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Ground state of the quantum anisotropic planar rotor model: A finite size
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The ground state properties of the quantum anisotropic planar @®PR) model, which was
constructed to describe the orientational ordering of homonuclear diatomic molecules on inert
surfaces, are investigated theoretically using diffusion Monte Carlo. The implementation of the
descendant weighindW) technique due to Casulleras and Bordritys. Rev. B52, 3654(1995 ]

is used, for which an alternate derivation is presented, based on the path-integral representation of
the imaginary time propagator. We calculate the order parameter and then perform finite size scaling
in order to search for a critical reduced rotational consBihat zero temperature. Our simulation
results indicate that a critical rotational constant iBBat~0.25. The behavior of the kinetic and
potential energies show strong evidence for local, single-rotor tunneling as the driving mechanism
for the phase transition. A Gaussian mean-field treatment is also presented, in which the most
important mechanism is local, single-rotor tunneling. While quantitatively the mean-field phase
transition is not in agreement with the simulation results, the energy curves show qualitative
similarities. In both cases, the phase transition occurs at the point where the kinetic energy reaches
a maximum as a function of the reduced rotational condnt © 2001 American Institute of
Physics. [DOI: 10.1063/1.1337858

I. INTRODUCTION order of the phase transition in the APR model has been a
controversial issue. An investigation based on a large scale

. . -3 .
The anisotropic planar rotofAPR) modet™ and its simulation of the classical systéfrconcluded that the tran-

guantum generalizatiofQAPR) (Ref. 4 are minimalist e .
models that were constructed to describe the orientation ition is “weakly" first order. Our more recent stub%f the

ordering of homonuclear diatomic molecules on inert sur- APR model concluded that the phase transition is continu-

faces. For an extensive review on the subject of homonucled“S: Th|s4_cignclt_13|on was based on the calculation of
diatomic molecules physisorbed on inert surfaces, see Ref. §ymu_lgnt§ ~ which have a universal value at the phase
According to the assumptions of the model, the centers offansition point 7that is known in the case of a first order
mass of the molecules are fixed on a two-dimensional latticé®Nase tfaﬂs't'Pﬁ- .
The molecules have fixed bondlengths and they perform Inv?és';g;anon; of the phase diagram of the QAPR
uniaxial rotation. They interact via the anisotropic part of themodef-*>**have given rise to an interesting question regard-
electrostatic quadrupolar potential, and only nearest neighbdfd the possibility of are-entrantphase transition. In a re-
interactions are taken into account. entrant phase transition the system goes from an ordered
A system that can be modeled by the APR model andtate into a disordered state upon lowering of the tempera-
one that has received attention experimentally jspKys-  ture. The Hamiltonian of the QAPR model has two param-
isorbed on graphite. It has been shown that at coverages lesters: the rotational constaBtand the coupling constast
than 1/3 the number of hexagons of the graphite surface arl@ne can set the energy scale to be either one of those param-
at temperature$ <47 K the molecules are translationally or- eters, and thus analyze the system in terms of a one param-
dered and their centers of mass form an equilateral triangulagter Hamiltonian. Marx and Nielabaave analyzed the re-
lattice>® If the system is cooled below 30 K, the system duced rotational constanBt) vs reduced temperatur@®)
undergoes an orientational phase transifiod.It has been phase diagram and they have predicted that there is a range
shown both experimentaflyand theoreticallyfusing the APR  of rotational constants (0s4B* <0.7) where upon cooling,
mode)? that the low temperature orientationally orderedthe system first enters an ordered phase, and subsequently
phase is of the “herringbone” structure. reenters the disordered phase. The investigation of Makton
The order of the phase transition has been suspected & al. found a reentrant phase transition in the mean field
be “weakly” first order experimentally:!° Theoretically the analysis of the model, but this result was not supported by
their simulations. Based on a zero temperature studgeviu
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eton, New Jersey 08544, which in conjunction with the finite temperature results of
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the earlier studies cited here is evidence for re-entrance. tems involving one-dimensional rotors in the calculation of
Direct evidence for the existence of reentrance in theobservables which are of the same periodicity as the Hamil-
QAPR model was presented by Heyeet al® In this study, tonian of the systen(this condition usually holds for physi-
the order parameter and its moments were calculated bgally relevant observablgs
path-integral Monte Carl¢PIMC),?1~2*and finite size scal- The paper is organized as follows. In the next section we
ing was performed to identify phase transition points. describe the QAPR model and give the expression for the
In the finite temperature studies cited above, the PIMCherringbone order parameter. In Sec. Il we review the DMC
algorithm was modified to account for the fact that the sysimethod and address its application to systems involving one-
tem is a set of one-dimensional rotors. In Ref. 13 an efficientlimensional rotors. We also present a derivation and imple-
sampling algorithm developed by Caavas used. mentation of DW as applied in Ref. 41. In Sec. IV we briefly
At a reduced rotational constant &* =0.6364 two present the expressions for the cumulants we use to perform
phase transition points were found at reduced temperaturd#ite size scaling. In Sec. V we present our Gaussian mean-
T*~0.09 andT*~0.3. At reduced temperatures 009* field treatment. In Sec. VI we present the simulation details.
<0.3 the system was found to be in the ordered state. Invedn Sec. VIl we state the results of our DMC simulation, and
tigation of the energies indicated that the low temperaturén Sec. VIl we present our conclusions.
reentrant phase transition is most likely caused by barrier
penetration unique to quantum systefsneling.
It is important to note that reentrance has bgen found ig, THE QAPR MODEL AND THE HERRINGBONE
two other systems. By Raman spectroscopy it has beedrper PARAMETER
shown that solid HD undergoes a pressure induced re-entrant
orientational phase transitiGA.A reentrant phase transition The APR and QAPR models are minimalist models that
has also been found experimentdl§? in granular have been shown to capture the main features of the results
superconductor® Theoretical investigations based on meanof experiments dealing with Nphysisorbed on inert sur-
field®®3! and renormalization group theot§, and faces. The fundamental assumptions of the model are that the
simulation$® have also resulted in a re-entrant phase diadiatomics are fixed on a lattigén our case triangul3y they
gram. The model used in the study of granular superconduchave fixed bond lengths, they perform uniaxial rotation, and
ors is the quantum generalization of the XY model. Both thethey are coupled via the anisotropic part of the quadrupolar
QAPR and the quantum XY model consist of coupled oneterm of the multipole expansion of the potential. The full
dimensional rotors. electrostatic quadrupole—quadrupole interaction includes an
Previous ground state simulatiGA®n the QAPR model isotropic term as well, whose magnitude is less than one
did not include explicit investigation of the order parametertenth that of the anisotropic term. For this reason only the
because ground state observables for quantum many-bodpisotropic term was retained, and the isotropic term was
systems are in general difficult to calculate. Although enerneglected. These assumptions give rise to the QAPR Hamil-
gies may be obtained from the diffusion Monte Catd®  tonian,
(DMC) method quite accurately, methods for extracting ob-
servables such as the descendant weighing techtfi¢e/) N2
or the method of auxiliary field&3° have been plagued by H=-— BZl aTS-ZJr‘]Z cog2¢i+2¢p;—46;), 1)
difficulties in obtaining good statistics in the case of large . ' @
systems. An alternative method in calculating ground stat
observables is the recently developed reptation quantu
Monte Carlo algorithn®

SvhereN denotes the number of rotorg; denotes the coor-
"Winate of rotori, B andJ denote the rotational and the aniso-
tropic quadrupolar coupling constant, respectively. The sum-

) Tlhe gur_posi ?: th's p?pﬁr 1S fplgvestgalte the orientaration in the second term is over nearest neighbors. The
tional ordering behavior of the Q model at zero tem'angles ¢;; have the value of the line connecting the mol-

perature. We perform a variational mean-field treatment USacules of a given bond. For a triangular lattice they are given

ing Gaussian basis functions and we study the system byy 0, =0,7/3,2m/3,m,47/3,57/3. The APR model, which is

DMC. In the DMC study, we calculate the order parametefy o cjassical version of the QAPR model is obtained by writ-
directly and use finite size scaling in order to detect a tranj, the classical expression for the kinetic energy instead of

o ) Nhe guantum expression in E(L.). In this study we use the
weighing (DW) technique due to Casulleras and Borhat e qyced one parameter Hamiltonian obtained by setling
that is more efficient than the standard implementation, and.

has been tested on systems with a large number of degrees of Tne order parameter that is sensitive to herringbone or-

freedom. In this paper we give an alternate derivation of thaHering is a three component vector whose componets (
particular implementation of DW described in Ref. 41. Our_q 5 3) are given by

derivation is based on writing the imaginary time propagator

in the path-integral representatiéh. L N
The issues that arise in simulating one-dimensional rota- ¢ —— > sin2¢.—27,)exdiQ,-R], )
tions at low temperatures have been investigated Nji=1 . .

elsewherd?*3Relying on the result presented in Ref. 43, we
argue that the standard DMC algorithm is applicable to syswhere
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Q,=m(0,243) 7,=0, (2melm)Y2exp{—mx(e)—x(0)]/2¢} (wheree is the time of

_ B propagatiof, and then it is replicated or eliminated accord-
Q=m(—1,—1N3) 5,=2mI3, 3 ing to the probability exp—(V(X)—Eg)€].
Qs=m(1,—1N3) ns=4mI3, We note that in the DMC method a trial function may be

4R d he lati . he tri lar latii used to improve sampling. Implementation of trial functions
andR; denote the lattice points on the triangular lattice. In, .o qascribed elsewhef246

this study we will evaluate the magnitude of the three com- Since the Hamiltonian of our system involves one-

ponent vector in Eq(2) and its moments. dimensional rotors, it is appropriate to address the question
of winding numbers. Winding numbers arise in the path-
IIl. THE DIFFUSION MONTE CARLO METHOD AND integral representation of the partition function of systems
CALCULATION OF OBSERVABLES with one-dimensional rotors. For a more detailed explanation
of the winding number and its significance, see Refs. 47 and
48. At finite temperature care must be taken in incorporating
In this section we give a brief description of DMC. For the winding number into the simulation. Several approaches
more elaborate descriptions we refer the reader to the orighave been put forth in attaining this g§&f° In the case of
nal work of Andersoff"=*®or a more recent revief. zero temperature simulations one of the authors has recently
The time-dependent Scldinger equation in imaginary proved?® that the effect of the winding number can be ne-
time for an arbitrary system with Hamiltoniahis written as  glected in the calculation of observables that have the peri-

A. The diffusion Monte Carlo method

I (x,7) odicity of the system. Since all the observables we calculate
a—’: —HWY(x,7) obey this condition, we can use the DMC algorithm as de-
T scribed above to simulate the QAPR model.
&2
=om o L 61 = VOO (x,7), (4)

wherex denotes the coordinate of the systevifx) denotes B- Calculation of observables

the potential energy. We have used atomic units. For nota- The normalization constant which plays the role of the
tional simplicity, we use a one-dimensional system, but thepartition function at zero temperature can be written as
concepts are trivially generalizable to the many-dimensional

case. The formal solution of E¢4) may be written QT:o:<‘1'g|‘1’g>:f dx\lfé(x), 9)

\I'(X*T):Z Cigi(x)exp(—Ei7), ) where ¥ is the ground state wave function. Ground state

) ) ) observables may be evaluated by averaging over the distri-
where ¢;(x) andE; are the eigenfunctions and e'ge”VameSbution\PS(x).

of the time-independent Schiimger equation, Using the Dirac notation we write the propagation of an
Hi(X)=E;i(X). (6)  arbitrary wave function in imaginary time as
We may shift the energy of the system by a reference value |¥(7))=exp(—7H)|¥(0)). (10

Er and rewrite Eq(5) as . I
R Al In the following derivation we assume that the wave func-

tions are real. Let, denote a duration in imaginary time that
is large enough for excited states to have decayed. If the
propagation timer= 7. thenW¥ (7) will have negligible con-
tributions from states other than the ground state. Since the
ave functionWV is arbitrary, we can take two arbitrary func-
°¥ivons\1f1 andV,, propagate them to two different imaginary
imest; andr,. Provided thatr,,7,= 7. we can obtain two
good approximations to the ground state wave function,

‘I’(X”):Z cigi(x)exd — (E;—Eg)7]. (7

Note that the contributions of states whose endtgis less-
(more than Eg will increasédecreasgexponentially. IfEg
is chosen to be the ground state energy, then in the limit
long imaginary time, contributions from states other than thet
ground state will vanish exponentially, and the remaining
contribution, which is from the ground state will be indepen-

dent of imaginary time. The criterion for long imaginary | W g)~exp(— 7 H)|Py) (1)
time is
and
1
™ E—E, ® W g)~exp( — ,H)|W5). (12

Finding the value oE that stabilizes the distribution of an Using Egs.(11) and(12), we may write an approximate ex-
imaginary time propagation is tantamount to determining thePression for the normalization constant £8). as
ground state energy.

In DMC a distribution is propagated according to Eq. QT=0:J dx( ¥ 1|exp( — 7 H) [x)(x|exp( — moH)| ¥>).
(7). The distribution is represented by a set of replicas of (13)
the system. In a DMC short time step, each replica is
given a random Gaussian displacement according ténserting two coordinate identities, E(L3) becomes
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imaginary timer, the averaging is started. For each psip the
QT=o=f dxdx dx"(W|x" )(x |exp( — 71H)[x) average is stored in an array whose leading dimension is
equal to the instantaneous number of psips. When a psip is

X{(x|exp(— 7oH) [ X" ) (X" | W ). (14 annihilated at some later imaginary time, the average for that

psip is discarded. When a psip gives birth, its average is
replicated. This way of sorting is exactly the same as the
sorting of the coordinates after each time step.

Defining .= 7+ 7,, EQ. (14) can be rewritten in the path-
integral formulation as

QTzOZJ' dxdx dx" ¥ (x")W,(X")

X(71)=X
xf D[x(r')]exp[—J dr H(7')
x(0)=x" 0

X' (r) =x" ¢ Phase transitions occur in the thermodynamic limit. The
xf D[x’(qﬂ)]exr{—f df’H(qJ’)}.

IV. FINITE SIZE SCALING

sizes of systems that can be studied in the laboratory can
essentially be regarded as being in the thermodynamic limit.
(19 In a computer simulation, however, the systems that are
simulated are of sizes which are generally small compared to

waviqfﬂiggggl? (i:?n rt())e :intztrg(rjeitﬁ?rﬁ; fi(r)]lzl;:wz.nﬁ;n tzrglr'::jary the sizes of systems that can be studied in laboratory experi-
1 1S propag ginary ments. In these finite systems the phase transition point is

the resulting wave function is projected onto another arbi- . - o
trary function¥,. At an intermediate timer, such thatr, rounded and shifted compared to the phase transition point in

=1, and 7;< 7;— 7 the coordinatex along the contributing th tehxear(r:r;oorlgsaen:lr(;rlwlg?tlit(.)fagein;nust be taken in determining
paths is distributed according to a distribution that is a gooc} P point.

approximation to\PS(x). Therefore, in principle it is pos- In the case of second-order phase transitions a scheme

sible to evaluate ground state observables by propagating tp}at allows for the determination of phase transition points

. . . : . . as been constructed. Based on the finite size scaling
arbitrary function to imaginary time=2r, and averaging

:50,51 ; ; _
the values of the observables along those portions of thgypotheséo one can calculate ratios of the different mo

. . . , ments of the order parametefknown as Binder
eg <7< . L
pia:-hs that are at imaginary times, where ro<7'<7 cumulant$*~*9 which allow for the determination of the
..

As we have discussed above, DMC is a method that icrltlcgl'pmn.t. For a complete aqcount of the application of
he finite size scaling hypothesis, see Refs. 14—16. In the

capable of propagating distributions in imaginary time. The, . . .
representatives of the distribution are replicas of the sys,ter%o".owIng we only review the pr(_)pemes_of the cumulants
(psip9 which perform diffusive moves in space and thenWhICh are e_ssent|al in locating cr_ltlcal_ points.
replicate or annihilate themselves according to the potential The ratios of mome”ts used in th'S.StUdy are the second
. . . . and fourth order Binder cumulants, which are of the form
energy part of the imaginary time propagator. The psips trace
out paths which terminate when a psip is annihilated. If a
psip is annihilated at imaginary time, then its ascendants
betweenr=0 andr= 7, trace out a path that can be viewed
as a contributing path in the propagation of some arbitrary . (16)
distribution from imaginary timer=0 to r=r7,. Alterna- Ua(N)=1— (%)
tively, it can also be viewed as a contributing path of the 4 3((1)2)2’
propagation of an arbitrary distribution from imaginary time
T=174t0 7=0. whereN denotes the system size. As a result of the finite size
We can use DMC to sample the paths contributing to thescaling hypothesis, the Binder cumulants are size indepen-
propagation in Eq(15). Consider the psips that arrive at the dent at a critical point. Using assumed forms of the distribu-
final time . Their ascendants trace out paths that contribut¢ion, Binder has showf° that the cumulants approach
to a propagation of duratiory . Since the wave function®, trivial limiting values in the case of complete order or disor-
andV¥, are arbitrary, these paths can be viewed as the corder. In the ordered state both,(N) and U,(N) take the
tributing paths in the path-integral expression of Etf). limiting value of 2/3, whereas in the disordered state both
Therefore coordinate dependent observables can be calctake the value of 0.
lated by using the positions of the ascendants between imagi- Calculating the cumulant as a function of rotational con-
nary timesr, and r,— 7.. Due to the fact that in the case of stant for different system sizes allows for the determination
a DMC simulationV, is the ground state wave function, of the phase transition point. The value of the cumulant will
ascendants after imaginary timg can all be averaged. be closer to the limiting value in both the ordered and the
The scheme presented above is equivalent to that putisordered state, the larger the system size, since the larger
forth by Casulleras and Boron#tin their work it is viewed  system is closer to the thermodynamic limit. At the critical
as an alternative implementation of DW. The implementa{point the cumulants are size independent. For this reason,
tion presented here and in Ref. 41 is considerably easier talentifying the crossing point is tantamount to locating the
program than the standard implementation of DW. Aftercritical rotational constant.

X/(Tl):X T

T G
2(N)=1 3(@)2

Downloaded 15 May 2001 to 128.59.112.46. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3678 J. Chem. Phys., Vol. 114, No. 8, 22 February 2001

V. VARIATIONAL MEAN-FIELD THEORY USING A
GAUSSIAN TRIAL FUNCTION

In the work of Miser and Ankerhof®f simple analytical
models were used to corroborate the results of the simula- 1
tion. A mean-field treatment of the QAPR Hamiltonian using
a function that was a product of a linear combination of
Gaussian functions resulted in an ordered ground state for all
values of the reduced rotational constant.

In this section we perform a variational treatment similar
to the one in Ref. 20. Our trial function is a productsafigle
Gaussian functions. The advantage of using single Gaussian
functions is that the only essential mechanism that affectsthe ¢
behavior of the model is local tunneliri@e., penetration of
barriers in the vicinity of local minima We find that local
tunneling alone can drive an order—disorder phase transition.
Although the value of the critical rotational constant found
by our Gaussian mean-field treatment differs from that of the
simulation results, the energy curves show essential qualita-

B. Hetényi and B. J. Berne
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tive similarities. In th(’j’ case of Gaussian mean'f'?ld theory, FiG. 2. Kinetic, potential, and half of the total energy as a function of
can be shown analytically that the phase transition occurs aéduced rotational constant in the Gaussian mean-field approximation. Filled
a value of the rotational constant where the kinetic energyymbols and solid lines indicate that the system is ordeBst<(2J*/e).

reaches a maximum. This conclusion is in agreement wit

our simulation results in Sec. Visee Fig. 6.

We use a separable trial function of the form,

N
\If=i1]1 (i~ ),
2a 1/4 (17)
<I><¢)=(7 exp — ag?),

—01 L 1 1
0 . .

-0.1 L L L

FIG. 1. Trial energy per particl&, /N as a function of the variational

parametera in the Gaussian mean-field approximatidower panelB*

=0.7<2J*/e, middle panelB* =2J*/e, upper paneB* =0.8>2J*/e).
For B* <2J*/e the minimum of the trial energy is lower than its value at
a=0. ForB* =2J*/e there are two minima, one at=0, one ate=1. For
B*>2J*/e the minimum is ata=0 and there is a local minimum at
>0. The presence of the two minima Bt =2J*/e indicate a first order

phase transition aB* =2J*/e.

rllJnfiIIed symbols and dashed lines correspond to the trial function whose

variational parametet is obtained from the local minimum of the trial
energy. In the ordered state, the kinetic energy increases as a function of the
reduced rotational constant. It can be shown that at the critical point the
derivative of the kinetic energy with respect to the reduced rotational con-
stantB* is zero. The potential energy increases throughout the range shown.

Wheregi denotes the positions of the rotors in the herring-
bone structure(i.e., the classical minimum Using the
QAPR Hamiltonian Eg. (1)] we obtain a trial energy of

Etr:<q’|H|\p>
=NB* a—2Nexp — 1/a). (18

Using the expression for the trial energy given in EB), it

is an easy matter to show that a first order phase transition
occurs atB* =2/e. Evidence for the critical rotational con-
stant is provided in Fig. 1. FoB* <2/e the value of the
minimization parametet: which minimizes the trial energy

is some finite valuex>1, corresponding to an ordered state.
For B*>2/e the value of the minimization parameter
which minimizes the trial energy is zero, which corresponds
to a disordered state. Observables calculated based on the
trial function of Eq.(17) change discontinuously as a func-
tion of B* atB* =2/e.

In Fig. 2 we show the kinetic, potential, and half the total
energy of the system in our Gaussian mean-field approxima-
tion. The potential energy is shifted by its value at the clas-
sical minimum §.=2). The solid lines and filled symbols
correspond to the system in its ordered sBte<2/e. The
dashed line and opaque symbols correspond to results asso-
ciated with the local minimum of the trial energyB{
>2/e).

The potential energy increases throughout the range of
the reduced rotational constant shown. The kinetic energy
increases until the phase transition poiBf &2/e). It is a
trivial matter to show that the derivative of the kinetic energy
with respect toB* is zero at the phase transition point.
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FIG. 3. Simulation results for the order parame{éry as a function of

reduced rotational constaBt' for the QAPR model at zero temperature for FIG. 4. Simulation results of the second order Binder cumuldntas a

system of sizeN=256, N=324, andN=400. The order parameter de- function of reduced rotational constaBt for systems of siz&=256, N

creases steadily with increasing rotational constant for all three system sizes:324, andN=400. The dashed line is at a value of 2/3. At low values of

The size dependence begins to increase at a reduced rotational constanttieé reduced rotational constarBX<0.3) the value of the cumulant ap-

B*~0.3. proaches 2/3 indicating an ordered state. At higher valB¥s>0.3) the
cumulant decreases significantly indicating a disordered state.

VI. SIMULATION DETAILS At reduced rotational constants Bf <0.3 the order param-
We simulate QAPR systems of three different sizhis ( eter has a high valug/@)=0.65), indicative of an ordered

—256,324,400) by DMC. We use a trial function of the Ja-SYStem. _ ,
strow form, In the interpretation of the behavior of the order param-

eter it is important to consider the competing effects that
¥ =exp —yV), (19 influence the ordering behavior of the system. In general a
larger system is expected to behave more like an infinite
whereV denotes the potential energy function, andenotes  system. This alone would mean that a system whose order
a variational parameter. The variational parameter is Obparameter decreases with system size is disordered in the
tained from a variational Monte Carlo simulation. thermodynamic limit and vice versa. However the periodic
DMC simulations were run for 50000 steps for relax- houndary conditions, which tend to order the system, are
ation, and 50 000 steps for observation. The time step of theore significant for small system sizes. It is most likely for
run wasA7=0.01. For the evaluation of the energy, the this reason that the order parameter for the smallest system
value of the reference energy was collected after every 1Qjze has the largest value for almost all values of the reduced

time steps and averaged at the end. For other observablgsiational constant that have been investigatexcept B*
data was collected at every time step. Five different runs-q 1)

were made for each value of the reduced rotational constant \we also calculated the second and fourth order Binder
B*. The Binder cumulants presented were calculated by ta"cumulants[UZ,U4 respectively, see Eq16)] as a function
ing the averages of the five different runs. of the reduced rotational constaBt. The results are pre-
sented in Figs. 4 and 5. For low values of the reduced rota-
tional constant B* <0.3) the cumulants approach 2/3 indi-
VII. RESULTS cating an ordered state. For valuB$>0.3 the cumulant
decreases significantly indicating a disordered state. Also in-
dicative of the disordered state is the fact that the cumulant
We calculated the order parameter defined as the magnef the large system has a lower value than the cumulant of
tude of the three component vector defined in B). The the small system in the regi@d¥ >0.3. From the two graphs
results are presented in Fig. 3. The order parameter decreasa®e can establisB* =0.35 as an approximate upper bound
steadily as a function of rotational constant for all three sysfor the critical rotational constant.
tem sizes. The size dependence increases beyond a reduced While a definite crossing point is difficult to establish
rotational constant oB* ~0.2. The significant decrease in from the graphs, one can investigate the values of the Binder
the order parameter and the fact that the size dependence @imulants directly. In Table | we present the values of the
the order parameter varies is indicative of a phase transitiorfourth order Binder cumulants for reduced rotational con-

A. Order parameter and Binder cumulants
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FIG. 5. Simulation results of the fourth order Binder cumuléht as a  FIG. 6. Simulation results of half of the totaE(,/2), kinetic (Eyy,), and
function of reduced rotational constadt for systems of sizéN=256, N potential E,,) energies per particle as a function of the reduced rotational

=324, andN=400. The dashed line is at a value of 2/3. At low values of constanB* for the N=400 system. Note that the potential energy is shifted
the reduced rotational constar8(<0.3) the value of the cumulant ap- by its value at the classical minimunE:('“n=2). The values of the total
proaches 2/3 indicating an ordered state. At higher valiB#s>0.3) the energy and the potential energy show an increase with increasing reduced
cumulant decreases significantly indicating a disordered state. rotational constant throughout the range investigated. The value of the ki-
netic energy shows an initial increase, a plateau around the range of the
critical rotational constant (02B} <0.3), and a subsequent decrease with

increasing rotational constant.
stantsB* =0.2, 0.25, and 0.3. The error bars shown are the

standard deviation of the five runs.

The values of the fourth order Binder cumulant &t In this study we have also calculated the potential, ki-
=0.2 indicate that the system is ordered. For all three systeMetic, and total energies. The total energy is calculated in the
sizes the fourth order Binder cumulant is close to 2/3, moreygal way**~38 the potential energy is calculated by using
over, the larger the system size the closer the value of thge technique presented in Sec. Il B. The kinetic energy is

cumulant is to 2/3. FoB* =0.3 the trend as a function of ¢4jcylated indirectly by subtracting the potential energy from
system size reverses. F&* =0.25 the cumulants are ap- the total energy.

proximately equal, and their error bars overlap. We conclude

o In Fig. 6 we present simulation results for the energies
that the phase transition occursBjt=0.25.

per rotor as a function of the reduced rotational constant
(B*) for the largest systemN=400). We show the kinetic,
B. Energies po_tential and half the total energies. The potential energy is
o _ _ o shifted by the value of the classical minimu & 2), the
Investigating the energies has provided insight into thesverage of the kinetic and potential energies and the kinetic
possible mechanism of the phase transition in previous Stu%nergy.
ies (Refs. 13 and 20of the QAPR model. In Ref. 13, the  The potential and total energies show an increase with
authors have argued, based on the behavior of the kinetic anfcreasing rotational constant for the range investigated. The
potential energies, that the mechanism responsible for disokinetic energy, on the other hand, shows an initial increase, a
dering Fhe system at low temperatures is barrier penetratiogyaximum at the critical pointB* =0.25), and a subsequent
(tunneling. decrease in the rand#* >0.25. The “bulge” in the kinetic
energy may be understood in terms of the relative impor-
tance of barrier penetration in the ordered and disordered
TABLE |. Calculated values of the fourth order Binder cumuléht as a hases. At low values of the reduced rotational constant
function of several values of the reduced rotational condanfor systems P - ’ . . .
of size N=256, N=324, andN=400. The number after- indicates the _(B _<Q'2)’ both the kmet'? and potential energ|es al’e low,
error in the last digit of the value of the cumulant. For the procedure used téndicating that the system is orderésee also Fig. B In this
estimate the error, see the text. Br=0.2(B* =0.3) the size dependence region the system is behaving classically, tunneling does not
indicates that the system is ordergtisordered A critical rotational con-  geem to be significant. As the value of the reduced rotational
stant is identified aB; =0.25. constant is increased, the system begins to disorder (0.2

B* U,(256) U.(324) U4(400) <B*<0.3). As the value of the reduced rotational constant
increases further, the value of the kinetic energy decreases

0.2 0.66594-2 0.6660% 1 0.66610-2 and the value of the potential energy increases. In this region

0.25 0.66534 4 0.66538 2 0.6653% 2 . . .

03 0.66463% 5 0.6644% 5 0.6641 2 the behavior of the system is dominated by quantum effects.

The increase in potential energy corresponds to barrier pen-
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etration by single rotors. The decrease in kinetic energy cora maximum. In the Gaussian mean-field model the phase

responds to imaginary velocities which can be associatettansition was also accompanied by a maximum in the ki-

with barrier penetratioritunneling as well. netic energy. For values of the reduced rotational constant
The above result and its interpretation is in strong quali{ B* >0.3) (in the disordered phaséhe potential energy was

tative agreement with our Gaussian mean-field analysis dbund to increase, however, the kinetic energy was found to

Sec. V. In the Gaussian mean-field treatment the phase tradecrease.

sition occurred precisely where the kinetic energy reached a The behavior of the kinetic and potential energies was

maximum as a function of the reduced rotational constantinterpreted as a manifestation of tunneling. The potential en-

Furthermore since the trial function in our Gaussian meanergy increased due to barrier penetration by single rotors.

field study was such that only local barrier penetration wasThe decrease in kinetic energy can also be associated with

taken into account, the qualitative similarities between thdunneling, since the kinetic energy is negative in regions in

behavior kinetic energies Gaussian model and the simulatiowhich the potential energy is higher than the total energy. In

indicate that the phase transition is driven by quantum tunfact, according to our results, the transition from an ordered

neling. state to a disordered state at zero temperature in the QAPR
Our simulation results are also in qualitative agreemenmodel is brought about by single rotor tunneling.

with the results of Meer and Ankerhold® In that study the

dimensionless kinetic energy was calculated using the auxil-
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