ELECTRICAL PROPERTIES OF NiO

we obtain from the relation

up=0/e[ V'], (14)
14p(1394°C) =0.25 cm?/V-sec. Using Eq. (13a) it is
suggested that the mobility of holes in NiO at high
temperature is given by

up=(5959/T) exp(—0.37/kT) (cm?/V+sec). (15)

The measured Hall mobility in undoped NiO at
1000°C was found to be # type, 102 cm?/V-sec * and
1.7X 10~ cm?/V-sec.® These values are appreciably

4N, M. Tallan and D. S. Tannhauser, Phys. Letters 26, 136
(1968).
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smaller than the value 0.143 cm?/V-sec calculated
from Eq. (15). The great discrepancy between the
measured Hall mobility and the computed drift mobility
was explained by van Daal and Bosman* on the basis
of an interaction between the charge carriers and an
induced magnetization. Tallan and Tannhauser® have
attributed their observed dependence of the measured
Hall mobility on charge-carrier concentration, the
negative sign of the Hall mobility, and its small mag-
nitude to a Hall mobility for holes that is orders of
magnitude less than the drift mobility for holes, and
suggested that this might be due to the localized
nature of the holes at high temperatures.
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Linear- and Angular-Momentum Autocorrelation Functions in Diatomic Liquids*
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The linear- and angular-momentum autocorrelation functions in liquid CO have been studied using
computer-simulated molecular dynamics. The structure of these functions appears to be determined by the
corresponding autocorrelation functions of the direction of the linear and angular momentum. The structure
of the angular-momentum autocorrelation function is also shown to depend on the strength of the noncentral
part of the pair potential used in the dynamics calculations. The assumptions that the linear and angular
momenta are Gaussian random variables are examined and shown to be valid forTthe data presented.

I. INTRODUCTION

Despite recent advances in the theory of linear-
transport phenomena in dense fluids, relatively little
is known about the autocorrelation functions of the
linear and angular momenta. In addition, aside from
qualitative arguments, little can be said of the struc-
ture of the few autocorrelation functions which have
been determined. One of the major difficulties en-
countered in developing a theory of autocorrelation
functions arises from the fact that there seems to be,
at least at present, no simple way of bypassing the
complex many-body dynamics in a realistic fashion.

Little if indeed anything has been reported about
the full time evolution of the angular-momentum auto-
correlation function of diatomic molecules in gases or
liquids. This function plays a major role in determining
the line shapes of NMR signals. The power spectrum
of this function at the Larmour precession frequency
of the nuclear spin determines the contribution of the
nuclear-spin-rotation coupling to nuclear-spin-relaxa-
tion and thereby to the NMR line breadth.!'? Thus

* Supported in part by the Petroleum Research Foundation of
the American Chemical Society.

1 NASA Trainee.

1W. A. Steele, J. Chem. Phys. 38, 2411 (1963).

*J. S. Waugh, Advances in Magnetic Resonance (Academic
Press Inc.\New York, 1967), Vol. 3.

NMR experiments can be used to probe isolated fre-
quency components of this correlation function.

Thermal-neutron-scattering experiments offer in prin-
ciple the most detailed experimental information about
both the linear- and angular-momentum autocorrela-
tion functions?® This information is very difficult to
interpret owing to the extreme difficulty in separating
the rotational from the translational motion of the
molecules since rotations and translations are strongly
coupled in most liquids. Recently, neutron-scattering
experiments have been done on liquid argon, and the
linear-momentum correlations have been studied in
detail.

The major source of information about the linear-
and angular-momentum autocorrelation functions is
provided by molecular-dynamics studies of polyatomic
liquids. We are presently studying the coupling be-
tween translations and rotations in liquid CO and N..
Many different intermolecular potentials are used.
Without going into the details of these computations
and without arguing as to the merits or weaknesses of
the particular intermolecular potentials used in these
studies, it is possible to make some fairly conclusive

*P. A, Egelstaff, Thermal Neutron Scaltering (Academic Press
Inc., New York, 1965).

4+ B. Dasannacharya and K. Rao, Phys. Rev. 137, A417 (1965);
K. Skold_and K. Larsson, 7bid. 161, 102 (1967).
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statements about linear and angular momentum cor-
relations in diatomic liquids.

All of these studies show very clearly that there is
an interval of time for which the velocity autocorrela-
tion function is negative. The negative region indicates
that on the average, a displacement of a molecule
towards its near neighbors is followed by a displace-
ment back towards its initial position. This is in agree-
ment with molecular-dynamics studies on monatomic
liquids.

Likewise, all of these studies show very clearly that
in liquids for which the pair potential has a strongly
noncentral character, there is an interval of time for
which the angular-momentum autocorrelation func-
tion is negative, whereas in liquids for which the pair
potential has a small noncentral component this cor-
relation function remains positive and changes very
little over the observed time interval. The negative
region indicates that on the average, a molecule suffers
a sufficiently strong collision with the cage formed by
its nearest neighbors that the torque acting on it is
large enough to reverse the direction of its angular
momentum.

In this paper we investigate the degree to which
changes in the linear and angular speed contribute to
the over-all temporal behavior of the linear- and angu-
lar-momentum changes with time. The results of this
study clearly show that it is the changes in the direc-
tions of these momenta and not the changes in their
magnitudes which determine the structure of the auto-
correlation functions.

Here, we also investigate to what extent it is ac-
curate to consider the linear and angular momentum
as Gaussian random processes. It is concluded that for
the data presented this is a good approximation.

II. THE LINEAR- AND ANGULAR-MOMENTUM
AUTOCORRELATION FUNCTIONS

The normalized linear and angular momentum auto-
correlation functions, ¥(¢) and A;(¢) are, respectively,
defined as

¥ (1)=(p(0)-p(1))/{*),
A:(1)=(J(0)-J@) )}/ (),

where p(¢) is the center-of-mass (c.m.), linear momen-
tum and J(¢#) is the angular momentum about the c.m.
of a molecule at time ¢. Here the angle brackets { ) in-
dicate an equilibrium ensemble average over the initial
conditions. In all cases ¥(¢) behaves just like the func-
tions found for liquid argon even though there are
molecular internal degrees of freedom in these liquids
whereas in argon there are none.

To investigate further the behavior of these func-
tions we have also computed the normalized linear-
and angular-speed autocorrelation functions ¢ (#), and
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os(¢) where

o) =(]p0) | [p® | )/{#*,
ar(D={1JO) 11T 1)/,

together with the corresponding directional correlation
functions D(¢) and D; (%),

D(1)=(e(0)-e(1)),
D; () =(es(0)-es(1)),

where | p(¢) |, | J(?) |, e(?), and e (¢) are, respectively,
the magnitude of the linear and angular momenta and
unit vectors pointing in the direction of the linear and
angular momenta.

These functions are normalized; that is, they are
initially unity. Their long-time limits are

}ijj ()= (p)-{p)/{$*)=0,

lime(t)={{!p|)}¥/ ($*)=8/3m,

>

lim D(2) = (e)-{e)=0,

t»>c0

lim 45(0)= 3 1)/ =0,
lim o (£) = { [T/ T)=n/4,
}im D;(t)={(es){es)=0.

This springs from the fact that for very long times the
value of the random variable in each correlation func-
tion becomes statistically independent of its initial
value.

The curves in Figs. 1 and 2 correspond to the mo-
lecular-dynamics determination of ¥(¢), a(¢), and D(¢)
for CO molecules interacting via:

(a) a Stockmayer potential.

(b) a center-of-mass Lennard-Jones (12-6) plus
dipole—dipole, dipole-quadrupole, and quadrupole-
quadrupole potential (hereafter called the modified
Stockmayer potential). Some of the details of the
molecular-dynamics calculations for these potentials
appear in the Appendix. The curves of Figs. 3 and 4
represent As(f), os(t), and D;(¢) for the same two
potentials.

The Stockmayer potential for CO is very weakly
angular dependent even at the liquid densities used
for these calculations. On the other hand, the modified
Stockmayer potential is strongly angular dependent.
This is illustrated quite dramatically by our calculated
values of the mean-square torque for the two potentials.
The mean-square torque for the Stockmayer potential
was found to be 6.7X10™% (dyn-cm)? while the mean-
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Stockmayer simulation for liquid CO and the autocorrelation
function 8¢(¢) from the Gaussian approximation.

As(t). a(t) varies between its initial value of unity
and its long time value of 8/3w, and therefore, because
of only a 139, change over the whole time axis contri-
butes very little to the over-all time dependence of
¥(#). Likewise, o (¢) varies between 1 and its long-time
value of m/4 and therefore, because of only a 219
change over the whole time axis, contributes very little
to the over-all time dependence of A,(f). D(¢) and
Dj;(t) are excellent approximations to ¥{#) and 4,(¢),
respectively. We come to these conclusions on the basis
of molecular dynamics. In a sense, this can be con-
strued as an argument for a constant linear- and angu-
lar-speed approximation to the calculation of the linear-
and the angular-momentum autocorrelation functions.

The Gaussian A pproximation

It would be very convenient to know whether or
not the linear and angular momenta can be accurately
represented by stationary Gaussian random variables.
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Stockmayer simulation for liquid CO and the autocorrelation
function 8sg(f) from the Gaussian approximation.

If the answer to this question is in the affirmative then
the probability of finding a molecule at time ¢ with a
velocity v given that it was moving with velocity vo
at the initial instant /=0 is the Gaussian transition
probability®

M
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Fic. 6. The autocorrelation function &(¢) from the modified unction &¢”(£) PP
Stockmayer simulation for liquid CO and the autocorrelation

function &g(¢) from the Gaussian approximation. 5 J. L. Doob, Ann. Math. 43, 351 (1942).
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lar momentum is similarly given by
K;(J;¢] Jo; 0) = {2xIKT[1— A2($) ]}
X exp{—B[J—JoAs (1) P/2IT1—A,2(1) ]}.

Thus all that one would be required to know in order
to compute any autocorrelation function involving a
higher power of v or J is ¥(#) or A;(¢). For example
the normalized translational kinetic-energy autocorre-
lation function §.(¢), where

8o(1) = (H(0)#* (1) )/ (o*)

can be determined in terms of ¥ (f) from the Gaussian
transition probability to be

& (1) =3[14+322(1)].

The subscript G indicates that this is an approximate
and as yet unverified result based on the Gaussian ap-
proximation. Similarly the normalized rotational ki-
netic-energy autocorrelation function &/ (t), where

&7 (1) = (J(0)J2(1) )/ (J*),

can be determined in terms of 4;(¢) from the Gaussian
transition probability to be

867 (1) =3[1+4,2(1) 1.

In like manner, the fourth-order correlation functions
&4(f) and &7(f) and eighth-order correlation function
&3(2), which are defined as

84(t) = (*(0)v* (1) )/ (),
847 (1) = (J*(0)J*(2) )/ (J*),
&s(1) = (*(0)*(2) )/ (v*®),

can be determined in terms of ¥(¢) and 4;(f) from the
(Gaussian transition probabilities to be

Ea(t) = (1/945) [ 225+ 6002 () -+ 120%4(1) ],
867 (1) = (1/384)[644-256 4,2 (1) + 644 54(8) ],
8sa(£) = (1/36 465)[ 94510 080%2+ 18444
+ 69123 384957,

All even higher-order autocorrelation functions can be
expressed as an even power series in ¥ () or 4;(¢).
These higher-order correlation functions play a large
role in determining many different physical properties
of polyatomic systems. For example the vibrational re-
laxation time can be expressed in terms of the rota-
tional kinetic-energy autocorrelation function.® Simi-
larly the line shape of the rotational Raman spectra
of diatomic molecules is determined by the correlation
function {(P[u(0)-u(f)]) where u is a unit vector

¢ B. J. Berne, J. Jortner, and R. G. Gordon, J. Chem, Phys. 47,
1600 (1967); B. J. Berne, R. G. Gordon, and V. F. Sears, “Mech-
anisms of Vibrational Relaxation,” ibid. (to be published).
(179(15{5.) G. Gordon, J. Chem. Phys. 42, 3658 (1965); 43, 1307
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Stockmayer simulation for liquid CO and the autocorrelation
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pointing in the direction of the molecular axis and
Py(x) is the second-order Legendre polynomial. As is
well known, the infrared spectrum of diatomic mole-
cules has a band shape which can be expressed in terms
of the autocorrelation function (u(0)-u(?)).? Thus if
uis a Gaussian random variable, the Raman band shape
can be determined from the infrared band shape. There
are many other illustrations of the importance of these
higher-order correlations.

At this time the only experimental method for de-
termining to what extent the Gaussian approximation
adequately reflects the complicated motions in many-
body systems is computer-simulated molecular-dy-
namics studies of polyatomic liquids. It is in principle
possible by this method to determine the transition
probabilities completely as a function of time. Although
this will eventually be done, we have to date tested
only the correlation functions &:(t), &4(¢), 8(¢t), &7 (1),
and &,/ (#). These functions were first computed from
molecular dynamics and then compared with 8&x(f),
&ia(t), 8se(t), 8167 () determined from the previous
formulas using the correct ¥(¢) and A,(f) from the
dynamics. The results of these computations are pre-
sented in Figs. 5-9. These first few calculated moments
indicate that the Gaussian transition probabilities for
the linear and angular momentum may represent the
dynamics fairly well. However it may not yet be con-
cluded that the Gaussian approximation is actually
correct, since the same test must be made on the cor-
responding higher moments, i.e., &1(f), &1 (f), -«-,
etc. If the linear and angular momentum were truly
Gaussian random processes than they are not Marko-
vian, This follows from the facts that ¥(¢) and 4,(¢)
are not exponential with time—Figs. 2 and 4—and
Doob’s theorem® according to which a stationary
Gaussian process is Markovian if and only if the auto-
correlation function for the process is exponential in
time.
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APPENDIX

The molecular-dynamics calculations were carried
out in a manner similar to that used by Rahman® in
his original study of liquid argon. A finite number of
molecules were assumed to interact pairwise through
a given truncated intermolecular pair potential. In
addition, the atoms on the same molecule were assumed
to interact through a harmonic potential, 1K ,(r,~—#)2,
where K, is the ground-state vibrational force constant
for the molecule, 7; is the internuclear separation for
the ith molecule, and 7 is the ground-state vibrational
equilibrium internuclear separation. The harmonic po-
tential was added because the calculations were done
in the Cartesian coordinates of the atoms forming the
molecules. These atoms were originally separated by
the equilibrium internuclear distance. They remained
separated by this distance to within ~10~ & through-
out the course of the calculations. Therefore the results
of these computations are essentially those for a system
of rigid rotors.

The center of mass of each molecule was initially
placed in a cubic lattice system within a large cube
whose dimensions were determined from the density
and number of molecules to be followed. The molecular
orientational angles were chosen randomly on a unit
sphere. The relative and center-of-mass velocity com-
ponents for each molecule were chosen by the Von
Neumann® rejection method from Gaussian distribu-
tions appropriate to a preselected temperature. Periodic
boundary conditions were imposed?®# and Hamilton’s
equations of motion for the interacting molecules were
solved numerically using the method of Runga-Kutta
Gill*t with a step size in time of 5X 107 sec. During
the initial stages of the computation, if the temper-
ature of the system fell outside a preselected range
of temperatures, the velocities were changed accord-
ingly. After the system had equilibrated, it was followed

8 A. Rahman, Phys. Rev. 136, A405 (1964).

®H. Kahn, Atomic Energy Commission Rept. AECU-3259
(unpublished).

10 B, J. Alder and T. E. Wainwright, in Transport Processes in
Statistical Mechanics, 1. Prigogine, Ed. (Interscience Publishers,
Inc., New York, 1958).

1A, Ralston and H. Wilf, Mathematical Methods for Digital
Computers (John Wiley & Sons, Inc., New York, 1966).
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for an additional 600 steps in time. During this period
the positions, velocities, and accelerations were put on
magnetic tape. The tape was later analyzed for the
time-dependent and time-independent properties of
the system. The time-dependent correlations were
computed using an ensemble of 100 blocks of data as
time origins.® Therefore each autocorrelation function
represents the average of the appropriate dynamical
information along 100N molecular trajectories, where
N is the number of molecules followed.

The results presented here for CO were done at a
density of 0.8558 g/cc. The equilibrium internuclear
separation used was 1.1281 A with a harmonic force
constant of 1.9020%X10° dyn/cm.? The Stockmayer
intermolecular pair potential that was used is given
by

Vi(R, 81, 65, &) =4e[(¢/R)"*— (¢/R)"]
— (u2/R?) (2 cost cosf,— sind, sinf, cose),

where R is the distance between the center of masses of
the two molecules and 6y, 6, and ¢ are the orientational
angles of the two molecules with respect to a line join-
ing their center of masses. The Stockmayer potential
parameters used were e=1.5172X 107 erg, o= 3.585 &,
and p=0.1172 D This simulation was done for 512
molecules and equilibrated at 69°K.

The modified Stockmayer pair potential that was
used is given by

V(R, 61, 05, )=V (R, 01, 8, ¢)

+ (3uQ/4R*) [cosb: (3 cos?p—1) +cosba(3 cos?—1)
—2 siné; sind; cose (cosfs+coshy) ]
+(30%/4R5)[1—5 cos?0— 5 cos?;— 15 cos?f; cosf,

-+ 2(sind; sinb; cosp—4 coshy cosy)?].

The quadrupole-dipole term used here differs by a
factor of 2 from the usual definition of this term.?
However, the effect of this difference on the over-all
results is thought to be small. The same values of ¢, o,
and u that were used in the Stockmayer simulation were
used here. The range of the intermolecular potentials
in both simulations was 2.25¢. The value of Q used was
2.43X107% esu® This simulation was done for 512
molecules and equilibrated at 67°K.

12 G. Herzberg, Molecular Spectra and Molecular Structure (D.
Van Nostrand Co., Inc., New York, 1961), Vol. 1.

13 J. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of
Gases and Liquids (John Wiley & Sons, Inc., New York, 1954).

“T. Spurling and E. Mason, J. Chem. Phys. 46, 322 (1967).
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