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Ground state of the quantum anisotropic planar rotor model: A finite size
scaling study of the orientational order–disorder phase transition
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The ground state properties of the quantum anisotropic planar rotor~QAPR! model, which was
constructed to describe the orientational ordering of homonuclear diatomic molecules on inert
surfaces, are investigated theoretically using diffusion Monte Carlo. The implementation of the
descendant weighing~DW! technique due to Casulleras and Boronat@Phys. Rev. B52, 3654~1995!#
is used, for which an alternate derivation is presented, based on the path-integral representation of
the imaginary time propagator. We calculate the order parameter and then perform finite size scaling
in order to search for a critical reduced rotational constantBc* at zero temperature. Our simulation
results indicate that a critical rotational constant is atBc* '0.25. The behavior of the kinetic and
potential energies show strong evidence for local, single-rotor tunneling as the driving mechanism
for the phase transition. A Gaussian mean-field treatment is also presented, in which the most
important mechanism is local, single-rotor tunneling. While quantitatively the mean-field phase
transition is not in agreement with the simulation results, the energy curves show qualitative
similarities. In both cases, the phase transition occurs at the point where the kinetic energy reaches
a maximum as a function of the reduced rotational constantB* . © 2001 American Institute of
Physics. @DOI: 10.1063/1.1337858#
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I. INTRODUCTION

The anisotropic planar rotor~APR! model1–3 and its
quantum generalization~QAPR! ~Ref. 4! are minimalist
models that were constructed to describe the orientatio
ordering of homonuclear diatomic molecules on inert s
faces. For an extensive review on the subject of homonuc
diatomic molecules physisorbed on inert surfaces, see Re
According to the assumptions of the model, the centers
mass of the molecules are fixed on a two-dimensional latt
The molecules have fixed bondlengths and they perfo
uniaxial rotation. They interact via the anisotropic part of t
electrostatic quadrupolar potential, and only nearest neigh
interactions are taken into account.

A system that can be modeled by the APR model a
one that has received attention experimentally is N2 phys-
isorbed on graphite. It has been shown that at coverages
than 1/3 the number of hexagons of the graphite surface
at temperaturesT,47 K the molecules are translationally o
dered and their centers of mass form an equilateral triang
lattice.5,6 If the system is cooled below 30 K, the syste
undergoes an orientational phase transition.7–11 It has been
shown both experimentally9 and theoretically~using the APR
model!2 that the low temperature orientationally order
phase is of the ‘‘herringbone’’ structure.

The order of the phase transition has been suspecte
be ‘‘weakly’’ first order experimentally.9,10 Theoretically the

a!Present address: Department of Chemistry, Princeton University, P
eton, New Jersey 08544.
3670021-9606/2001/114(8)/3674/9/$18.00
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order of the phase transition in the APR model has bee
controversial issue. An investigation based on a large s
simulation of the classical system12 concluded that the tran
sition is ‘‘weakly’’ first order. Our more recent study13 of the
QAPR model concluded that the phase transition is conti
ous. This conclusion was based on the calculation
cumulants14–16 which have a universal value at the pha
transition point that is known in the case of a first ord
phase transition.17

Investigations of the phase diagram of the QAP
model4,18,19have given rise to an interesting question rega
ing the possibility of are-entrantphase transition. In a re
entrant phase transition the system goes from an ord
state into a disordered state upon lowering of the temp
ture. The Hamiltonian of the QAPR model has two para
eters: the rotational constantB and the coupling constantJ.
One can set the energy scale to be either one of those pa
eters, and thus analyze the system in terms of a one pa
eter Hamiltonian. Marx and Nielaba4 have analyzed the re
duced rotational constant (B* ) vs reduced temperature (T* )
phase diagram and they have predicted that there is a r
of rotational constants (0.4,B* ,0.7) where upon cooling
the system first enters an ordered phase, and subsequ
reenters the disordered phase. The investigation of Martoˇák
et al. found a reentrant phase transition in the mean fi
analysis of the model, but this result was not supported
their simulations. Based on a zero temperature study Mu¨ser
and Ankerhold20 found a phase transition point atBc* '0.4,
which in conjunction with the finite temperature results

c-
4 © 2001 American Institute of Physics
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3675J. Chem. Phys., Vol. 114, No. 8, 22 February 2001 Orientational phase transition
the earlier studies cited here is evidence for re-entrance
Direct evidence for the existence of reentrance in

QAPR model was presented by Hete´nyi et al.13 In this study,
the order parameter and its moments were calculated
path-integral Monte Carlo~PIMC!,21–24 and finite size scal-
ing was performed to identify phase transition points.

In the finite temperature studies cited above, the PIM
algorithm was modified to account for the fact that the s
tem is a set of one-dimensional rotors. In Ref. 13 an effici
sampling algorithm developed by Cao25 was used.

At a reduced rotational constant ofB* 50.6364 two
phase transition points were found at reduced temperat
T* '0.09 andT* '0.3. At reduced temperatures 0.09<T*
<0.3 the system was found to be in the ordered state. In
tigation of the energies indicated that the low temperat
reentrant phase transition is most likely caused by bar
penetration unique to quantum systems~tunneling!.

It is important to note that reentrance has been found
two other systems. By Raman spectroscopy it has b
shown that solid HD undergoes a pressure induced re-en
orientational phase transition.26 A reentrant phase transitio
has also been found experimentally27,28 in granular
superconductors.29 Theoretical investigations based on me
field30,31 and renormalization group theory,32 and
simulations33 have also resulted in a re-entrant phase d
gram. The model used in the study of granular supercond
ors is the quantum generalization of the XY model. Both
QAPR and the quantum XY model consist of coupled o
dimensional rotors.

Previous ground state simulations20 on the QAPR model
did not include explicit investigation of the order parame
because ground state observables for quantum many-
systems are in general difficult to calculate. Although en
gies may be obtained from the diffusion Monte Carlo34–36

~DMC! method quite accurately, methods for extracting o
servables such as the descendant weighing technique37 ~DW!
or the method of auxiliary fields38,39 have been plagued b
difficulties in obtaining good statistics in the case of lar
systems. An alternative method in calculating ground s
observables is the recently developed reptation quan
Monte Carlo algorithm.40

The purpose of this paper is to investigate the orien
tional ordering behavior of the QAPR model at zero te
perature. We perform a variational mean-field treatment
ing Gaussian basis functions and we study the system
DMC. In the DMC study, we calculate the order parame
directly and use finite size scaling in order to detect a tr
sition point. We use an implementation of the descend
weighing ~DW! technique due to Casulleras and Borona41

that is more efficient than the standard implementation,
has been tested on systems with a large number of degre
freedom. In this paper we give an alternate derivation of t
particular implementation of DW described in Ref. 41. O
derivation is based on writing the imaginary time propaga
in the path-integral representation.24

The issues that arise in simulating one-dimensional ro
tions at low temperatures have been investiga
elsewhere.42,43Relying on the result presented in Ref. 43, w
argue that the standard DMC algorithm is applicable to s
Downloaded 15 May 2001 to 128.59.112.46. Redistribution subject to A
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tems involving one-dimensional rotors in the calculation
observables which are of the same periodicity as the Ha
tonian of the system~this condition usually holds for physi
cally relevant observables!.

The paper is organized as follows. In the next section
describe the QAPR model and give the expression for
herringbone order parameter. In Sec. III we review the DM
method and address its application to systems involving o
dimensional rotors. We also present a derivation and imp
mentation of DW as applied in Ref. 41. In Sec. IV we briefl
present the expressions for the cumulants we use to per
finite size scaling. In Sec. V we present our Gaussian me
field treatment. In Sec. VI we present the simulation deta
In Sec. VII we state the results of our DMC simulation, a
in Sec. VIII we present our conclusions.

II. THE QAPR MODEL AND THE HERRINGBONE
ORDER PARAMETER

The APR and QAPR models are minimalist models th
have been shown to capture the main features of the re
of experiments dealing with N2 physisorbed on inert sur
faces. The fundamental assumptions of the model are tha
diatomics are fixed on a lattice~in our case triangular!, they
have fixed bond lengths, they perform uniaxial rotation, a
they are coupled via the anisotropic part of the quadrupo
term of the multipole expansion of the potential. The fu
electrostatic quadrupole–quadrupole interaction includes
isotropic term as well, whose magnitude is less than o
tenth that of the anisotropic term. For this reason only
anisotropic term was retained, and the isotropic term w
neglected. These assumptions give rise to the QAPR Ha
tonian,

H52B(
i 51

N
]2

]f i
2 1J(

^ i , j &
cos~2f i12f j24u i j !, ~1!

whereN denotes the number of rotors,f i denotes the coor-
dinate of rotori, B andJ denote the rotational and the anis
tropic quadrupolar coupling constant, respectively. The su
mation in the second term is over nearest neighbors.
anglesu i j have the value of the line connecting the mo
ecules of a given bond. For a triangular lattice they are giv
by u i j 50,p/3,2p/3,p,4p/3,5p/3. The APR model, which is
the classical version of the QAPR model is obtained by w
ing the classical expression for the kinetic energy instead
the quantum expression in Eq.~1!. In this study we use the
reduced one parameter Hamiltonian obtained by settinJ
51.

The order parameter that is sensitive to herringbone
dering is a three component vector whose componentsa
51,2,3) are given by

Fa5
1

N (
j 51

N

sin~2f j22ha!exp@ iQa•Rj #, ~2!

where
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Q15p~0,2/) ! h150,

Q25p~21,21/) ! h252p/3, ~3!

Q35p~1,21/) ! h354p/3,

and Ri denote the lattice points on the triangular lattice.
this study we will evaluate the magnitude of the three co
ponent vector in Eq.~2! and its moments.

III. THE DIFFUSION MONTE CARLO METHOD AND
CALCULATION OF OBSERVABLES

A. The diffusion Monte Carlo method

In this section we give a brief description of DMC. Fo
more elaborate descriptions we refer the reader to the o
nal work of Anderson34–36 or a more recent review.44

The time-dependent Schro¨dinger equation in imaginary
time for an arbitrary system with HamiltonianH is written as

]C~x,t!

]t
52HC~x,t!

5
1

2m

]2

]x2 C~x,t!2V~x!C~x,t!, ~4!

wherex denotes the coordinate of the system,V(x) denotes
the potential energy. We have used atomic units. For n
tional simplicity, we use a one-dimensional system, but
concepts are trivially generalizable to the many-dimensio
case. The formal solution of Eq.~4! may be written

C~x,t!5(
i

cif i~x!exp~2Eit!, ~5!

wheref i(x) and Ei are the eigenfunctions and eigenvalu
of the time-independent Schro¨dinger equation,

Hf i~x!5Eif i~x!. ~6!

We may shift the energy of the system by a reference va
ER and rewrite Eq.~5! as

C~x,t!5(
i

cif i~x!exp@2~Ei2ER!t#. ~7!

Note that the contributions of states whose energyEi is less-
~more! thanER will increase~decrease! exponentially. IfER

is chosen to be the ground state energy, then in the limi
long imaginary time, contributions from states other than
ground state will vanish exponentially, and the remain
contribution, which is from the ground state will be indepe
dent of imaginary time. The criterion for long imagina
time is

t@
1

E12E0
. ~8!

Finding the value ofER that stabilizes the distribution of a
imaginary time propagation is tantamount to determining
ground state energy.

In DMC a distribution is propagated according to E
~7!. The distribution is represented by a set of replicas
the system. In a DMC short time step, each replica
given a random Gaussian displacement according
Downloaded 15 May 2001 to 128.59.112.46. Redistribution subject to A
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(2pe/m)1/2exp$2m@x(e)2x(0)#2/2e% ~wheree is the time of
propagation!, and then it is replicated or eliminated accor
ing to the probability exp@2(V(x)2ER)e#.

We note that in the DMC method a trial function may b
used to improve sampling. Implementation of trial functio
are described elsewhere.45,46

Since the Hamiltonian of our system involves on
dimensional rotors, it is appropriate to address the ques
of winding numbers. Winding numbers arise in the pa
integral representation of the partition function of syste
with one-dimensional rotors. For a more detailed explanat
of the winding number and its significance, see Refs. 47
48. At finite temperature care must be taken in incorporat
the winding number into the simulation. Several approac
have been put forth in attaining this goal.49,25 In the case of
zero temperature simulations one of the authors has rece
proved43 that the effect of the winding number can be n
glected in the calculation of observables that have the p
odicity of the system. Since all the observables we calcu
obey this condition, we can use the DMC algorithm as d
scribed above to simulate the QAPR model.

B. Calculation of observables

The normalization constant which plays the role of t
partition function at zero temperature can be written as

QT505^CguCg&5E dxCg
2~x!, ~9!

whereCg is the ground state wave function. Ground sta
observables may be evaluated by averaging over the di
bution Cg

2(x).
Using the Dirac notation we write the propagation of

arbitrary wave function in imaginary time as

uC~t!&5exp~2tH !uC~0!&. ~10!

In the following derivation we assume that the wave fun
tions are real. Lettc denote a duration in imaginary time tha
is large enough for excited states to have decayed. If
propagation timet>tc thenC(t) will have negligible con-
tributions from states other than the ground state. Since
wave functionC is arbitrary, we can take two arbitrary func
tionsC1 andC2 , propagate them to two different imaginar
timest1 andt2 . Provided thatt1 ,t2>tc we can obtain two
good approximations to the ground state wave function,

uCg&'exp~2t1H !uC1& ~11!

and

uCg&'exp~2t2H !uC2&. ~12!

Using Eqs.~11! and ~12!, we may write an approximate ex
pression for the normalization constant Eq.~9! as

QT505E dx^C1uexp~2t1H !ux&^xuexp~2t2H !uC2&.

~13!

Inserting two coordinate identities, Eq.~13! becomes
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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QT505E dxdx8dx9^C1ux8&^x8uexp~2t1H !ux&

3^xuexp~2t2H !ux9&^x9uC2&. ~14!

Defining t t5t11t2 , Eq. ~14! can be rewritten in the path
integral formulation as

QT505E dxdx8dx9C1~x8!C2~x9!

3E
x~0!5x8

x~t1!5x
D@x~t8!#expF2E

0

t1dt8H~t8!G
3E

x8~t1!5x

x8~t t!5x9D@x8~t9!#expF2E
t1

t t
dt9H~t9!G .

~15!

Equation~15! can be interpreted as follows. An arbitra
wave functionC1 is propagated in imaginary time tot t and
the resulting wave function is projected onto another a
trary functionC2 . At an intermediate timet1 such thatt1

>tc andt1<t t2tc the coordinatex along the contributing
paths is distributed according to a distribution that is a go
approximation toCg

2(x). Therefore, in principle it is pos
sible to evaluate ground state observables by propagatin
arbitrary function to imaginary timet>2tc and averaging
the values of the observables along those portions of
paths that are at imaginary timest8, where tc<t8<t
2tc .

As we have discussed above, DMC is a method tha
capable of propagating distributions in imaginary time. T
representatives of the distribution are replicas of the sys
~psips! which perform diffusive moves in space and th
replicate or annihilate themselves according to the poten
energy part of the imaginary time propagator. The psips tr
out paths which terminate when a psip is annihilated. I
psip is annihilated at imaginary timeta then its ascendant
betweent50 andt5ta trace out a path that can be viewe
as a contributing path in the propagation of some arbitr
distribution from imaginary timet50 to t5ta . Alterna-
tively, it can also be viewed as a contributing path of t
propagation of an arbitrary distribution from imaginary tim
t5ta to t50.

We can use DMC to sample the paths contributing to
propagation in Eq.~15!. Consider the psips that arrive at th
final timet t . Their ascendants trace out paths that contrib
to a propagation of durationt t . Since the wave functionsC1

andC2 are arbitrary, these paths can be viewed as the c
tributing paths in the path-integral expression of Eq.~15!.
Therefore coordinate dependent observables can be c
lated by using the positions of the ascendants between im
nary timestc andt t2tc . Due to the fact that in the case o
a DMC simulationC2 is the ground state wave function
ascendants after imaginary timetc can all be averaged.

The scheme presented above is equivalent to that
forth by Casulleras and Boronat.41 In their work it is viewed
as an alternative implementation of DW. The implemen
tion presented here and in Ref. 41 is considerably easie
program than the standard implementation of DW. Af
Downloaded 15 May 2001 to 128.59.112.46. Redistribution subject to A
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imaginary timetc the averaging is started. For each psip t
average is stored in an array whose leading dimensio
equal to the instantaneous number of psips. When a ps
annihilated at some later imaginary time, the average for
psip is discarded. When a psip gives birth, its average
replicated. This way of sorting is exactly the same as
sorting of the coordinates after each time step.

IV. FINITE SIZE SCALING

Phase transitions occur in the thermodynamic limit. T
sizes of systems that can be studied in the laboratory
essentially be regarded as being in the thermodynamic li
In a computer simulation, however, the systems that
simulated are of sizes which are generally small compare
the sizes of systems that can be studied in laboratory exp
ments. In these finite systems the phase transition poin
rounded and shifted compared to the phase transition poin
the thermodynamic limit. Care must be taken in determin
the exact phase transition point.

In the case of second-order phase transitions a sch
that allows for the determination of phase transition poi
has been constructed. Based on the finite size sca
hypothesis50,51 one can calculate ratios of the different m
ments of the order parameter~known as Binder
cumulants14–16! which allow for the determination of the
critical point. For a complete account of the application
the finite size scaling hypothesis, see Refs. 14–16. In
following we only review the properties of the cumulan
which are essential in locating critical points.

The ratios of moments used in this study are the sec
and fourth order Binder cumulants, which are of the form

U2~N!512
^F2&

3^F&2 ,

~16!

U4~N!512
^F4&

3^F2&2 ,

whereN denotes the system size. As a result of the finite s
scaling hypothesis, the Binder cumulants are size indep
dent at a critical point. Using assumed forms of the distrib
tion, Binder has shown14–16 that the cumulants approac
trivial limiting values in the case of complete order or diso
der. In the ordered state bothU2(N) and U4(N) take the
limiting value of 2/3, whereas in the disordered state b
take the value of 0.

Calculating the cumulant as a function of rotational co
stant for different system sizes allows for the determinat
of the phase transition point. The value of the cumulant w
be closer to the limiting value in both the ordered and
disordered state, the larger the system size, since the la
system is closer to the thermodynamic limit. At the critic
point the cumulants are size independent. For this rea
identifying the crossing point is tantamount to locating t
critical rotational constant.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V. VARIATIONAL MEAN-FIELD THEORY USING A
GAUSSIAN TRIAL FUNCTION

In the work of Müser and Ankerhold20 simple analytical
models were used to corroborate the results of the sim
tion. A mean-field treatment of the QAPR Hamiltonian usi
a function that was a product of a linear combination
Gaussian functions resulted in an ordered ground state fo
values of the reduced rotational constant.

In this section we perform a variational treatment simi
to the one in Ref. 20. Our trial function is a product ofsingle
Gaussian functions. The advantage of using single Gaus
functions is that the only essential mechanism that affects
behavior of the model is local tunneling~i.e., penetration of
barriers in the vicinity of local minima!. We find that local
tunneling alone can drive an order–disorder phase transi
Although the value of the critical rotational constant fou
by our Gaussian mean-field treatment differs from that of
simulation results, the energy curves show essential qua
tive similarities. In the case of Gaussian mean-field theory
can be shown analytically that the phase transition occur
a value of the rotational constant where the kinetic ene
reaches a maximum. This conclusion is in agreement w
our simulation results in Sec. VII~see Fig. 6!.

We use a separable trial function of the form,

C5)
i 51

N

F~f i2f̄ i !,

~17!

F~f!5S 2a

p D 1/4

exp~2af2!,

FIG. 1. Trial energy per particleEtr /N as a function of the variationa
parametera in the Gaussian mean-field approximation~lower panelB*
50.7,2J* /e, middle panelB* 52J* /e, upper panelB* 50.8.2J* /e).
For B* ,2J* /e the minimum of the trial energy is lower than its value
a50. ForB* 52J* /e there are two minima, one ata50, one ata51. For
B* .2J* /e the minimum is ata50 and there is a local minimum ata
.0. The presence of the two minima atB* 52J* /e indicate a first order
phase transition atB* 52J* /e.
Downloaded 15 May 2001 to 128.59.112.46. Redistribution subject to A
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wheref̄ i denotes the positions of the rotors in the herrin
bone structure~i.e., the classical minimum!. Using the
QAPR Hamiltonian@Eq. ~1!# we obtain a trial energy of

Etr5^CuHuC&

5NB* a22N exp~21/a!. ~18!

Using the expression for the trial energy given in Eq.~18!, it
is an easy matter to show that a first order phase trans
occurs atB* 52/e. Evidence for the critical rotational con
stant is provided in Fig. 1. ForB* ,2/e the value of the
minimization parametera which minimizes the trial energy
is some finite valuea.1, corresponding to an ordered sta
For B* .2/e the value of the minimization parametera
which minimizes the trial energy is zero, which correspon
to a disordered state. Observables calculated based on
trial function of Eq.~17! change discontinuously as a fun
tion of B* at B* 52/e.

In Fig. 2 we show the kinetic, potential, and half the to
energy of the system in our Gaussian mean-field approxi
tion. The potential energy is shifted by its value at the cl
sical minimum (Vc52). The solid lines and filled symbol
correspond to the system in its ordered stateB* ,2/e. The
dashed line and opaque symbols correspond to results a
ciated with the local minimum of the trial energy (B*
.2/e).

The potential energy increases throughout the range
the reduced rotational constant shown. The kinetic ene
increases until the phase transition point (Bc* 52/e). It is a
trivial matter to show that the derivative of the kinetic ener
with respect toB* is zero at the phase transition point.

FIG. 2. Kinetic, potential, and half of the total energy as a function
reduced rotational constant in the Gaussian mean-field approximation. F
symbols and solid lines indicate that the system is ordered (B* ,2J* /e).
Unfilled symbols and dashed lines correspond to the trial function wh
variational parametera is obtained from the local minimum of the tria
energy. In the ordered state, the kinetic energy increases as a function
reduced rotational constant. It can be shown that at the critical point
derivative of the kinetic energy with respect to the reduced rotational c
stantB* is zero. The potential energy increases throughout the range sh
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VI. SIMULATION DETAILS

We simulate QAPR systems of three different sizesN
5256,324,400) by DMC. We use a trial function of the J
strow form,

CJ5exp~2gV!, ~19!

whereV denotes the potential energy function, andg denotes
a variational parameter. The variational parameter is
tained from a variational Monte Carlo simulation.

DMC simulations were run for 50 000 steps for rela
ation, and 50 000 steps for observation. The time step of
run was Dt50.01. For the evaluation of the energy, th
value of the reference energy was collected after every
time steps and averaged at the end. For other observa
data was collected at every time step. Five different ru
were made for each value of the reduced rotational cons
B* . The Binder cumulants presented were calculated by
ing the averages of the five different runs.

VII. RESULTS

A. Order parameter and Binder cumulants

We calculated the order parameter defined as the ma
tude of the three component vector defined in Eq.~2!. The
results are presented in Fig. 3. The order parameter decre
steadily as a function of rotational constant for all three s
tem sizes. The size dependence increases beyond a red
rotational constant ofB* '0.2. The significant decrease
the order parameter and the fact that the size dependen
the order parameter varies is indicative of a phase transit

FIG. 3. Simulation results for the order parameter^F& as a function of
reduced rotational constantB* for the QAPR model at zero temperature fo
system of sizeN5256, N5324, andN5400. The order parameter de
creases steadily with increasing rotational constant for all three system s
The size dependence begins to increase at a reduced rotational const
B* '0.3.
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At reduced rotational constants ofB* <0.3 the order param-
eter has a high value (^F&>0.65), indicative of an ordered
system.

In the interpretation of the behavior of the order para
eter it is important to consider the competing effects t
influence the ordering behavior of the system. In genera
larger system is expected to behave more like an infin
system. This alone would mean that a system whose o
parameter decreases with system size is disordered in
thermodynamic limit and vice versa. However the period
boundary conditions, which tend to order the system,
more significant for small system sizes. It is most likely f
this reason that the order parameter for the smallest sys
size has the largest value for almost all values of the redu
rotational constant that have been investigated~exceptB*
50.1).

We also calculated the second and fourth order Bin
cumulants@U2 ,U4 respectively, see Eq.~16!# as a function
of the reduced rotational constantB* . The results are pre
sented in Figs. 4 and 5. For low values of the reduced ro
tional constant (B* <0.3) the cumulants approach 2/3 ind
cating an ordered state. For valuesB* .0.3 the cumulant
decreases significantly indicating a disordered state. Also
dicative of the disordered state is the fact that the cumu
of the large system has a lower value than the cumulan
the small system in the regionB* .0.3. From the two graphs
one can establishB* 50.35 as an approximate upper boun
for the critical rotational constant.

While a definite crossing point is difficult to establis
from the graphs, one can investigate the values of the Bin
cumulants directly. In Table I we present the values of
fourth order Binder cumulants for reduced rotational co

es.
t of

FIG. 4. Simulation results of the second order Binder cumulantU2 as a
function of reduced rotational constantB* for systems of sizeN5256, N
5324, andN5400. The dashed line is at a value of 2/3. At low values
the reduced rotational constant (B* <0.3) the value of the cumulant ap
proaches 2/3 indicating an ordered state. At higher values (B* .0.3) the
cumulant decreases significantly indicating a disordered state.
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stantsB* 50.2, 0.25, and 0.3. The error bars shown are
standard deviation of the five runs.

The values of the fourth order Binder cumulant forB*
50.2 indicate that the system is ordered. For all three sys
sizes the fourth order Binder cumulant is close to 2/3, mo
over, the larger the system size the closer the value of
cumulant is to 2/3. ForB* 50.3 the trend as a function o
system size reverses. ForB* 50.25 the cumulants are ap
proximately equal, and their error bars overlap. We concl
that the phase transition occurs atBc* 50.25.

B. Energies

Investigating the energies has provided insight into
possible mechanism of the phase transition in previous s
ies ~Refs. 13 and 20! of the QAPR model. In Ref. 13, the
authors have argued, based on the behavior of the kinetic
potential energies, that the mechanism responsible for di
dering the system at low temperatures is barrier penetra
~tunneling!.

FIG. 5. Simulation results of the fourth order Binder cumulantU4 as a
function of reduced rotational constantB* for systems of sizeN5256, N
5324, andN5400. The dashed line is at a value of 2/3. At low values
the reduced rotational constant (B* <0.3) the value of the cumulant ap
proaches 2/3 indicating an ordered state. At higher values (B* .0.3) the
cumulant decreases significantly indicating a disordered state.

TABLE I. Calculated values of the fourth order Binder cumulantU4 as a
function of several values of the reduced rotational constantB* for systems
of size N5256, N5324, andN5400. The number after6 indicates the
error in the last digit of the value of the cumulant. For the procedure use
estimate the error, see the text. ForB* 50.2(B* 50.3) the size dependenc
indicates that the system is ordered~disordered!. A critical rotational con-
stant is identified atBc* 50.25.

B* U4(256) U4(324) U4(400)

0.2 0.6659462 0.6660361 0.6661062
0.25 0.6653464 0.6653862 0.6653962
0.3 0.6646365 0.6644965 0.664162
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In this study we have also calculated the potential,
netic, and total energies. The total energy is calculated in
usual way,34–36 the potential energy is calculated by usin
the technique presented in Sec. III B. The kinetic energy
calculated indirectly by subtracting the potential energy fro
the total energy.

In Fig. 6 we present simulation results for the energ
per rotor as a function of the reduced rotational const
(B* ) for the largest system (N5400). We show the kinetic
potential and half the total energies. The potential energ
shifted by the value of the classical minimum (Vc52), the
average of the kinetic and potential energies and the kin
energy.

The potential and total energies show an increase w
increasing rotational constant for the range investigated.
kinetic energy, on the other hand, shows an initial increas
maximum at the critical point (Bc* 50.25), and a subsequen
decrease in the rangeB* .0.25. The ‘‘bulge’’ in the kinetic
energy may be understood in terms of the relative imp
tance of barrier penetration in the ordered and disorde
phases. At low values of the reduced rotational const
(B* ,0.2), both the kinetic and potential energies are lo
indicating that the system is ordered~see also Fig. 3!. In this
region the system is behaving classically, tunneling does
seem to be significant. As the value of the reduced rotatio
constant is increased, the system begins to disorder
,B* ,0.3). As the value of the reduced rotational const
increases further, the value of the kinetic energy decrea
and the value of the potential energy increases. In this reg
the behavior of the system is dominated by quantum effe
The increase in potential energy corresponds to barrier p

FIG. 6. Simulation results of half of the total (Etot/2), kinetic (Ekin), and
potential (Epot) energies per particle as a function of the reduced rotatio
constantB* for theN5400 system. Note that the potential energy is shift
by its value at the classical minimum (Emin

cl 52). The values of the total
energy and the potential energy show an increase with increasing red
rotational constant throughout the range investigated. The value of the
netic energy shows an initial increase, a plateau around the range o
critical rotational constant (0.2,Bc* ,0.3), and a subsequent decrease w
increasing rotational constant.

to
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etration by single rotors. The decrease in kinetic energy c
responds to imaginary velocities which can be associa
with barrier penetration~tunneling! as well.

The above result and its interpretation is in strong qu
tative agreement with our Gaussian mean-field analysis
Sec. V. In the Gaussian mean-field treatment the phase
sition occurred precisely where the kinetic energy reache
maximum as a function of the reduced rotational consta
Furthermore since the trial function in our Gaussian me
field study was such that only local barrier penetration w
taken into account, the qualitative similarities between
behavior kinetic energies Gaussian model and the simula
indicate that the phase transition is driven by quantum t
neling.

Our simulation results are also in qualitative agreem
with the results of Mu¨ser and Ankerhold.20 In that study the
dimensionless kinetic energy was calculated using the au
iary field method.38,39 The dimensionless kinetic energy wa
found to increase in the region 0,B* ,0.4. A change in the
slope of the dimensionless kinetic energy was found atB*
50.4, beyond which the kinetic energy was found to d
crease.

VIII. CONCLUSION

In this paper we have carried out a Gaussian mean-fi
treatment and a detailed numerical analysis of the gro
state of the quantum anisotropic planar rotor~QAPR! model.

Our Gaussian mean-field treatment was based on a
function which was a product of single Gaussians. Thus o
single rotor tunneling was taken into account. A critical r
duced rotational constant ofBc* 52/e was found. Further-
more the phase transition in the mean-field model takes p
exactly where the kinetic energy reaches a maximum a
function of the reduced rotational constant.

Our numerical studies consisted of diffusion Mon
Carlo~DMC! simulations. We used an implementation of t
descendant weighing~DW! technique which has been show
to provide results for systems with many degrees of freed
We have studied the ordering of the system by way of fin
size scaling of the order parameter. We have also calcul
the total, potential, and kinetic energies of the system
order to understand the mechanism behind the ordering
havior of the QAPR model at zero temperature.

The order parameter as a function of reduced rotatio
constant was shown to undergo a sizable decrease indic
a transition from an ordered state to a disordered state in
range of rotational constants investigated. Based on the
ues of the Binder cumulants the critical rotational const
was determined to beBc* ,0.25.

Investigation of the kinetic, potential, and total energ
provided information about the importance of tunneling
single rotors in bringing about the order–disorder transit
in the QAPR model. In the ordered phase (B* ,0.2) both the
kinetic and potential energies have relatively low values,
dicating that the system is behaving classically. Barrier p
etration in this range of rotational constants is negligible.
the transitional region (0.2,B* ,0.3) the potential was
found to increase, but the kinetic energy was found to re
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a maximum. In the Gaussian mean-field model the ph
transition was also accompanied by a maximum in the
netic energy. For values of the reduced rotational cons
(B* .0.3) ~in the disordered phase! the potential energy was
found to increase, however, the kinetic energy was found
decrease.

The behavior of the kinetic and potential energies w
interpreted as a manifestation of tunneling. The potential
ergy increased due to barrier penetration by single rot
The decrease in kinetic energy can also be associated
tunneling, since the kinetic energy is negative in regions
which the potential energy is higher than the total energy
fact, according to our results, the transition from an orde
state to a disordered state at zero temperature in the Q
model is brought about by single rotor tunneling.
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