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We consider a range of model potentials with metastable states undergoing molecular dynamics cou-
pled to a thermal bath in the high friction regime and consider how the optimal reaction coordinate
depends on the diffusion anisotropy. For this we use our recently proposed method “spectral gap
optimization of order parameters (SGOOP)” [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S.
A. 113, 2839 (2016)]. We show how available information about dynamical observables in addition to
static information can be incorporated into SGOOP, which can then be used to accurately determine the
“best” reaction coordinate for arbitrary anisotropies. We compare our results with transmission coeffi-
cient calculations and published benchmarks wherever applicable or available, respectively. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4983727]

I. INTRODUCTION

The notion that the potential energy surface (PES), or
often the potential of mean force (PMF), governs the choice
and the form of the reaction pathway is a central tenet in
chemical physics. Given the PES (PMF), numerous very effec-
tive and successful techniques exist1–3 that can identify the
minimum energy (free energy) pathway between a collection
of metastable states, which is then taken to be the reaction
pathway. The reaction coordinate (RC) is proverbially defined
as an abstract low-dimensional coordinate that best captures
progress along this reaction pathway. We define the RC more
rigorously in Sec. II A.

However, such a reaction pathway and reaction coordinate
derived from a purely static framework can be significantly
perturbed by the stochastic nature of the environment, and
specifically by how the various degrees of freedom couple
to the bath and relax in response to perturbations in it.4–10

This coupling can be quantified through either a friction coef-
ficient or through its inverse, the diffusion constant. In the limit
of strong coupling to the environment, one then expects that
the diffusion will differ for different degrees of freedom; this
anisotropy will manifest itself in the reaction pathway. A cer-
tain reactive mode derived from the PES/PMF might no longer
be the path of least resistance between two metastable states,
and one needs to consider the work done not only against the
static forces from the PES/PMF but also the dynamic effect of
the environment. In fact, several workers have pointed out that
the effect of the diffusion anisotropy can be so strong as to lead
to the phenomenon of “saddle point avoidance,”11,12 where
the saddle points between metastable states could altogether
be avoided while moving between them.

Especially when one deals with free energies (as con-
trasted to potential energies) which are often defined as the
functions of qualitatively different collective variables, the
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diffusivities for the various coordinates will not be the same
and could possibly even be position and temperature depen-
dent. For instance, for the very important problem of protein-
ligand (un)binding,13–15 these variables could be ligand-host
relative displacement, their individual conformations, their
hydration states, and other variables.16,17 These variables can
naturally be expected to possess very different diffusivities.
For example, at low temperatures, the protein fluctuations can
be completely frozen out, with the protein effectively trapped
in one metastable conformation, while ligand unbinding still
happens.18 In such cases, the free energy barrier is thus not the
only determinant of the dynamics, and the RC which encap-
sulates the dominant slow fluctuations in the system will be
a function of the diffusion anisotropy. In fact, while the free
energy can be calculated as a function of any arbitrary order
parameter, it is the most informative when expressed as a func-
tion of the optimal RC. This work is restricted to simple model
potentials, as we are mainly interested in understanding how
the optimal RC depends on diffusional anisotropy—a question
pertinent to a range of very practical problems involving, for
example, protein conformational transitions, drug (un)binding,
and the efficiency of enhanced sampling.16,19,20

In the current work, we tackle the problem of how dif-
fusion anisotropy affects the RC for different model potential
energy landscapes with high and arbitrary numbers of energy
barriers. To identify the RC and its dependence on diffu-
sion anisotropy, we propose a practical numerical solution
using our recent method “spectral gap optimization of order
parameters (SGOOP).”19 For several potential surfaces, we
demonstrate how dynamical information can be incorporated
into SGOOP which can then be used to predict the RC for
arbitrary diffusion anisotropies. We look at three 2-d model
potentials undergoing Langevin dynamics with different val-
ues of the diffusion anisotropy and predict how the RC changes
with anisotropy for these different cases. Wherever possi-
ble, we validate the SGOOP-predicted RC with the published
results which use different methods for RC calculation5 and
also with extensive calculations of the reactive flux and the
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transmission coefficients along different putative RCs. The
method SGOOP, which is described in Sec. II, considers the
inverse problem of what we can infer about the RC given lim-
ited information about the static and dynamic behaviors of the
system. The dynamic information in SGOOP can be explicitly
implemented if one knows the diffusion tensor, or through a
Maximum Caliber framework,21,22 where one effectively fits
the response function to the environment depending on the
known dynamical observables. These dynamical observables
are clarified in Sec. II E. We use both the methods and find
excellent agreement between the results for all three poten-
tials. Given the robustness and reliability of SGOOP shown in
this work, we expect that it will be very useful for the complex
systems with qualitatively different collective variables that
respond differently to the environment.

II. THEORY
A. Reaction coordinate

In spite of, and possibly due to, its ubiquity across the
chemical kinetics literature, the reaction coordinate (RC) has
multiple definitions, often depending on the intended use. Here
we clarify our interpretation of the RC. For a given multidi-
mensional complex system undergoing a certain dynamics,
we define the RC as a low-dimensional (say one- or two-
dimensional) variable such that the multidimensional dynam-
ics of the full system in terms of movement between differ-
ent metastable states can be “best” mapped into Markovian
dynamics between various metastable states viewed as a func-
tion of the low-dimensional RC. In other words, the RC should
have two features: (1) it should be able to demarcate between
the various important metastable states that the full system
possesses, and (2) there should be a separation of time scales
between the relaxation times in the various metastable states,
and the relatively slow transition times between them. In Sec-
tion II C, we define the time scale separation more carefully
through the notion of the spectral gap.19,23,24

B. Potential of mean force along a putative
reaction coordinate

Without loss of generality, we consider a 2-dimensional
energy landscape, in the space of Cartesian or generalized vari-
ables x and y, with corresponding PES or PMF, respectively,
given by U(x, y). On this landscape, we consider a putative RC
û = x̂ cos(✓) + ŷ sin(✓), oriented at an angle ✓ from x̂. For exam-
ple, in Fig. 1(a), the dashed magenta line denotes a putative
RC rotated by an angle ✓ from the x-axis (solid black line).
Note that the relevant parameter for û parametrized as such
is its direction, and it is invariant to translation. This could
easily be generalized to more than 2 variables with the use
of more than 1 angle. The PMF F(q), where q measures the
distance along the unit vector û, i.e., ~q = qû can be defined
as

e��F(q) =
s s dxdy�(q � q(x, y))e��U(x,y)

s s dxdye��U(x,y)
, (1)

where � = (kBT )�1 is the inverse temperature. The normal-
ization in the denominator allows us to define an associated
stationary probability density p0(q) = e��F(q).

The PMF can be calculated analytically/numerically for
different choices of û for the model potentials in this work. For
more complex higher dimensional potentials, it can be calcu-
lated through a range of sampling techniques as was shown
in Refs. 16 and 19. In this work, the primary interest is to
see how the dynamical effects of diffusion anisotropy can be
incorporated into SGOOP, and as such as far as the PMF is
concerned, we evaluate it analytically/numerically. We found
no perceivable differences in the results by using a PMF esti-
mated through sampling. However, as explained later, we cal-
culate dynamical observables analytically as well as through
sampling.

C. Dynamics and spectral gap along a putative
reaction coordinate

Along a putative RC û = x̂ cos(✓) + ŷ sin(✓), we assume
that the time-dependent probability density p(q, t) is gov-
erned by a Smoluchowski equation with position dependent
diffusivity D(q),

@p(q, t)
@t

=
@

@q
D(q)e��F(q) @

@q
e�F(q)p(q, t) ⌘ �Hp. (2)

Under fairly general conditions, the operator H has a dis-
crete spectrum of non-negative eigenvalues {�i} with �0 = 0
< �1  �2  · · · , and corresponding eigenvectors �i(q), and
the general solution of Eq. (2) is given by

p(q, t) = p0(q) + ⌃1i=1ci�i(q)e��i t . (3)

For a system with n � 1 slow processes (for example,
corresponding to the existence of n metastable states), the
eigenspectrum of the operator H will have a gap between
the eigenvalues �n and �n+1, i.e., �n ⌧ �n+1. Please note that
strictly speaking we consider the spectrum of eigenvalues of
the associated master equation described in Sec. II D which
has similar properties. We refer to the quantity e��n � e��n+1 as
the spectral gap. The larger the spectral gap, the larger will be
the time scale separation between the slow and fast processes
when the dynamics is viewed as a function of the putative RC
û.

We consider a general diffusivity tensor in the Cartesian
basis given by

*
,

Dx 0

0 Dy

+
- ,

i.e., one without any off-diagonal terms. Interesting compli-
cations would naturally arise if these cross terms were not 0,
but they can always be dealt with by diagonalizing the diffu-
sion tensor and working with a different PES/PMF. We define
the anisotropy parameter as � = Dy/Dx. We consider different
values of � ranging from � ⌧ 1 to � � 1, where for instance,
� ⌧ 1 represents the case when diffusion along the y-axis is
much slower than diffusion along the x-axis.

For simplicity, we also assume that the terms Dx and Dy
have no positional dependence. Under this assumption, the dif-
fusivity D✓ along any putative RC û rotated at an angle ✓ from
the x–axis can be removed from inside the partial derivative in
Eq. (2), which can now be written as

@p(q, t)
@t

= D✓
@

@q
e��F(q) @

@q
e�F(q)p(q, t). (4)
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FIG. 1. For the Berezhkovskii-Szabo potential with various diffusion anisotropies � = Dy/Dx , SGOOP can accurately locate the true RC using Eq. (7)
or (9). (a) shows the Berezhkovskii-Szabo potential �U(x, y) from Ref. 5. Contours are drawn every 1 unit. The dashed magenta line denotes a putative
RC û, at an angle ✓ from the x-axis (solid black line). In (b) and (c), the vertical lines denote the benchmark calculations by Berezhkovskii-Szabo for
various � values. (b) gives various results for the isotropic case � = 1. The black stars are the transmission coefficients along various putative RCs û(✓),
given by the ratio of the rate constant kMD from long MD simulations, and the transition state theory (TST) rate constant k✓TST along û(✓). (c) gives the
spectral gaps for the anisotropic cases, with red and blue lines for � = 10 and 1, respectively. The locations of the maximum spectral gaps are in excel-
lent agreement with the calculations of Berezhkovskii-Szabo marked with vertical lines. In (d), the respective 1-d PMFs along the three putative RCs are
provided.

In fact, for the two-dimensional case given the diffusivity
tensor above, we can easily calculate D✓ ,

D✓ = Dxcos2(✓) + Dysin2(✓). (5)

D. Master equation along a putative
reaction coordinate

We now spatially discretize the putative RC û by defining
a grid {qn} along it, where n takes integral values. Let pn(t)
denote the instantaneous probability of being on any of these
grid points n at time t (also discretized in intervals�t), and kmn
be the time-independent rate of transition from grid point m to n
per unit time�t. We can then write a master equation governing
the flow of probability from one grid point to another,
�pn(t)
�t

= ⌃mkmnpm(t) � ⌃mknmpn(t) ⌘ ⌃mKnmpm(t). (6)

The matrix K, where Knm = kmn, is the entirety of all these
rates. The diagonal terms in this matrix are obtained through
⌃nkmn = 0. Under very general conditions, the master equation
possesses a unique stationary state solution, which we denote
p0

n in accordance with Sec. II B. We further assume that the
detailed balance is satisfied, i.e., p0

nknm = p0
mkmn which can be

shown to be true for closed isolated physical systems, but it is,
in general, a decent assumption.

Under these conditions, the master equation Eq. (6) will
also have a solution through expansion in eigenfunctions sim-
ilar to Eq. (3). For convenience, we use the same notation for
the eigenfunction solution to the Smoluchowski equation as
well as the master equation and denote the eigenspectrum as
{�i} with �0 = 0 < �1  �2  . . .. It is the spectral gap arising
from this eigenspectrum that we use in SGOOP and in this
work.

E. Relations between transition rates
and stationary probability

The transition rates kmn are underconstrained by the infor-
mation presented so far including the detailed balance con-
dition. We now introduce further relations connecting the
transition rates kmn to the stationary probabilities p0

n. Such a
relation is fundamental to SGOOP, which we will summarize
in Sec. II F. It can be derived in 2 ways which we describe
here. In this work, we use both these relations and assess how
SGOOP performs with each of them.

The first way to connect the transition rates kmn to the sta-
tionary probabilities p0

n is by discretizing the Smoluchowski
equation [Eq. (2)] and then comparing it with the master equa-
tion [Eq. (6)]. This is described in Ref. 25 and below we give
the final result,
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kmn =
D✓

2d2

s
p0

n

p0
m

, (7)

where d = |uk uk 1| 8 k is the grid spacing, D✓ is the
diffusivity along the putative RC û, which as explained in
Sec. II C we assume to depend on ✓ but not vary along û. This
approach is practical if one knows beforehand or calculates
the diffusivity along various degrees of freedom for instance
by using the approach of Refs. 26 and 27, and then uses
Eq. (5).

A second approach connecting the transition rates kmn to
the stationary probabilities p0

n is through the Maximum Cal-
iber framework. While fairly general treatments are possible
in this framework, here we start by assuming that apart from
the stationary state information all one knows is the average
value hNi of some dynamical observable N over the full phase
space. For instance, N could be the average number of first-
nearest neighbor transitions observed in time �t. Then hNi is
given by

hNi =
X

(m,n)
8 |m � n| = 1

p0
mkmnNmn =

X

(m,n)
8 |m�n |=1

p0
mkmn, (8)

where we have used Nmn = 1 8 |m � n| = 1 and 0 otherwise.
We then seek an equation akin to Eq. (7) with the only known
constraints being (1) the principle of the detailed balance and
(2) measurement of hNi. The principle of Maximum Caliber
maximizes the path entropy subject to these constraints21,22

and yields the same square-root of probability dependence,
but now instead of using the explicit diffusivity, one works in
the framework of Lagrange multipliers,

kmn = �

s
p0

n

p0
m
=

8>>><>>>:
hNi

Pq
p0

np0
m

9>>>=>>>;

s
p0

n

p0
m

, (9)

where we have calculated � by using the first equality of Eq. (9)
in Eq. (8). Note that similar expressions could be derived using
a very wide range of dynamical observables and not just the
one we use here.

With either Eq. (7) or (9), accompanied with either
explicit diffusivities or the measurement of hNi using molec-
ular dynamics (MD), respectively, we can complement our
knowledge of the stationary probability p0 to calculate the
full transition matrix K, where Knm = kmn as defined above.
The eigenvalues of this matrix directly give us the spectral
gap.

A technical but crucial point must be mentioned here. In
order to define and calculate hNi, we have limited ourselves
to first neighbors. We could go further than that, but then we
subject ourselves to noisy and poorly sampled observations
(i.e., transitions between far off grid points on {uk}). As such
it is desirable to stick to first or first few neighbors in this
context. However when we evaluate the eigenspectrum of the
matrix K, which could have come either through Eq. (7) or
(9), we are faced with a similar problem—how sparse should
the matrix K be? Here, in contrast to the calculation of hNi,
it is desirable to have not only first neighbor terms as non-
zero, but ideally terms in the whole matrix. From practical
perspectives for both these operations, we start with the first

neighbor, move on to the second neighbor, and so on, and stop
when the spectral gap does not change.

We finish this subsection by making the interesting obser-
vation that the equations very similar to Eqs. (7) and (9)
have recently been used in the context of machine learning
as well.28,29

F. Summarizing spectral gap optimization
of order parameters (SGOOP)

Given the full theoretical framework of Secs. II A–II E, it
is now easy to describe SGOOP,19 which is a method to con-
struct an optimal RC as a combination (linear or non-linear)
of a set of many candidate order parameters or collective vari-
ables  = ( 1, 2, . . . , d). This set is assumed to be known
a priori. The working definition of the optimal RC that SGOOP
follows was described in Secs. II A and II C: (1) demarcate
between various metastable states that the full system pos-
sesses and (2) maximize the spectral gap of the eigenvalues of
the associated master equation. Once again, let {�} denote this
set of eigenvalues, with �0 = 0 < �1  �2  . . .. We refer to
the quantity e��n � e��n+1 as the spectral gap, where n is the
number of barriers apparent from the free energy estimate that
is higher than a user-defined threshold (typically & kBT ). This
calculation is done without any pre-knowledge of the number
of metastable states the system might have and as such makes
it easy to use SGOOP for systems with an arbitrary number of
metastable states.

The first input to SGOOP is an estimate of the station-
ary probability density (or equivalently the free energy) of the
system as a function of any putative RC f ( ). For the model
systems in this work  = {x, y} and the stationary density for
any putative RC, it can be calculated analytically or numeri-
cally. For more complex systems,16,19 SGOOP uses the biased
simulation31 performed along a sub-optimal trial RC given by
some linear or non-linear function f0( ) and then a posteriori
reweighting it along any putative RC f ( ). The ability to
perform computationally easy a posteriori reweighting with-
out repeating the simulations is crucial. The second input to
SGOOP is some form of dynamical information. Depending
on whether Eq. (7) or (9) is used, this would respectively be
the diffusivity tensor from Sec. II B or the average number of
transitions hNi from Sec. II E. Both these pieces of informa-
tion are then used through either Eq. (7) or (9) to obtain the
eigenspectrum and hence the spectral gaps of the various trial
CVs f ( ). Through a post-processing optimization procedure,
we then find the optimal RC as f ( ) which gives the maximal
spectral gap.

For the simple case with just one barrier in two dimen-
sions, our method amounts to maximizing the difference
between the first two nonzero eigenvalues of the master
equation, which is in the spirit of other methods such as
Ref. 32. In this work, we implement SGOOP in two ways—by
explicitly considering the diffusion tensor in the discretized
Smoluchowski equation and through a Maximal Caliber
framework—and demonstrate excellent agreement between
both. The novelty in SGOOP partly comes from its ability
to deal with more than one barrier which we show explicitly
in Sec. III, as well as through its use of the Maximal Caliber
framework when the diffusion tensor is not known.
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III. RESULTS

Previous applications of SGOOP have been limited to
considering only the stationary density information and ignor-
ing dynamical effects. In this work, we consider three model
2-dimensional potentials undergoing Langevin dynamics cou-
pled to a bath, with distinct dynamical effects due to diffusion
anisotropy, and demonstrate how SGOOP can be used to accu-
rately predict the effects of diffusion anisotropy on the RC.
The first two are 2-state potentials, namely, the Berezhkovskii-
Szabo (BS) potential5 and the Deleon-Berne (DB) potential.33

The third potential is a 3-state potential which we describe
later. The set of candidate order parameters is given by  
= {x, y}, and for each potential, we identify the optimal RC as
a linear combination f (x, y) = ax + by for different diffusion
anisotropies � = Dy/Dx. This amounts to calculating the opti-
mal angle ✓ from x̂ for the RC given by û = x̂ cos(✓) + ŷ sin(✓)
for � = 0.1, 1, and 10. For all the potentials, Newton’s laws of
motion were integrated per Langevin dynamics34 with a time
step 0.01 unit and different values of anisotropic friction coeffi-
cients �x, �y. Since � = Dy/Dx, we have the relation � = �x/�y.
Corresponding to � = 0.1, 1, and 10, we took (�x, �y) = (2,20),
(5,5), and (20,2), respectively, in inverse time units. All of these
simulations correspond to the overdamped friction regime.30

We consider two different 2-state potentials because of
the structure of the diffusion tensor. In one of them (DB), the
two directions x and y are parallel/perpendicular to the line
through the saddle connecting the two minima, while in the
other (BS), both the directions are at a tilt with respect to
this line. This simple difference, as we show later, leads to an
arguably profound difference in how the RC depends on dif-
fusion anisotropy. For the 2-state potentials, we also perform
explicit calculations of the transmission coefficient given by
the ratio of the rate constant kMD from long MD simulations,
and the TST rate constant k✓TST along various û(✓).

A. Berezhkovskii-Szabo (BS) potential

The first potential we consider is a 2-state potential
[Fig. 1(a)] introduced by Berezhkovskii and Szabo.5 We start
with this potential because the authors in Ref. 5 have explicitly
calculated the dependence of the RC on the anisotropy param-
eter � through a different method. Thus it serves as an excellent
benchmark for our work. In Fig. 1(a), the dashed magenta line
denotes a putative RC û= x̂ cos(✓) + ŷ sin(✓), at an angle ✓ from
the x-axis (solid black line). The potential is detailed in Ref. 5.
Here we perform Langevin dynamics at inverse temperature
� = 1.

In Fig. 1, we give the detailed results for this potential.
Figure 1(b) shows the results for the isotropic diffusion case.
Here the use of SGOOP with Eq. (7) or (9) gives the same opti-
mal RC (✓ = 32�) in very good agreement with the benchmark
calculation in Ref. 5. We also provide here our calculations of
the transmission coefficients along various putative RCs û(✓),
given by the ratio of the rate constant kMD, and the TST rate
constant k✓TST along û(✓). It is very interesting that the scaled
spectral gap through SGOOP follows roughly the dependence
of the transmission coefficient on ✓. Figure 1(c) gives the same
information as (b) but for the anisotropic cases. Here as well
the agreement with the benchmark calculation in Ref. 5 is

excellent, with the optimal RC at ✓ = 5�and ✓ = 70� for �
= 10 and 0.1, respectively. Naturally, the transmission coeffi-
cient ( = kMD/k✓TST ) would have the same qualitative behavior
including the location of the maximal value at ✓ = 32�, irre-
spective of the extent of anisotropy. This is because k✓TST does
not depend on the anisotropy in D but only on the static details
through the PMF for the putative RC corresponding to ✓, and
kMD is a measurement independent of the choice of RC, i.e., ✓.
This leads to the possibly obvious but important observation
that while maximizing the value of the transmission coefficient
still gives the best TST description (i.e., variational transition
state theory), it might not give the best reaction coordinate
as it does not take into account dynamical effects through the
anisotropy of the diffusion coefficients. Finally, in Fig. 1(d), we
provide the respective 1-d PMFs along the three putative RCs.
It is interesting to see here how the effect of a smaller barrier—
which would be ideal for a 2-state problem from the purpose
of optimizing transmission coefficient—is compensated by the
slower diffusion along a certain direction.

B. Deleon-Berne (DB) potential

The second potential we consider is a 2-state potential
[Fig. 2(a)] introduced by De Leon and Berne.33 The potential
is detailed in Ref. 30. Here we perform Langevin dynamics
at inverse temperature � = 5. In Fig. 2, we give the detailed
results for this potential. Figure 2(b) shows the results for the
isotropic diffusion case. Here the use of SGOOP with Eq. (7)
or (9) gives the same optimal RC (✓ = 90�) in very good agree-
ment with the transmission coefficient calculation. It is again
very interesting that the scaled spectral gap through SGOOP
follows roughly the dependence of the transmission coeffi-
cient on ✓. Figure 2(c) gives the same information as (b) for
the anisotropic cases.

For this potential, unlike the Berezhkovskii-Szabo poten-
tial, changing the diffusion anisotropy does not change the
precise location of the optimal RC. However, it does change
the tolerance in quality of the RC one has in terms of deviating
from the optimal location. Thus as can be seen in Fig. 2(d), the
spectral gap versus ✓ profiles for the � = 10 and 0.1 cases are
broader and narrower, respectively, than the � = 1 profile in
Fig. 2(b). Thus when the diffusion along y is slower (� = 0.1),
the penalty for deviating from the optimal RC ✓ = 90� is much
higher, and correspondingly it is much lower in the case when
diffusion along x is slower (� = 10). We further discuss this
point in Sec. IV. In Fig. 2(d), we provide the respective 1-d
PMFs along the three putative RCs. As can be seen here, the
RC with ✓ = 90� gives the highest barrier and thus corresponds
to the optimal RC for the isotropic diffusion case.

One interesting observation that can be made from the
two 2-state problems we looked at pertains to the qualita-
tive difference in their response to the diffusion anisotropy.
The Berezhkovskii-Szabo (BS) potential showed a very
clear dependence of the optimal RC on extent of diffu-
sion anisotropy, while the Deleon-Berne (DB) potential had
the same optimal RC location irrespective of the extent of
anisotropy. Apart from the difference in the precise func-
tional form, both of these are simple 2-state potentials, fairly
similar to each other except that in the BS potential, the diffu-
sion tensor non-zero components x and y are not aligned along
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FIG. 2. For the Deleon-Berne potential with various diffusion anisotropies � = Dy/Dx , SGOOP can accurately locate the true RC using Eq. (7) or (9). (a) shows
the Deleon-Berne potential �U(x, y) from Ref. 30. Contours are drawn every 1 unit. The dashed magenta line denotes a putative RC û, at an angle ✓ from the
x-axis (solid black line). (b) gives various results for the isotropic case � = 1. The black stars are the transmission coefficients along various putative RCs û(✓),
given by the ratio of the rate constant kMD from long MD simulations, and the TST rate constant k✓TST along û(✓). (c) gives the spectral gaps for the anisotropic
cases, with red and blue lines for � = 10 and 1, respectively. In (d), the respective 1-d PMFs along the three putative RCs are provided.

the normal mode of the PES. In the DB potential, one of the
diffusion tensor non-zero components (y) is aligned along the
normal mode of the PES.

C. 3-state potential

The final potential we consider is a 3-state potential given
by the following functional form:

U(x, y) = �16(e�2(x+.5)2�2(y�.5)2
)

�18(e�2(x�.8)2�2(y�1.2)2
)

�16(e�2(x�.5)2�2(y+.3)2
) + 0.5(x6 + y6). (10)

Here we perform Langevin dynamics at inverse temper-
ature � = 1.25. In Fig. 3 we give the detailed results for this
potential. Figure 3(b) shows the results for the isotropic dif-
fusion case. Here the use of SGOOP with Eq. (7) or (9) gives
the same optimal RC (✓ = 81.5�).

Note that there are two other peaks in this profile, signify-
ing the presence of multiple barriers and thus different families
of possible RC. These peaks are however not as dominant as
the optimal RC. Figure 3(c) gives the same information as (b)
for the anisotropic cases. For this potential, when we change
the diffusion anisotropy to � = 10 (i.e., diffusion along x is

slower), we see a flip in the relative strengths of the peaks at
✓ = 81.5� and ✓ = 21.8�, and the optimal RC switches to ✓
= 21.8�. For the opposite end when � = 0.1 (i.e., diffusion
along y is slower), the optimal RC is same as in the isotropic
case. The same results are found through the use of Eq. (7)
or (9).

In Fig. 3(d), we provide the respective 1-d PMFs along
the two putative RCs obtained for ✓ = 81.5� (blue line) and ✓
= 21.8� (red line). In contrast to the other two potentials, now
we have two barriers. Similar interpretations can be made here
as for the 2-state potentials. The RC for � = 1 has higher barriers
(corresponding to both the eigenvalues �1 and �2). However
for the � = 10 case, it is the effect of having slower diffusion
along x that leads to the putative RC with lower free energy
barriers becoming the optimal RC.

D. Additional treatment of the Berezhkovskii-Szabo
(BS) potential

In this subsection, we revisit the BS potential from yet
another perspective which has been used by workers includ-
ing Hynes, Szabo, and others4,5 and has been described in
those papers. Unlike SGOOP, this treatment is applicable only
if (1) the reactants and products are separated by a single
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FIG. 3. For the 3-state potential with various diffusion anisotropies � = Dy/Dx , SGOOP can accurately locate the true RC using Eq. (7) or (9). (a) shows the
3-state potential �U(x, y). Contours are drawn every 0.5 unit. Two putative RCs û are shown, at an angle of 21.8�and 81.5�from the x-axis. (b) gives various
results for the isotropic case � = 1. (c) gives the spectral gaps for the anisotropic cases, with red and blue lines for � = 10 and 1, respectively. The RC for these
two anisotropies is found to be at ✓ = 21.8�and 81.5�[marked in (a)]. In (d), the respective 1-d PMFs along the two putative RCs are provided.

saddle point, and (2) the dynamics is in the high friction limit.
The key idea here is to consider the matrix DV, where D is the
full diffusion tensor and V is the matrix of second derivatives
of the multi-dimensional potential at its saddle point, with det
V < 0. Both these matrices could in general have off-diagonal
cross terms. By then solving for the only negative eigenvalue
and associate eigenvector of the operator DV, we get the reac-
tion coordinate for the given potential. We do this exercise for

FIG. 4. Blue line shows the rotation of the optimal RC from the x–axis for
the BS potential, as obtained by diagonalizing the DV matrix, as described in
Sec. III D. Red asterisks mark the estimates of the optimal RC from SGOOP.

various diffusion anisotropies as quantified by the value of the
parameter � in the diffusion tensor,

*
,

Dx 0

0 �Dx

+
- .

In Fig. 4, we provide the rotation of the optimal RC from the
x–axis for the BS potential as obtained by diagonalizing the
DV matrix and calculating the orientation of the eigenvector
with the only negative eigenvalue. In this figure, we have also
overlaid the estimate of the optimal RC from SGOOP and the
two estimates are in excellent agreement.

IV. DISCUSSION

In this work, we have demonstrated how by using our
recent method SGOOP19 we can reliably and accurately cal-
culate the effect of diffusion anisotropy on the reaction coordi-
nate for different model potential energy landscapes with high
and arbitrarily many energy barriers and arbitrary diffusion
anisotropies. Wherever possible, we validated the SGOOP-
predicted RC with the published results using different meth-
ods for RC calculation5 and also with extensive calculations
of the transmission coefficients along different putative RCs.
We showed how the dynamic information in SGOOP can be
explicitly implemented either through explicit knowledge of
the diffusion tensor or through a Maximum Caliber frame-
work.21,22 We found excellent agreement between the results
for all three potentials using both these methods. Unlike other
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methods for optimizing the RC that we are aware of, SGOOP
was also shown to give an approximate quantification of how
tolerant the system is with respect to deviations from the
optimal RC.

Clearly, knowing the optimal RC is important from the
perspective of kinetics calculations. However, we believe that
diffusion anisotropy and how it is manifested in the interplay
between statics and dynamics might be an overlooked but vital
problem in free energy sampling as well (barring few notable
exceptions such as Ref. 35), where one is often faced with
a choice of many qualitatively different order parameters or
collective variables.36–38 Barring very specialized conditions,
these variables will naturally have different diffusivities. In
such situations, a method like SGOOP should be very useful
for accurate and efficient free energy sampling. A free energy
profile sampled along the optimal RC will be easier to compute
through umbrella sampling or metadynamics, and features in
this profile will be of more direct use as well for drawing
physical conclusions. This will be the subject of future inves-
tigations probing the thermodynamics and kinetics of complex
systems.
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