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Light Scattering as a Probe of Fast-Reaction Kinetics: The Depolarized Spectrum of
Rayleigh Scattered Light from a Chemically Reacting Medium*
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The spectral distribution of the depolarized component of light scattered from a dilute solution of
molecules in dynamic chemical equilibrium between two states differing in optical anisotropy and dynamics
is calculated. It is assumed that the molecules undergo isotropic translational and anisotropic rotational
diffusion. It is furthermore assumed that the duration of a molecular transformation is much less than the
characteristic times for rotational and translational diffusion. It is shown that in the most general case
considered, the spectrum consists of 20 superposed lines with widths dependent on the translational diffusion
coefficients and components of the rotational diffusion tensors of the two species and the backward and
forward chemical rate constants. The relative strengths of the lines depend on the optical anisotropies
and rotational diffusion tensor components of the two species as well as on their equilibrium concentrations.
When the reaction is so fast that rotational and translational diffusion contributions to the linewidth may
be ignored altogether, the spectrum reduces to a single Lorentzian line with half-width independent of
scattering angle and proportional to the sum of the backward and forward rate constants for the chemical

transformation.

I. INTRODUCTION

Recent advances in laser spectroscopy have made
possible the measurement of very small frequency shifts
in the light scattered from pure fluids and solutions.!:?
It has been shown that experiments of this type meas-
ure the spectrum of long-wavelength thermal fluctua-
tions and therefore provide information about the low-
frequency Fourier components of the molecular motion.!

The spectrum of the scattered light can be separated
into two parts: a fully polarized part and a depolarized
part. Much attention has already been given to the
polarized component whose structure can be explained
by microscopic hydrodynamic considerations.>=* The
depolarized component, on the other hand, has not
until recently received much attention.®” Depolariza-
tion of the scattered light arises from the optical anisot-
ropy of the scattering elements of which the fluid is
composed. The spectral line shape of this component
depends on the detailed way in which spontaneous
fluctuations of optical anisotropy in an equilibrium
fluid regress. The spontaneous fluctuations of anisot-
ropy reflect the optical anisotropy of the individual
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molecules in the fluid and its detailed time dependence
is associated with the translational diffusion and rota-
tional reorientation of these molecules.

In recent papers® it was shown how the polarized
component of the scattered light spectrum can be used
as a probe of fast-reaction kinetics. An experiment
based on these theoretical suggestions has recently been
reported.!

In this note we explore the possibility of using the
depolarized part of the spectrum as a probe of fast-
reaction kinetics. We confine our discussion to uni-
molecular reactions in dilute solutions which are suffi-
ciently rapid so that the reaction rates are fast com-
pared with the translational diffusion rates. The chief
advantages of using the depolarized spectrum for this
purpose are fourfold. (1) If an optically isotropic sol-
vent is used the solvent does not contribute to the
depolarized spectrum and consequently does not com-
plicate its interpretation as it may in the polarized
part. (2) Only a small subset of vector and tensor
transport processes such as translational and rotational
diffusion contribute to the line shape, whereas in the
polarized spectrum all transport properties contribute
thus greatly complicating the interpretation of the
spectra. (3) The reaction rate enters the line shape
independently of the scattering angle and thus hope-
fully can be extracted by studying the width of the
depolarized line as a function of this angle. This is
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F16. 1. The scattering geometry: E,, E;, ky, ky are the initial
and scattered electric and wave vectors, and @ is the scattering
angle. This geometry corresponds to the | component of the
depolarized spectrum.

true of the polarized component as well. (4) Since we
are interested in very fast reaction rates the central
line of the polarized spectrum may overlap the Brilluoin
doublet. This leads to great difficulty in interpreting
the spectra. There exists no such difficulty with the
depolarized spectrum since there are no other depolar-
ized lines. The chief weaknesses of this method are
twofold. (1) The reacting molecules must be optically
anisotropic. This is not required for the polarized spec-
trum. On the other hand, there need be no difference
in the polarizabilities of the reactant and product mole-
cules as is required by the polarized method. (2) In
addition to the reaction rates, the rotational diffusion
coefficients enter the linewidths independently of the
scattering angle. Consequently the reaction rate cannot
be separated from the rotational diffusion coefficient
unless independent measurements of the latter are car-
ried out, or the reaction rate swamps out the rotational
diffusion coefficients.

II. THEORY

General equations for the spectrum of the scattered
light were derived in a previous publication.t We pre-
sent here only those formulae which are relevant to
the present discussion. We restrict ourselves to the
specific case in which an incident plane-polarized light
wave of electric field vector E,, directed along the z
axis of our coordinate system, propagates in the x—y
plane with wave vector ko. The scattered wave meas-
ured at large distances, Ry, from the scattering medium
generally has depolarized components. Attention will
be focused on that component of the scattered wave
propagating in the x direction with wave vector k; and
electric vector E; whose polarization is parallel to the
y axis, that is the perpendicular polarized component.
The angle 8 between ko and k; is called the scattering
angle and the momentum transfer vector k=k,—k, is
called the scattering vector. This geometry is illus-
trated in (Fig. 1). For more general scattering geome-
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tries the analysis is presented in Appendix B. With
these definitions it may be shown that the scattered
spectral density per unit volume at frequency shift w,
I(k, w), can be related to off diagonal elements of the
polarizability tensor of the scattering region located at
the point r. For the specific geometry above all that
is required is the ysth component of this tensor, ie.,
ay.. Then

e om [T [
161r4R282V( L B

Xexpli(kr—af) ] f ' (o (1T, Daya(r', 0)), (1)

Ik, )=

where & is the dielectric constant of the scattering
medium, ¥ is the volume of the medium, and { ) indi-
cates an equilibrium ensemble average. It is assumed
that the components of the polarizability tensor can
be expressed in terms of individual molecular polar-
izabilities. Then a,.(r, ), the polarizability density at
the point r in the fluid at time ¢, is

ay(r, 1) = Z o (8)8(xs(t) —1), (2)

where ay.*(¢) is the yzth component of the polarizability
of molecule ¢ at time ¢ and 8[ r;(¢) —r] indicates whether
molecule ¢ is in the neighborhood of the point r at
time £. Substitution of Eq. (2) in Eq. (1) and subse-
quent use of the convolution theorem of Fourier analysis
shows that

I(k, ) = (k| Eo|2/160%6%) C(k, w), (3)

where

Clk, w) = (2aV)— f " dit

N
X{ 2 @ (0)an(t) expli[r() =70 )). (4)
=1,)=.
The remainder of this article will be devoted in large
part to a calculation of the cross correlation function.
If the solution is sufficiently dilute and the solvent
is optically isotropic it is permissible to ignore the effect
of one solute molecule on the polarizability of another
solute molecule and thereby correlations between polar-
izabilities on different molecules. Under these circum-
stances C(%, w) can be written as

_ +o _
Gk, w) = (2m)1 f die (K, 1), (s)
where

Ck, t) =V

N
X 2 {awe™(0) e ?(t) explik-[r;(0—1(0)]}).  (6)
=1
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At this point we restrict our analysis to a reacting
mixture consisting of an optically isotropic solvent and
a species which unimolecularly transforms from a state
labeled 1 to another state labeled 2. It is assumed that
the reaction is reversible. At equilibrium there are N
solute molecules in state 1 and NV, in state 2.

The precise meaning of the correlation function in
Eq. (6) is most readily conveyed by explaining how a
Maxwell’s demon would go about calculating it. The
precise motion of a particle labeled j is followed for a
time ¢ in each replica system in a Gibbsian ensemble.
During the course of its motion the molecule will change
its state a number of times. Furthermore it will rotate
and translate. Consider first the subset of replica sys-
tems for which the particle labeled 7 is in the state 1
at time {=0. The factor

ay=™(0) e, 7(2) explik-[r;(£) —r;(0) ]}

can be computed for each such replica system. These
results can be added and averaged. The result is denoted

VCii(k, t) = (ay.™*(0) .7(2) exp{ik- [r;(8) —1;(0) :l} PR

where the subscript 1 indicates that an average has
been performed only for those replica systems for which
particle  starts out in the state 1. Let us denote by

VCyi(k, 1) = ("™ (0) . %(¢) exp{ik-[1;(#)—1;(0) ]} )

an average which is taken only over the replica systems
in the subset for which j starts out in state 1 and at
time { is in the state y=1 or 2. Then it follows that

2
Ciilk, £) = X Cyi(k, 1).
y=1

A similar procedure can be followed if j starts out in
state 2. Then

2
Coi(k, t) = D Cyoilk, £).
=1

Now the total ensemble average C(k, ¢) can be found
as follows. We determine the fraction of the Gibbsian
ensemble for which 7 starts out in the state 1, and the
fraction for which 7 starts out in the state 2 and denote
these fractions fi and f;, then

N
C(k, ) = 3. [AC(k, )+/Cri(k, 1)].

Now, f; and f, are merely the fractions of molecules in
our equilibrium reacting mixture in the states 1 and 2,
Ny/N, and N,/N, respectively. Combining all of these
results Eq. (6) can be written as

2, (N1 & . Ny & .
Clt )= 32 (3 2 Gl 0+ 3 3 Clli ).
=1 =1 N =
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Noting that all of the molecules 7 in the sum give iden-
tical ensemble averages it is easily seen that a factor N
comes out so that

2
C(k; )= E ca(a,,,zj(O)oz,,,f(t)

a,y=1
Xexpl{ik-[1;(t) —1;(0) ]} }yay (7)

where ¢,=N,/V is the concentration of molecules in
the state a=1, 2 in the equilibrium system, and the
subscript va indicates a restricted ensemble average in
which the particle § starts out in the state a(=1, 2)
and finishes in the state y{=1, 2).

The polarizability, e,.’, which appears in Eq. (7) is
the yzth component of the polarizability tensor of mole-
cule j expressed in the space-fixed coordinate system
of Fig. (1). The elements of the polarizability tensor
are known, however, only in the body-fixed coordinate
system. It is a simple but lengthy matter to show that
if molecule 7 is in the state v with orientation Q with
respect to the space-fixed axes

2
o #(Q) =5i(30%) 12 37 an?[ DX (@) +D_1,2(Q)],

n=-2

(8

where Dg »”/ (Q) are the Wigner rotation matrices, and
the a,’s are components of the molecular polarizability
tensor in the molecule-fixed system expressed in spher-
ical tensor form

ag’=3(em"tay") —ian,

a1 = (az"—iay"),
ag? = (2/6"2) [orss"— § (0t + ) ],
ar=—(ay")¥
= ("),

ar' ="t a,,?).

9)

From Eq. (8) we see that .7 varies as the orientation
of the molecule varies and is thus very sensitive to the
details of the molecular rotational Brownian motion.
This however is not the whole story.

Changes in the state of molecule 7 can (1) change
the body-fixed polarizability tensor, (2) change the
rotational diffusion tensor, and (3) change the transla-
tional diffusion coefficient. Unimolecular reactions will
effect the time dependence of a7, through (1) and
(2), and will effect the time dependence of

exp{ik-[r;(#) —r;(0) ]}

through (3). Consequently the time dependence of
oy’ exp(ik-r;) will reflect the details of translational,
rotational, and unimolecular rate processes.
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III. ROTATIONAL AND TRANSLATIONAL
BROWNIAN MOTION IN THE PRESENCE
OF UNIMOLECULAR REACTIONS

In order to calculate the rate of change of the correla-
tion function

VC, (k,t)
= ("‘wj(o)* (8 eXN““D’:“ (t) ~—1;+(0) :” )‘Ya

we must first determine the equation of motion for the
probability distribution function, P,.(r, Q, ). Let
P, (1, Q, 1)drdQ be the joint probability of finding a
molecule in the state v, located in the neighborhood
d? of the point r and oriented within the solid angle
@*Q at time ¢, given that it was in the state « located
in the neighborhood &% of the origin, and oriented
within the solid angle &®Q at time zero. We assume
that P,.(r, Q, ¢) changes by (1) rearrangement of the
molecule to form a new “‘species” (or state) (2) rota-
tional diffusion, and (3) translational diffusion.

The computation of P,.(r, Q, ) poses a few diffi-
culties which are not encountered in the nonreactive
case (where it is usually assumed that the translational
and rotational motions are independent so that P(r,
Q, t) can be factorized). In Appendix A the following
equation of motion is derived for P,.(1, Q, {),

(0/0t) Pyolr, Q, 1) =+[D7V2_Li7Dﬁ7LJ‘1]P1a(r, Q)
+ § [\ y8Peal(r, Q, 1) = N5, Pralr, @, 07, (10)

where D, is the translational self-diffusion coefficient
for the molecule in the state ~, gy is the rate constant
for the unimolecular reaction y—8, V?is the Laplacian
operator in r space, Dy is the rotational diffusion
tensor for a molecule in the state v with specified body-
fixed axis, and L, is the angular momentum operator of
the molecule in the state v along the body-fixed axis 4.
It should be noted that the diffusion tensors can change
symmetry when the molecule goes from one state into
another, and that the Einstein summation convention
is implied. On the right-hand side of Eq. (10) the first
term represents the rate of change of P,.(r, @, #) due
to diffusion and the second term represents the change
due to the chemical reactions. The equation can be
rewritten as

aP.,../at = [D‘yvz— Lz"’Dij"Lj'y_)“v]Pva"' E Ay8Pge,
By
(11)
where

Ay= 2 Agy
Bty

is the rate at which the molecules leave the state v.
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It should be emphasized that these equations are
derived under the assumption that the molecule re-
mains in a state for a given time and then jumps to
a new state with a jump time very short compared
with characteristic molecular reorientation and trans-
lational diffusion times.

The correlation function C,.7(k, ) is then given by

VC,oik, ) = / PQ

X /dagoaw:'([g], v) awj([QO]a o) Fo(k, Q, 1) P(Q),

(12)

where a,.’([Q], ¥) is the polarizability of molecule j
in the space fixed system when its orientation is Q
and when it is in the state ¥, or from Eq. (8)

2
a,/([Q], v) =i (§a) 12 EZ @ [ Dy,x2(Q)+ Dy 2() ]
(13)

P(Q)d¥Yy is the probability that j’s initial orientation
is in @*Q (assumed uniform here P(Q) =1/8#2?) and

Foulk, Q1) = / & explike1) Poalr, Q, ). (14)

The equation for F 4k, t), found from Eq. (11), is
OF (K, Q, 1) /0t
=—[kDy+LDiL7+\, JFya(k, Q, 1)

+ D AeFsalk, Q, 1), (15)
By

To find Fy(k, Q, t) and Fu(k, Q, t) Eq. (12) is solved
subject to the boundary conditions

Fop(k, Q, 0) =58,1056(2—Q0). (16a)

Likewise to find Fy, and Fye the boundary conditions

F-yﬂ(k, Q, 0) —_—5726526(9—' Qo) (16b)

are used.

These boundary conditions follow from the fact that
the molecule must be located at the origin in r space
with orientation @, and in addition must be in the
state 1 [Eq. (16a)], or in the state 2 [Eq. (16b)] at
the initial instant z=0.

To simplify the analysis we restrict this study to the
case where the symmetry of the diffusion tensor does
not change when the molecule changes state. In actual
calculations it is convenient to use that set of body

Downloaded 30 Dec 2003 to 128.59.114.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



SCATTERED LIGHT FROM A CHEMICAL REACTING MEDIUM

axes in which Dy is diagonal so that the operator
LoDt Livis Lo DLy If the symmetry of D were not
assumed to be the same in all states then there would
exist no set of body axis which would in general diago-
nalize all the D7’s, although in special cases this could
be achieved. In these principle axes Eq. (12) can be
rewritten as

OF ,.(k, Q,1)/d1
=_[k2D7+ Z D;‘V[L.-":]z-{-)\.,:IF.,,,(k, Q, t)
+ X APk, @, 8). (17)
By

Note that Y_;D;7L" has the form of the Hamilton-
ian of a rigid rotor with #%/27;* replaced by D;*. In
order to solve Eq. (16) the eigenvalues and eigenstates
of this operator are needed. Here we study the case of
the asymmetric-top molecule and then successively
specialize to the spherical-top and symmetric-rotor
molecules.

To solve Eq. (17) subject to Eq. (16) it is conven-
ient to expand Fr*(k, Q,¢) in terms of the eigen-
functions ¢, u” of the operators D7 (L)% (Implicit
in this statement is the assumption that when a—p8
the symmetry and the orientation of the principal axes
of the diffusion tensor are unchanged.) Then

F"a(k) Q, )= E Rr.M'yaJ(k; t)¢f‘MJ*( Qo)‘l’r.M"(Q))

J, M
(18)
where

3
(22 DAL Yra (@) =AY’ (R). (19)

=1
From this notation it is obvious that A,*’ are the eigen-
values of the operator in Eq. (19). For the general
case of the asymmetric top, A,*/ and ¢, .’ can be
found for J=0, 1, 2. Fortunately we will only need
the result for J =2,

Combining Egs. (17)-(19), multiplying by

lpr,k"’( QO) ‘l/r,kl*( Q) y

and integrating over €y and Q (taking into account
the orthogonality of the eigenstates ¢, ;') yields an
equation for the coefficients R, »/(k, ¢):

AR,y (K, 1) /ot=—[k2Dy+ A, +N IR, " (K, t)
+ 2o AeRea (K, 8).  (20)
By
1t should be noted that R does not depend on M.

These equations must be solved serially subject to the
boundary conditions

Ryt (ky 0) = 6715 al

787

TaBLE I. The coefficients Ag’(r) for the asymmetric rotor

PSS
2 1 0 -1 -2

2 hNING,  INZ O 0 ~a/VIN
1 0 0 IV N0
0 a/Ny 0 0 0 b/N,y
-1 0 0 —1AZ 1IN0
-2 BANIN, —1AZ 0 0 —a/NIN,

ay=V3(D;*—D,")

by=[2D,1— D, — D,7+24,]
N,=2a,%1

Ay=[(Dg7= D7)+ (D7 D7) (Da—D) I

Dg*=%(D+Dy"+D;)

and

R (k, 0) =6,200e. (21)

Substitution of Egs. (21) into Eq. (18) and use of the
closure relation yields Eqs. (16a) and (16b) as is re-
quired.

The solutions of Eq. (20) consistent with Eq. (21"
are

R (K, s) = (s+EDy+ A2 +H)g) /AL(s),
R (k, s) =\a/A,(5),
R (k, 5) =ha/Ad(s),
R (k, 5) = (s+RDi+AM+N) /A (s),

where

(22)

R (K, s) = / ® die R (k, 1)
0

is the Laplace transform of R,"*/(k, ¢) and
AL (s) =[s+ kDt AN+ E2Do+ A7 42 ]— M.

The solutions R,"*(k, £) can be found by Laplace in-
version of Eq. (22). Actually Rk, 5) can be used
directly to compute the Fourier transform RI""“’ (k, )
of R,/ (k, #) and consequently to compute C(k, ).
The asymmetric rotor functions ¥, x”(Q) can be
expressed in terms of the symmetric rotor functions
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TaBLe II. The components 8, ,72(k, 5) of the rotational correlation function for J =0, 2.

Buw2(k, s) =[(a®/N?) R72(K, s5) + (0®/N*) Rp2(k, 5)]

By (k, 5) =3[R (k, s) £ R (k, 5) ]

B;, 17 (k, 5) =[(*/2N?) Ry (K, 5) =3 R*(K, 5) +(a%/2N%) R 5 (K, 5) ]

Bs,r2(K, 5) = (ab/2N*) [Ry** (K, 5) — R472(k, 5) ]

where R,v2(k, s) appears in Eq. (22) with
As=6D+24,

A=3(D;7+Dy)

A =6Dy— 2A-y

A——l'72 =3 (Dy'y_I_Da'y)

Ag=3(Dy"+Dy).

gok,M"(ﬂ) as

Vet (Q) = ; A (7)o’ (), (23)

where the coefficients 4,7 (r) are listed in Table I for
J=2. The symmetric rotor functions ¢ »’(Q) can be
expressed In terms of the Wigner rotation matrices
Dy 7 (Q) so that

Yo’ (Q) = ; (=D¥*A (1) Doy " (). (24)

Substitution of Eq. (24) into the Laplace transform of
Eq. (18) yields

Fregg, s)= 3

J,M K K/

( — 1)K.K1BK ‘K,'ya.f (k, S)

X D_pyr—xF*(Q0) D_y_x? (), (25)

where

Bx g (&, s) = 2 Ag 7 (7)Ax? (1) R, (k, 5). (26)

Combining Egs. (12), (13), and (25) and taking into
account the orthornormality condition

/ dQDKl,MlJl*(Q) DKz,Msz( g) =5K1,K261V11,M26J1,J2;

(27)

it is a simple but tedious matter to show that

+2
Cralk, ) =1 > (—1)""a,Ya,2*B,. 72k, 5),

n,n/=2

(28)

where the quantities B, ,"?(k, s) are listed in Table
II, and the components of the spherical polarizability
tensor are listed in Eq. (9). Equation (28) can be
rearranged to read

2
Crak, s) =1 3 SRk, s). (29)
=2

The coefficients S,7* are the strengths with which the
functions R, contribute to the spectrum of the de-
polarized light:

2
Soe= Y (=D, A,27) A7), (30)

=2

These values are listed in Table ITI.

As we have seen in Eq. (3), the scattered-light spec-
trum is determined by C(k, w), which is related to the
Laplace transform C(k, s) of C(k, {) through

Cik, w) =Re((k, s=iw); (31)

TasrLe III. The line strengths S,7.»

Sy =[ay’a®™* (@m:2/ Ni2) + (aprar*+a_gTo_o* — on¥or_o* — agYor_o®* —a_g%on®*) (b2/2N,2) ]

Sive= Honar™* +asYa o* — oo™ —a_gYo™*]

Sore =Ll ar%ar®* o yve 1% — oy Yo ®* — oy Ten ]

Sy =4laon™* oY o Ta ot g007¥]

S_pra= [ao"ao"‘* (b]ﬂ/le) + (ag’Yaz"—i-a_g“'a_z"* —az“’a_z“* —a_27az"*) (alz/ZNIZ) ]

8 ary* defined by Eq. (9).
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combining Eq. (30), (29), and (6) yields

2 2
Clk w)=% D > caSoR 2k w), (32)

=2 a,y=1

where

R2(k, w) =ReR 2(k, s). (33)
Thus the line shape is the sum of 20 individual contri-
butions corresponding to the four values (ya) and the
five values of 7.

The case where the reaction rates are extremely rapid
compared with the translational and rotational diffu-
sion times is especially simple to treat. In this case
R,v(k, w) has the simple form

- 12
Rya(k, w) = c ,52=1 (—1)=MC,Cs(1—854) e (34)

where C=C1+C; and A=+ N1 Substitution of Eq.
(34) into Eq. (32) leads to

C(k, ) =CLS[N/(N+a?) ], (35)
where
2
S= 2 (—1)*HC.Ca(1—85a) D Sy
a,B.y =2
or

+2
S= 2 CCy(SH—S44§2—5,2).
=32

A quick look at Table III shows that if the polariz-
abilities of states 1 and 2 are identical S=0 and no
scattering is observable.

When the principal axes of the diffusion tensor coin-
cide with the principal axes of the polarizability tensor,
we see from Eq. (9) that since an =0y, =a;,=0 ai,=
$oz—ay), @11=0, and ay= (2/6") [a.—3(aztaz) 1.
Substituting these results into Table III yields

Spre=Sgr*=0,
Sre=agYa*(ar/ N:?),
S_er=ag"ay™* (b/Ny).
Therefore it follows from Eq. (32) that
C(k, w) = 3 caog’ai™*[ (a2 N?) By=(K, w)
ay
+ (b N R_(k, )] (36)
with eight contributions to the sum [2 for each of the
four possible values of (v, @) 7.
The case of molecules with cylindrical symmetry is

especially simple. For this system D,Y=D,*=D", and
a;=ay=a. A quick glance at Table I shows that

789
a/N1=0, b/N1=1, and consequently
Clk, w) =Y Coag’ay®™R_y*(k, w),  (37)
a,y

where RB_;*(k, ) can be found from Egs. (22), (31),
and Table II. This formula gives the correct answer in
the limit of no reaction.

1IV. DISCUSSION

A theory for the depolarized spectrum of light scat-
tered from dilute solutions of optically anisotropic mole-
cules undergoing unimolecular transitions between two
states has been presented. The total depolarized scatter-
ing spectrum is given by the weighted sum of 20
non-Lorentzian line shapes. The strengths with which
these lines contribute to the spectrum are proportional
to the squares of the anisotropic polarizability compo-
nents. In addition to the translational diffusion coeffi-
cients and the components of the diffusion tensors of
the molecules in the two different states, the widths
of these lines depend on the rate constants Ag, for the
unimolecular rearrangement. When the molecular sym-
metry is such that the rotational diffusion tensor and
the molecular polarizability tensor is simultaneously
diagonalized, the depolarized spectrum is given by the
weighted sum of eight non-Lorentzian lines. When the
molecule is cylindrically symmetric, only four lines re-
main.

At the present time it would be most interesting to
perform experiments on systems in which the rate con-
stants for the unimolecular reactions are very fast
compared to the translational and rotational diffusion
times. In this case Eq. (34) applies, and the width of
the depolarized spectrum should be independent of the
scattering angle and equal to the kinetic rate constant,
A(=Mz+Ma). It should be emphasized that the optical
anisotropy of the molecules in the two different states
should be quite different and large for the effect to be
experimentally detected, since the reaction rates will
spread the intensity over a large frequency range, leav-
ing very low intensity at any given frequency. Further-
more the line strength will be zero if the two states
have identical polarizabilities.

In the more general case when the diffusion coeffi-
cients are sufficiently large that they must be retained
the spectrum becomes extremely complicated because
of many contributions. Some of these contributions may
be small because their strengths are weak due to the
smallness of certain components of the anisotropic
polarizability tensor. The most practical case to con-
sider here is that of the cylindrically symmetric mole-
cules. It is interesting to note that even in the event
that the polarizabilities and diffusion coefficients are
equal for different states of the molecule, the kinetic

rate constant contributes to the depolarized spectrum
[see Eq. (36)].
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It should be noted that in the limit of zero reaction
rate all of the formulas in this paper reduce correctly
to those reported in Ref. 7.

Finally, we must again note the approximations in
the treatment of the depolarized line shapes:

(a) The molecule remains in a state for a certain
time and then jumps rapidly to another state. The
jump time is assumed rapid compared to diffusion
rates (k2D;, D).

(b) Polarizabilities on one molecule are uncorrelated
with polarizabilities on other molecules.

{c) The translation and rotational diffusion approxi-
mation is valid.

(d) The coupling between translations and rotations
can be neglected.

In the event that all of these approximations are valid
a study of the depolarized component of Rayleigh
scattered light offers in principle a novel method for
the study of rapid intramolecular conformation changes
in molecules. This method has many advantages, some
of which are discussed in the introduction.

APPENDIX A

Let P,.(r, Q, {)d®dQ be the probability of finding
a particle in the state v, in the neighborhood &% of
the point r with orientation in the neighborhood d*Q
of Q at time ¢ given that it was in the state a, at the
point 1o with orientation Qo at the initial time ¢=0.
The state, orientation, and position of the molecule

At
K.,s(Ar, 6, At) = / daty’ / &BAr / @K ,,(Ar— Ar', 0—0', Ai—Al')\sKgs(AT, O, AY),
0 14

where A, is the transition rate from 8 to 7.

BERNE AND R. PECORA

are assumed to be stationary Markov processes. The
probability P..(r, @, 4+ At)d*d®2 can be related to its
value at time ¢ through a modification of the Chapman-
Kolmogorov equation

P (1, Q, t+Al)

- f BAr / 9K ,,(At, 8, A) Pya(r', @', 1)

+ 3 [ @ar f 0K 5(At, 0, A) Pao(t, @', 1). (A1)
By Vv

The function K,s(Ar, 8, Atf) is the probability that a
molecule in the state 8 will make a transition to the
state v and suffer a displacement Ar and a change in
orientation @ in the time interval Af. The point r' is
such that if a particle suffers a displacement Ar from
this point it will be at the point r, ie., r=r'+Ar.
Likewise for the orientation Q'.

The transition probability K,,(Ar, 8, At) is assumed
to be

Ko, (Ar, 0, At) =[1—\,AL]K,(Ar, 8, A1), (A2)

where A, is the rate at which a molecule leaves the
state vy, 1.6, Ay= D apy Aay. Here (1—X\,Af) is the
probability that the molecule doesn’t make a transition
out of the state v in the time Af, and K,(Ar, 0, Af)
is the probability density that a molecule in state v
will suffer a displacement Ar, and a change in orienta-
tion, 8, in the time Af. Now assume that

(A3)

A rotation through the angle 6 can be generated with the finite rotation operator R(6) =exp(—:6-L), where
L is the angular momentum operator. Likewise the finite displacement of the center of mass Ar can be generated

by the finite displacement operator exp(— Ar- V). Thus
P (1, Q1) =P, (r—Ar, Q—8, ¢) =exp(—10-L— Ar- V) P, (1, Q, f).

Substituting Eqs. (A2)-(A4) into Eq. (A1) yields

(A4)

Poo(r, @, t+A) = / BAr / &6 1—\, ALK, (AT, 0, Af) exp(—i0-L— Ar- V) Po(r, Q, #)

At
+3 / Aty f &ar / o / BAY / K, (Ar—Ar, 0— 0, Al—AY)
8%y Yo v v

XAysKas(Ar', 0, A') exp(—10-L— Ar-Vr) Pa.(r; Q; 1).

It is now assumed that

(a)

(b)

(AS)

/ BAr / @0K ,(Ar, 0, Af) ArAr=(ArAr)At=0(A),

f BAr f POK.,( Ar, 6, Al)60=(00)A1=0(A1),
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(c) All higher moments are O(A#),
(d) the coupling between rotations and translations can be ignored,
(&) / PBAr / 9K, (Ar, 6, Af) {Ar or 8} =0.

Both sides of Eq. (AS) are expanded to order At. This is accomplished by expanding the displacement operator
to orders Of[ Ar-(3/90r) *} and O[(0-L)?] taking into account Egs. (a)—(e). Note that the second term on the
right-hand side contributes only A,sPs.(r, Q, !), since K(Ar, 8, 0) =56(Ar)8(0). Collecting these terms yields

aP'Ya(rr Q? t)/at= {D7V72_LiDij7Li—)"l}P“ﬂx(r) Q) t)+ E )\-ye.Paa(I', ﬂ; t)’ (A6)
By

where the translational diffusion coefficient of species ¥ is

D,= lim [(Ar(Al))/6A1],
A1y

where 7, is the momentum correlation time, and the ijth element of the rotational diffusion tensor of species 7 is

D;r= lim [(0,( At)8;( At) )/ZAIJ,
A>rg

where 7g is the angular-momentum correlation time. Equation (A6) can be cast in the form

aP“In(r: Q, t)/at= {D‘rvfz—LiDiiyLi}Pva(ry Q0+ Z [)"Yﬂpﬁa(r’ Q, t)~)\01P7a(ry Q). (A7)
8

APPENDIX B: THEORY FOR GENERAL SCATTERING ANGLES AND POLARIZATIONS

In the text, the theory was presented only for the most widely used experimental geometry. We present here
the general formula to be used in place of Eq. (1) when the wave vector of the scattered light £, and component
of the scattered field whose intensity is to be observed are no longer necessarily in the x—y plane.

The incident wave is propagating in the x—y plane with wave vector ko and electric field vector E, polarized is
parallel to the z axis, and &, lies in the 2—z plane. ¢, is the angle between the (k;, Ey) plane and E,. It may then
be shown that
M (2r)1 [m dt/ & exp[i(k-r—wt) X / d?r {{ cosl cosboaz* (r+17, 2)
1604R eV . TS TP y S

—sinfoos,.*(r4-1', ) T4-singoa,,*(r-+1't) } X { cospe[ cosfoar..(r’, 0') —sinfper..(r’, 0) ]+ singpey.(7', 0)} ).  (B1)

Expressions for the a1, £) occurring in Eq. (B1) may be found by the methods used in the text for a,.(r, Q, #).
We first write a.(7, @, ) in terms of molecular polarizabilities,

aim(7, 1) = 25 am?(1)0[ri( 1) —1] (B2)

Ik w)=

and then express these laboratory system molecular polarizability components in terms of the molecule-fixed
components and the orientation  of the molecule-fixed axes relative to the laboratory axes. By use of the relation

0,5 (R) = (87%/5)V2 D 0t D (D) (B3)

and the definition of o, given in Eq. (9), expressions for all of a;. appearing in Eq. (B1) may be found in terms
of the D,,? functions and the molecule-fixed polarizabilities.

Equation (B1) reduces to Eq. (1) when 8, and ¢, are set equal to m/2, If we allow 6, to remain »/2 and set
¢o=0, we obtain the intensity of the component of the scattered field that is parallel to E,,

k| Eo 2
16miR 22V

It should be noted by inspection of Eqs. (9) and (B3) that (a..*(r+7/, £)a..(r', 0)) depends on the isotropic
polarizability components, ar, as well as on the anisotropies. This term then contains both the effects considered
in previous articles on chemical kinetics and light scattering as well as the effects discussed here. We have used
the term “polarized spectrum” (or “polarized component”) in the text to mean the part of the spectrum of Eq.
(B4) which depends on a; and not on the optical anisotropies,*

oo
Ik, ) = (2m)1 /_ dt /V &*r exp[i(k-r—wt) JX f P (cas*(r+7"t) ass (7, 0)). (B4)
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