the alanine dip
tide. The bondsl andm have the atom of typej in common.

i j k M lm

618 607 102 124.5923
607 618 702 249.1500
607 618 802 2242.4931
102 607 102 288.0543
702 618 802 195.8489
618 702 609 271.5046
618 702 104 2113.0463
609 702 104 235.8284
702 609 610 2269.8045
702 609 608 2230.9390
702 609 108 2341.8228
610 609 608 308.4848
610 609 108 423.1181
609 610 110 2242.2106
608 609 108 360.0264
609 608 802 2275.0995
609 608 702 2123.0615
110 610 110 291.9243
802 608 702 221.5866
608 702 606 239.2249
608 702 104 2151.3333
606 702 104 190.9834
702 606 107 2110.7396
107 606 107 240.3135

TABLE VII. FQ J(123) parameters from the bond-space fit to the alan
dipeptide.

i j k Jik

607 618 702 124.7523
618 702 609 140.9889
618 702 104 2109.4704
102 607 618 237.8984
607 618 802 21.9929
702 609 610 113.3700
702 609 608 126.6616
702 609 108 210.3136
802 618 702 298.9855
609 610 110 39.9734
609 608 802 23.5818
609 608 702 88.0342
104 702 609 274.3920
610 609 608 122.6962
608 702 606 90.6942
608 702 104 288.2562
108 609 610 54.0549
108 609 608 26.5267
802 608 702 253.5582
702 606 107 223.3979
104 702 606 18.3017
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units, indicating thatMlm matrix elements fit to the initial six
conformations are accurate for conformations elsewher
~f,c! space.

We have also tested the alanine dipeptide FQ mode
calculating three-body energies, which in the FQ model
sult from the polarization charges induced in one molec
by the field of others. For the six conformations used in
fit and the two additional ones mentioned above, we co
pared these energies with quantum-chemical calculation
the same quantities, which we performed using theJAGUAR

package.36 To compute three-body energies, we place t
dipolar probes at various hydrogen-bonding locations aro
the dipeptide, in each of the six conformations. If we des
nate the dipeptide as molecule 0 and the probes as mole
1 and 2, and writeEab... for the total energy of moleculesa,
b,..., in the same configuration in which they appear in
trimer, then the three-body energyE(3) is:

E~3!5E0122E012E022E121E01E11E2 . ~25!

In order to test only the polarization response of the dip
tide rather than its zero-field charge distribution, we u
fixed charges for the probes rather than full molecules w
their own FQ parameters. In this case, the two probes do
affect each other’s charges or energies, soE12 is always
equal toE11E2 , and we need calculate only four of th
seven terms in Eq.~25!. We discuss the specification an
effects of the zero-field charges of the dipeptide in S
III D 1.

Figure 1 compares the three-body energies in the

TABLE VIII. FQ J(122) parameters for bond pairs that define torsion
angles in the alanine dipeptide. Atoms of typesj andk form the central bond
of the torsional angle.

i j k l Jjk

607 618 702 609 2256.5389
607 618 702 104 2126.4916
102 607 618 702 59.8913
102 607 618 802 221.9929
618 702 609 610 2199.2578
618 702 609 608 2193.4015
618 702 609 108 263.4588
802 618 702 609 116.0067
802 618 702 104 217.0212
702 609 610 110 22.6303
702 609 608 802 224.4432
702 609 608 702 2181.9878
104 702 609 610 250.0440
104 702 609 608 77.4932
104 702 609 108 253.1452
610 609 608 802 38.7759
610 609 608 702 161.9010
608 609 610 110 11.4512
609 608 702 606 2166.5722
609 608 702 104 2103.7836
108 609 610 110 254.0549
108 609 608 802 259.6373
108 609 608 702 66.1640
802 608 702 606 69.0856
802 608 702 104 15.5274
608 702 606 107 241.6996
104 702 606 107 218.3017
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model to the correspondingab initio values. Except for the
two points represented by plus signs, the agreement is ex
lent, with an rms error~in the absence of these points! about
0.21 kcal/mol over all eight conformations studied. Exam
ing the trimer configurations, we find that both ‘‘bad’’ struc
tures have both probes in position to interact with the sa
dipeptide atom, as shown in Fig. 2 for the ‘‘C7ax’’ confor-
mation. In previous work,17 our group has found similar dis
crepancies in three-body energies for such ‘‘bifurcated
drogen bond’’ configurations. Physically, we would expe
the minimum energy for such a configuration to occur wh
the dipeptide atom’s dipole vector points in a direction ‘‘
between’’ the two probes. A model such as the current o
with point charges on atomic centers, clearly cannot rep
duce such behavior no matter how much the charges flu
ate. Preliminary results indicate that a model that also inc
porates point dipoles will produce significantly better resu
for these trimers, as well as for those involving probes ab
or below the plane of aromatic rings.30

C. Polarizable electrostatic model for the serine
dipeptide

We have also studied seven conformers of the se
dipeptide. Jorgensen provided the starting coordinates f

l

FIG. 1. Comparison of HF/6-31G** and FQ three-body energies for th
alanine dipeptide with two fixed-charge dipole probes. The1 symbols cor-
respond to trimers in which both probes interact with the same dipep
atom. Among the other data points,~L! corresponds to the six dipeptid
conformations used in fitting the FQ model, and~h! corresponds to two
additional conformations.
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OPLS calculations, and Beachy in our laboratory optimiz
them at the HF/6-31G** level of theory.37,35 Following Jor-
gensen, we label these structures ‘‘ser–1’’–‘‘ser –5,’’
‘‘ser–7,’’ and ‘‘ser–8.’’ ~Jorgensen’s original ‘‘ser–6’’ con-
formation apparently merged with another structure in
calculations.! For this molecule, the appropriate number
ESP modes to cut appears to vary over the different con
mations. The results we report here involved cutting betw
two and four positive-eigenvalue modes in the zero-fi
charge distribution, and six or seven for the polarizat
charges.

In addition to fitting FQ parameters to the serine d
directly, we have used this dipeptide to explore the trans
ability of the alanine FQ model. In this test, we constrain
the FQ parameters for interactions involving only backbo
atoms to be equal to the parameters for the same atom t
that we obtained from fitting the alanine dipeptide. In a
other fit, we used parameters for the serine sidechain at
that we obtained from an FQ fit to ethanol, in addition to t
alanine parameters for the backbone. In this case, the
free parameters in the model were those describing inte
tions between backbone and sidechain atoms. In both
these transferability checks, the fixed parameters we u
were from fits including nonlinear refinement. Table I
shows the rms and maximum absolute errors for each
these three fits, both before and after nonlinear refinemen
the remaining variable parameters~in the first case, all the
parameters! to fit the serine data. Interestingly, nonlinear r
finement of the fit to the alanine data results in backbo
parameters that fit the serine databetter than those resulting
from fitting the serine data directly but omitting the nonline
refinement step. Thus nonlinear refinement may improve

FIG. 2. Alanine dipeptide C7ax conformation, with two dipolar probes, bot
in positions to have hydrogen bond-like interactions with the same oxy
atom. The point-charge FQ model cannot accurately reproduce the t
body energy of this and similar trimers, resulting in the ‘‘bad’’ points
Figs. 1 and 3.
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only the fit to a given molecule, but also transferability
other molecules. On the other hand, nonlinear refinemen
the remaining parameters does not significantly improve
fit, and in particular does not give as good results as non
ear refinement of all the parameters from the initial linear
directly to serine.

Even with all parameters fit directly to serine, and no
linear refinement, the fit is not quite as good as we obtai
for alanine. But Table X shows that most of the largest err
in polarization charges in this model areunderestimates,
rather than overestimates, of the quantum-chemical val
Such errors are less likely than overestimates to lead to c
strophic instabilities in simulations.

Figure 3 shows three-body energies for the model
rectly fit to serine data, plotted against the correspondingab
initio energies. As for alanine, there are several ‘‘ba
points, which again correspond to trimer structures in wh
both probes interact with the same dipeptide atom. With
these points, the rms error is about 0.14 kcal/mol.

D. Complete polarizable force field for the alanine
dipeptide

1. Zero-field charges for the FQ model

The first step in constructing a complete polarizab
force field for the alanine dipeptide is to decide how
specify the zero-field charges in the FQ model i.e., how

n
e-

TABLE IX. rms and maximum absolute errors~ECU! in serine dipeptide
polarization charges, from bond-space FQ models with or without so
parameters fixed at values from fits to other molecules, and with or with
nonlinear refinement of the variable parameters.

Fixed param? Refinement? rms error Maxuerroru

None no 0.0169 0.1918
yes 0.0044 0.0394

Alanine no 0.0061 0.0535
yes 0.0057 0.0554

Alanine1ethanol no 0.0070 0.0581
yes 0.0060 0.0568

TABLE X. Errors.0.025 ECU ~absolute value! in the FQ fit to serine
dipeptide polarization charges.

Conf. Data set Site dq(FQ) dq(QM) Error

ser–1 1 9 0.001 24 20.024 63 0.025 87
1 10 0.000 91 0.029 41 20.028 50

ser–2 2 3 20.000 81 20.027 51 0.026 70
2 9 0.001 18 0.027 96 20.026 78
2 17 0.005 89 20.024 58 0.030 47
2 18 0.000 10 0.039 50 20.039 40

ser–3 1 13 20.000 16 0.033 02 20.033 18
ser–4 3 9 20.011 29 0.017 30 20.028 59

3 18 20.001 50 0.023 67 20.025 17
ser–5 2 12 20.118 23 20.143 33 0.025 10

2 18 0.003 09 0.029 57 20.026 48
ser–7 2 12 20.118 28 20.088 06 20.030 22

2 18 0.008 42 20.023 73 0.032 15
ser–8 2 12 20.118 22 20.144 44 0.026 22

2 18 0.002 95 0.029 00 20.026 05
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define the electronegativities. One possible strategy is to
culate ESP-fit charges at a high level of correlatedab initio
quantum chemistry and, using a least-squares formulation
the FQ electronegativities to reproduce these charges as
as possible over the range of dipeptide minima. This wo
be appropriate if we were assembling a force field entir
from scratch. In this case, we would fit all electrostatic p
rameters toab initio data, and fit van der Waals paramete
to liquid-state thermodynamic data, as in the work of J
gensen and co-workers.38,1

In this paper, however, our goal is proof of conce
rather than immediate development of a production-le
force field, and the liquid-state simulations and refitti
would be a demanding task. We therefore use the van
Waals parameters from the existing OPLS-AA force fiel1

This force field successfully reproduces molecular proper
including conformational equilibria, heats of vaporization f
neat liquids, and free energies of hydration. It also perform
near the top in our group’s earlier tests of fixed-charge fo
fields.31 We cannot simply useab initio charges with
OPLS-AA van der Waals parameters, however, primarily
cause the hydrogen bonding interaction between the carb
oxygen and N–H group~crucial for alanine polypeptide
structures and energetics! requires a balance between the v
der Waals and electrostatic terms. Therefore, we adopt a
ferent strategy here, one that may even prove to be viab
development of a production-quality model: we fit the ele

FIG. 3. Comparison of HF/6-31G** and FQ three-body energies for th
serine dipeptide with two fixed-charge dipole probes.~1! corresponds to
trimers in which both probes interact with the same dipeptide atom.
l-

fit
ell
d
y
-

-

t
l

er

s

d
e

-
yl

if-
in
-

tronegativities to reproduce OPLS-AA charges in a dipept
conformation with an internal hydrogen bond. We hope t
this protocol will properly model the key hydrogen bondin
interactions when the molecule is in the appropriate geo
etry. The test of the protocol is the ability of the resultin
dipeptide force field to reproduce the tetrapeptide energe
Table XI gives the electronegativity values that result fro
combining the OPLS-AA charges for the alanine dipept
with the FQ matrix elements of Tables V–VIII. Since w
obtained those parameters from a bond-space fit, the e
tronegativity parameters arex l8 , the difference in electrone
gativity between the atomsi andj joined by the bondl. Since
adding a constant to all electronegativities does not af
relative FQ energies, these differences are sufficient to de
the model. In order to obtain a unique parameterx l8 for each
pair of atom types, we perform a least-squares fit in ca
where the molecule contains multiple atoms of the sa
type.

2. Reproducing the alanine dipeptide potential
surface

Once we have specified our polarizable electrosta
model as above, and chosen to use the stretching, ben
torsional, and van der Waals functional forms fro
OPLS-AA,1 we proceed to make any necessary modifi

TABLE XII. Relative energies~kcal/mol! of alanine dipeptide conforma-
tions in the OPLS-FQ model~present work!, with ab initio and standard
OPLS-AA results for comparison. For both force fields, the conformatio
with ‘‘—’’ in the energy columns were not local minima of the potentia
but instead ‘‘decayed’’ during molecular mechanics optimization to low
minima nearby.

Conf. ab initio OPLS-FQ OPLS-AA

C7eq 0.00 0.00 0.00
C5 0.95 0.86 1.31
C7ax 2.67 2.11 2.55
b2 2.75 — —
aL 4.31 4.97 —
a8 5.51 4.63 6.49

TABLE XI. FQ bond-space electronegativity difference
@kcal/~mol3ECU!# for atom typesi and j joined by bondl, in the alanine
dipeptide. These result from applying the Coulomb matrix elements for
C7ax conformation to the OPLS-AA charges.

i j x l8

607 618 237.513 322
607 102 131.822 982
618 702 2256.290 958
618 802 2242.078 425
702 609 367.391 441
702 104 293.722 543
609 610 2135.837 733
609 608 2107.168 504
609 108 277.927 204
610 110 23.123 078
608 802 2184.034 028
608 702 2195.146 530
702 606 177.875 327
606 107 24.447 998
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tions to OPLS-AA parameters in order to reproduce the re
tive energies of the alanine dipeptide conformers. Althou
as noted above, for compatibility with OPLS-AA van d
Waals parameters we have chosen FQ electronegativ
based on the OPLS-AA charges, the variability of t
charges in our model may lead to ‘‘overcorrection’’ of e
fects that using the OPLS-AA ‘‘permanent’’ charges alrea
corrects for. In the dipeptide C7eq and C7ax conformers, for
instance, standard OPLS-AA produces internal hydro
bond distances that are 0.1–0.2 Å longer than theab initio
values, but accurately reproduces the energetics of the hy
gen bonds. With fluctuating charges, the polarization of
hydrogen bonds increases, resulting in distances 0.1–0
shorter than theab initio values. As a result, the hydroge
bond energy becomes more attractive than in the stan
OPLS-AA force field, and with the rest of the force fie
unchanged, this leads to discrepancies in the energie
these two conformers relative to those that lack the inte
hydrogen bond. To counteract this effect, we introduce n
zero Lennard-Jones parameters for the polar peptide hy

TABLE XIII. rms deviations in geometry~Å! and energy~kcal/mol! for the
alanine tetrapeptide, as compared to LMP2/cc-pVTZ~-f! energies at
HF/6-31G** geometries. The force field energies are at local minima
each force field surface~from unrestrained optimization!, and the rms en-
ergy deviation is over ten tetrapeptide conformations. The geometry rm
the average over the ten conformations of the all-atom rms deviation
tween the force field and HF/6-31G** coordinates. Results are reproduc
from Table 5 of Ref. 31, with results of the present work added in bold f
type. The null hypothesis is the case for which all conformers are equ
energy.

Force field/Method Geom. rms Energy rms

LMP2/cc-pVTZ~-f! ¯ 0.00
OPLS-FQ 0.38 0.94
HF/6-31G** 0.00 1.10
MMFF93 ¯ 1.20
MMFF 0.32 1.24
OPLS-AA~2,2! 0.16 1.31
MMFFs 0.24 1.40
OPLS/A-UA~2,8! 0.18 1.43
MM2X( e51.5) 0.51 1.49
MM3* 0.48 1.53
OPLS* 0.49 1.55
MM3* (e51.5) 0.45 1.58
GROMOS 0.39 1.60
HF/cc-pVTZ~-f! ¯ 1.69
MMFF(e51.5r ) 0.27 1.75
CFF95 0.41 1.86
MM3* (e51.0r ) 0.48 2.00
Null hypothesis ¯ 2.07
OPLS-UA~2,2! 0.26 2.19
AMBER* 0.48 2.39
MSI CHARMm 0.40 2.54
MMFF(e52.0r ) 0.29 2.56
CHARMM 22 0.86 2.56
CHARMM 19 0.76 2.73
AMBER* (e51.0r ) 0.47 2.75
AMBER 4.1 0.55 3.35
AMBER94 0.58 3.42
CVFF 0.98 3.91
AMBER 3 0.35 4.17
MM2* (e51.5) 0.96 4.91
MM2* 0.80 6.09
MM2* (e51.0r ) 0.83 6.14
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gens, which have no van der Waals interactions in stand
OPLS-AA. The values of these parameters, however,
considerably smaller than the corresponding ones for
phatic hydrogens: the radial parameters51.5 Å rather than
2.5, and the well depthe50.02 kcal/mol rather than 0.03
For the following results, we made no other modifications
the nonelectrostatic parameters of OPLS-AA.

Table XII gives our results for the dipeptide minim
along with theab initio values and the results obtained fro
the standard OPLS-AA force field. Here and in Sec. III E, w
use the Fletcher–Powell optimization algorithm in theBOSS

program,39 modified to use FQ electrostatics in the for
field. For the conformers that are the local minima of OPL
AA, the relative energies in the OPLS-FQ model are a
proximately as close to theab initio values as those in
OPLS-AA ~the rms deviation.0.6 kcal/mol in both cases!.
Furthermore, theaL conformer, which is not a local mini-
mum of OPLS-AA, is a local minimum of OPLS-FQ, whos
energy relative to the global minimum C7eq is within
0.7 kcal/mol of theab initio value. We were able to achiev
slightly better dipeptide energetics~rms .0.4 kcal/mol! by
refitting torsional parameters, but the resulting model w
unsuccessful in reproducing tetrapeptide energetics. Prel
nary results indicate that achieving a substantially bette
requires a better description of the charge distribution, s
as one incorporating point dipoles.

E. Calculation of tetrapeptide energetics

We now use the polarizable electrostatic model d
scribed above, combined with OPLS-AA parameters
other interactions, to calculate relative energies of ten alan
tetrapeptide conformers. As for the dipeptide, we start fr
the standard OPLS-AA bond-stretch, angle, torsional, a
Lennard-Jones parameters, and fit the electronegativitie
the fluctuating charge model to the OPLS-AA charges. W
assign the same Lennard-Jones parameters to the peptid
lar hydrogens as for the dipeptide, for the same reason.
the tetrapeptide, we find that the original OPLS-AA torsion
parameters give the best relative energies, so the follow
results do not involve any torsional refitting.

In previous work, our group has described the test se
tetrapeptide conformations, and the comparison of results

n

is
e-

e
in

TABLE XIV. Relative conformational energies~kcal/mol! for ten alanine
tetrapeptide conformations. Theab initio column contains LMP2/cc-
pVTZ~-f! energies, taken from the first line of Table 6 in Ref. 31. For t
OPLS-FQ~present work! and OPLS-AA results, the zero of energy is a
justed to minimize the rms deviation from theab initio results.

Conf. ab initio OPLS-FQ OPLS-AA

1 2.71 3.03 2.78
2 2.84 3.97 2.50
3 0.00 0.26 21.34
4 4.13 2.34 3.48
5 3.88 4.62 4.46
6 2.20 1.67 3.31
7 5.77 6.18 3.82
8 4.16 4.39 6.93
9 6.92 5.33 5.90
10 6.99 7.82 7.78
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a wide range of fixed charge force fields with accurate qu
tum chemistry.31 That work involved generating ten confo
mations of the tetrapeptide by molecular mechanics sea
then optimizing their geometries at the HF/6-31G** level
and calculating their energies at the LMP2/cc-pVTZ~-f!
level. Table XIII reproduces the rms structure and ene
deviations from Table 5 of Ref. 31 for the force fields test
therein, along with the OPLS-FQ results. Table XIV prese
the individual relative energies for each of the ten confor
ers, as computed with OPLS-FQ and standard OPLS-
compared with the LMP2/cc-pVTZ~-f! results of Ref. 31.
The performance of OPLS-FQ in this test is comparable
that of the original OPLS-AA, and superior to most of th
force fields examined in Ref. 31. As with the dipeptide, p
liminary data indicate that improving the rms energy dev
tion beyond the level of;1 kcal/mol will require a better
description of the molecular charge distribution.

IV. CONCLUSION

We have developed a polarizable force field for polya
nine, based on the FQ model, that reproduces both the
tramolecular energetics and the many-body polarization
sponse ofab initio quantum mechanics with reasonab
accuracy. We have demonstrated the transferability of
force field by applying parameters fit to the alanine dipept
both to a larger system and to another amino acid. Th
results suggest that construction of a full polarizable fo
field for proteins, including all 20 amino acids, is a viab
goal.

As we have indicated above, we believe that problem
our current technology arise from using a point-charge e
trostatic model. We have found a significant number of
amples in which the point-charge model is clearly ina
equate, and at least dipoles will be necessary in orde
improve the results.30 Our conclusion that point charges a
insufficient is analogous to that of York and Yang, who d
scribe an electronegativity~or chemical potential! equaliza-
tion model using Gaussian basis functions to describe
charge density.40 They found that atom-centered spherica
symmetric~s-type! functions, which have the symmetry o
point charges, were inadequate to characterize the pola
tion response to the set of fields they studied, while add
p-type functions, which have the vector character of dipo
was sufficient to model such phenomena as polarization
linear or planar molecules in directions orthogonal to th
geometry. We expect that we can use the same fitting m
ods as in the present work for a linear response model in
porating both point charges and dipoles. We are curre
working on this straightforward extension of our model.

ACKNOWLEDGMENTS

This work was supported by the National Institutes
Health under Grants Nos. 5-R01-GM52018 and P
RR06892. The authors thank Professor W. L. Jorgensen
n-

h,

y
d
s
-
,

o

-
-

-
in-
e-

e
e
se
e

in
c-
-
-
to

-

e

a-
g
,

of
r
h-
r-
ly

f
-
or

the BOSS and CHEMEDIT programs and for serine dipeptid
structures, and Dr. M. D. Beachy forab initio data and for
assistance in using theJAGUAR package.

1W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. S
118, 11225~1996!.

2W. D. Cornellet al., J. Am. Chem. Soc.117, 5179~1995!.
3J. R. Maple, M.-J. Hwang, T. P. Stockfish, U. Dinur, M. Waldman, C.
Ewig, and A. T. Hagler, J. Comput. Chem.15, 161 ~1994!.

4M.-J. Hwang, T. P. Stockfish, and A. T. Hagler, J. Am. Chem. Soc.116,
2515 ~1994!.

5A. D. MacKerell, Jr., J. Wio´rkiewicz-Kuczera, and M. Karplus, J. Am
Chem. Soc.117, 11946~1995!.

6A. D. MacKerell et al., J. Phys. Chem. B102, 3586~1998!.
7W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Huenenberger
Krueger, A. E. Mark, W. R. P. Scott, and I. G. Tironi,Biomolecular
Simulation: The GROMOS96 Manual and User Guide~Vdf Hochschul-
verlag AG an der ETH-Zuerich, Zuerich, Switzerland, 1996!.

8N. L. Allinger and L. Yan, J. Am. Chem. Soc.115, 11918~1993!.
9T. A. Halgren, J. Comput. Chem.17, 490 ~1996!.

10T. A. Halgren, J. Comput. Chem.17, 520 ~1996!.
11T. A. Halgren, J. Comput. Chem.17, 553 ~1996!.
12T. A. Halgren and R. B. Nachbar, J. Comput. Chem.17, 587 ~1996!.
13T. A. Halgren, J. Comput. Chem.17, 616 ~1996!.
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