DIAMAGNETIC SHIELDING IN MOLECULES

another example, Hartree-Fock calculations®? predict
D, for HF (R,=1.733 ay) as 0.161 a.u. (true value=
0.225 a.u.), while the Hartree-Fock calculations®® for
OH~ (interpolated to the R=1.733 g, distance) predict
0.127 a.u. The difference between the two, assuming
much of the error is common to both calculations and
cancels, gives A=0.92 eV, which means an error of
0.6X107% in ,.°.

In summary, Eq. (2) is shown to give reliable
estimates for the average diamagnetic shielding at a
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nucleus in a molecule. The validity of Eq. (2) is related
to the “isoelectronic principle” ar the negligible change
in dissociation energy with change in nuclear charge
(total electrons and internuclear distances are kept
constant). Equation (2) may be useful in extracting
meaningful interpretations from chemical-shift data
and also in assigning the signs of spin-rotation con-
stants.
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In this paper two simple criteria for guessing the time-dependent orientational distribution function
from the experimentally measured dipolar autocorrelation function (u(0)-u(#) ) are examined. The first
maximizes the information entropy of the distribution under the constraint imposed by the known
{u(0) -u(¢) ), and the second minimizes the mean-square difference between the distribution function and
the equilibrium (£ —) distribution under the same constraint. The accuracy of these criteria is tested
on the results of computer studies of the rotational relaxation of diatomic liquids. The same general method
is applied to the Van Hove self-correlation function, and to the center-of-mass velocity transition probability.

INTRODUCTION

The shape of the vibration-rotation bands in infrared
absorption and Raman scattering experiments on poly-
atomic molecules dissolved in a host fluid have been
used to determine the autocorrelation functions!
@(0)+u(®)) and (P[11(0)-u(#)]), where u is a unit
vector pointing in the direction of the transition dipole
of the corresponding band and P(x) is the Legendre
polynomial of index 2. These correlation functions
measure the rate of rotational reorientation of the
molecule in the host fluid. Consequently, the observed
temperature and density dependence of these functions
yield a great deal of insight into the mechanism of
reorientation in solids, liquids, and gases. Moreover they
have been used recently to explore the regression of
fluctuations about the approach to equilibrium.

It would be very convenient to know how to predict
Raman band shapes from ir band shapes and vice
versa. This would provide insight into the paths by
which spontaneous fluctuations from the approach to
the equilibrium state decay.? It would, furthermore, be
very useful for the determination of higher-order
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correlation functions such as (P,[u(0)-u(#)]) which
may be important for the discussion of higher-order
radiative processes.

To make such a “prediction” we have to guess the
distribution of [u(0)-u(#)] from one of its moments.
In this paper we examine two simple criteria for guessing
the distribution from (@(0)-u(#)) and therefore
“predicting” Raman band shapes from observed ir
band shapes. The first maximizes the information
entropy of the distribution under the constraint im-
posed by the known (u(0) -u(?) ); the second minimizes
the mean-square difference between the distribution
and the equilibrium (#-»%) distribution under the
same constraint.

We test the accuracy of these criteria on the results of
computer studies® of the rotational relaxation of di-
atomic molecules, and also discuss the application of
the general idea to Van Hove’s self-correlation function
G.(r, £) and to the velocity transition probability.

MOLECULAR REORIENTATION IN
DENSE MEDIA

Suppose that a spherical surface of unit radius is
drawn and the center of this sphere is taken as the
origin of a spherical polar coordinate system. (See

3 G. D. Harp and B. J. Berne, “Linear and Angular Momentum

l@;ﬁ;ﬁl)aﬁons in Diatomic Liquids,” J. Chem. Phys. (to be pub-
i .
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F16. 1. The orientation of a molecule u(#) can be represented
by a point on the surface of a unit sphere. As the molecule re-
orients, this point performs a random walk on this surface.

Fig. 1.) The initial orientation of a diatomic molecule
u(0) can be represented by a point on the surface of this
sphere, the location of which is uniquely specified by its
polar and azimuthal angles 8 and ¢. The fraction of
molecules which at a given time ¢ are oriented in the
direction of a solid angle dQ is P (9, ¢, £)dQ. This fraction
need not remain constant, however, since the molecules
are being constantly reoriented due to interactions with
their neighbors. After a time £ has elapsed which is long
compared to the orientational relaxation time, the
distribution function P(9, ¢, ¢) will be independent of its
initial value and will tend to the uniform distribution,
that is

lim P(8, ¢,7) d2=dQ/4x.

t>c0

The correlation functions D(f) = {(u(0)-u(#)) and

Dy(8) = (Ps[u(0) -u(f)]) can be computed if the dis-
tribution function P (8, ¢, {) is known since

2 T
D(t) = ]0 do /0 d8 sin cos0P (8, 6, 1), (1)

2x T
Dy(t) = %/o d¢/0 d sinf(3 cos®¥®—1)P(8, ¢, 8). (2)

All higher-order correlation functions
Dn(2) = (Pa[u(0) -u(®) 1)

can likewise be computed.

We now assume that D(f) is known, and we want to
guess the probability distribution P. We do this first by
maximizing the information entropy of the distribution*

STP@, 6,01=— [ d2P(©,6,0) PO, 9, (3)

4E. T. Jaynes, Information Theory and Statistical Mechanics,
Statisticad Physics, K. W. Ford, Ed. (W. A. Benjamin Inc., New
York, 1963), 1962 Brandeis Lectures.
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subject to the constraints

P8, ¢, >0, (4a)
[ aare,4,0=1, (4b)
/ 49 cosBP(8, ¢, £) =D(1), (4c)

where (4a) and (4b) are the conditions that P be a
probability distribution and (4c) the condition that P
gives the right dipolar correlation function D(f).

Ignoring (4a) for the moment and introducing (4b)
and (4c) into the problem via Lagrange multipliers
gives

) / dQ[P InP— (a+1) P—8 cosfP]=0
or
/d&l(lnP—a—,B cosf) P =0;

therefore
P8, ¢, ) = exp(a+pB cosf). (5)

This distribution satisfies the positivity condition (4a).
The Lagrange multipliers o and 8 are determined from
the constraints (4b) and (4c). From (4b) we see that

— e“ﬁ

[ dQ exp(a-+8 cosh) =2mwe* ¢ =1

or

2rec=B/(f—eF).
From (4c) it is found that

D(t) = / dQ cosf exp(a+8 cosh)

P O . (eﬂ—e*)]
_28[ 7 T8

or

D(t) =[—(1/8)+ coth8]=Lx(8). (6)

L_(B) is the infinite-order Brilluoin function, plotted in
Fig. 2. 8(f) can be determined from the known variation
of D(t) with time by inverting Eq. (6) ; this is best done
numerically.

The higher-order correlation functions such as Dy(f)
can now be found in terms of 3(f) and thereby in terms
of D(f). For example

Dy(8) = % / d$ exp(a+8 cosf) (3 cos’9—1)

=1-[3/8() JLLB(1) 1. (7

It is clear that maximizing the information entropy
of a distribution subject to constraints gives in some
sense the “smoothest” distribution consistent with
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FiG. 2. The infinite-order Brilluoin
function.

Lo (B)= COTH B- —

B E

those constraints.* There are, of course, other possible
smoothness criteria. We can, for instance, look for the
distribution which is closest to the uniform distribution,
Py(0,¢,t) =1/4x, in the mean-square sense. The
problem is then to minimize

LLPO,6,0]= [ dLP6,9,0 -6, 6)F, (8)

subject to the constraints (4a), (4b), and (4c). We can
take care of (4b) and (4c) with Lagrange multipliers.
The problem then reduces to finding P such that

/ (P —a—B cosd)8P>0

for any variation 6P consistent with (4a), that is, any
variation 62 which is >0 where P is zero and otherwise
arbitrary. It is easy to see that the solution is
P=q-f cos for a+4B cos#>0
=0 otherwise.

(9)

The constants « and B have now to be chosen such (4b)
and (4c) are satisfied. We find that when | D(¢) | <3

and when D(f) > %

[2—3D(t) +cosh]
9x[1—-D(t) P '’

=0, 6< cos3D(H—-1], (11)

with P(D,8)=P(—D, 7—0) determining the corre-
sponding formula when D(¢) < —13.

Two different dipolar correlation functions deter-
mined from computer-simulated molecular-dynamics
studies® of liquid CO are presented in Figs. 3 and 4.
One corresponds to a strong and the other to a weak
noncentral potential. The corresponding D,(#)’s as
predicted by Eqs. (7) and (11) are presented in Figs. 5
and 6. Note how closely information theory predicts the
behavior of D,(¢#) for the strongly noncentral potential.
On the other hand Dy(#) as predicted by information
theory for the weak noncentral potential is in poor
agreement with experiment. It should be noted that in
both cases information theory gives better agreement
than the least-mean-square theory of Eq. (8). It seems
clear that the information-theory ansatz, which is
simpler, is also better.

The accuracy of these approximations is rather sur-

P(6,¢,1) =

6> cos [ 3D(f) —2]

P(6, ¢, 1) = (1/47)[143D(¢t) cost], (10)  prising, and we have no rational explanation. Nature
1.0 T T T g L T Y T
.8 .
A
Fic. 3. The dipolar correlation func- ,:;: .6 | 1
tion, D(#) or (u(0)-u() ), from a molec- -
ular-dynamics study of liquid CO at =
T=67° and p=0.8558 g/cc in which the s | .4 | .
molecules interact through a Stockmayer v
potential plus a dipole-quadrupole and
quadrupole potential. 21 T
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2 ¥ Fic.4.The dipolar correlation function,
> D(t) or (u(0)-u()), from a molecular-
ERE dynamics study of liquid CO at T=68°
2 and p=0.8558 g/cc; the molecules inter-
e act through a Stockmayer potential.
2L (u(0)-u(f) ) for CO gas at 68°K is also
plotted.
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just seems to prefer smooth distributions. It seems fair
to point out that the approximations are much better
when the dipolar correlation function decays mono-
tonically to zero then when it oscillates a bit. Our
approximations predict that whenever D(f) crosses
zero, the distribution of u(#) becomes the uniform,
equilibrium distribution, while in actuality D(#)
crosses zero because the molecules “collide” so infre-
quently that they can complete a number of rotational
cycles before the orientations are randomized.

OTHER CORRELATION FUNCTIONS

The Van Hove self-correlation function®® G,(r, ?)
specifies the probability of finding a particle at the
space-time point (r, f) given that it was at the origin
at the initial time #=0. This function plays a very
important role in the scattering of thermal neutrons
from gases, liquids, and solids.

Suppose that we are given the full time dependence
of the mean-square displacement of a particle in an

N-body system. This information can then be used to
determine the best functional form of G,(r, £) consistent
with the known mean-squarefdisplacement, {#*(¢)),
where

(8))= / 7Gx, 1). (12)
The information entropy S[G.(r, £) ] is defined as
STG(x, 1= [ i, ) mG(r, ), (13)

where the square bracket indicates that the entropy
is a functional of the distribution function Gi(r,?).
S[G,(r, t) Jis to be maximized subject to the constraints

/ dG,(r, i) =1, (14a)

[ 6.0 =), (14b)

l.o 1 L] T T T T T L T
h | o} ]
= .
S Fie. 5. Dy(8) or (Py(u(0)-u())) from
2 theYmolecular-dynamics study cited in
ta Aar N Fig. 3, curve a; Dz (?) as predicted by Eq.
e (7), curve b; D:(#) as predicted by Eq.
?,' 2 a 1 (8), curve c.

< b
0 A i 'l 1 1 i ' 1 ]
(o} | 2 3 4 5 6 7 8 9 10

t (10713 sec)
—_———

¢ L. Van Hove, Phys. Rev. 95, 249 (1954).
¢ G. H. Vineyard, Phys. Rev. 110, 999 (1958).
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1.0
8F
[~
Fic. 6. Dy(#) from the molecular- = [
dynamics study cited in Fig. 4, curve’a; 42
D,(2) as predicted by Eq. (8), curve’c, 2
{Ps(u(0)-u(#))) for CO gas at 68°K is 2 4}
also plotted. 3.:‘
2
o 1
[¢) |

0 {P,(ulo)-U(NI> FOR CO GAS AT 68°K

where (14a) is the normalization condition and (14b) is
the condition that G,(r, f) must be consistent with the
given correlation function G,(r, £). As before this yields

G.(r, t) = exp(—a—pr*), (15)

where a and 8 are Lagrange multipliers. Substitution of
Eq. (15) into the constraints yields the values of « and

“= (8/mpm,

B =3 (D)1
so that

Gi(r, §) =[x (#(1)) I exp[ —r*/3(*(1))]. (16)

The mean-square displacement can be expressed in
terms of the normalized wvelocity autocorrelation
function ¥(#) = {v(0) -v(¢) )/ {*) as

02 =202 /0 e (1= ().

Thus if ¥(¢) is known, (#2(¢)) can be computed and
G.(1, ) determined.

Note that this result is the well-known Gaussian
approximation® which has been used for many years in
the theory of neutron scattering. It has been found that
G:(r, ?) is to a good approximation Gaussian for short
and long times but that for intermediate times there are
non-Gaussian corrections.”® To compute these correc-

7R. C. Desai, J. Chem. Phys. 44, 77 (1966).
8 A. Rahman, Phys. Rev. 136, A405 (1964).

t uo"’m)

tions higher moments of r can be used. For example if
{r*(t)) is known and if (*(f))>~8[(*(¢))]* then the

‘procedure used will predict non-Gaussian corrections.

The same procedure can be used to find the prob-
ability that an atom will have a velocity v at time ¢
given that it had velocity v, at time =0, K(v, £ | Vo, 0).
Since the joint probability of (v, ), andf (v, 0),
P(V, t; Vo, 0), is

P(V, t; Vo, 0) =K(V, t 1 Vo, o)f(v())) (17)

where f(v,) is the Maxwell distribution function, it
follows that the information entropy should be

S[P]=— / & f PP (v, 15V, 0) InP(¥, £; Ve, 0).

Then the maximum entropy occurs for
K(v,t| vy, 0) =[m/2xkT(1—L2(§) P2
X exp(—m/2kT) {[v—ve¥ () /[1—¥2(5) 1}, - (18)

which is the well-known Gaussian transition prob-
ability.? This transition probability has recently been
tested in another publication and is found to represent
the dynamics moderately well for all times. This distri-
bution could be corrected by maximizing S subject to
higher moments.’®

(1’92%5 C. Wang and G. E. Uhlenbeck, Res. Mod. Phys. 17, 323

1"B.‘O._Koop.man (private communication) has shown that
when dealing with distributions whose domain is unbounded in
space, the highest moment used must be even to permit the
existence of a distribution of maximum entropy.

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



